There is not any news.
Teacher:
ESSE3 Link
Webex Link:
Scheduling of Lectures:
Degrees:
The grading is done via a project work
There will be several submission deadlines
Knowledge-intensive processes are more unstructured processes with a lot of involvements of users with their experience. Supporting such processes at their levels requires modeling and enacting several different forms of knowledge. In general, more explicitly represented knowledge allows better support. But different forms of knowledge need different intuitive and adequate representations and inferences.
There are several methods to formally represent knowledge. Graphical models can be an intuitive means to add knowledge to knowledge-based systems. Instead of manually creating knowledge bases, knowledge can also be learned from data. We distinguish between symbolic learning (learning decision trees and case-based reasoning) and sub-symbolic learning (neural networks)
After completion of this module, the participants will be able to assess which kind of knowledge representation and reasoning is adequate and are able to develop appropriate knowledge-based systems. They can value the advantages of knowledge-based systems with respect to their costs and apply several methods to create knowledge bases.
Course Material
Recordings of the lectures are password protected (passwords on request from the lecturers)