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1 Introduction

Java programs are compiled into an intermediate language which is interpreted
by the Java Virtual Machine (JVM) [5]. The intermediate language, which,
following other authors, we call JVML, is a language of bytecode instructions.

Since JVML programs can be loaded from the network, security problems
may arise. For this reason, JVM embodies a bytecode verifier which performs a
set of checks on JVML programs before their execution. The aim of these checks
is to prevent the execution of malicious or wrong code which could corrupt the
integrity of the host. The verifier performs a data-flow analysis applied to a
type-level abstract interpretation of the JVM.

Given the importance of the bytecode verifier, a lot of research efforts have
been dedicated both to its formalization and to study extensions able to accept
larger classes of correct programs than the standard verifier does [2, 3, 4].

Finally [1] is very funny.
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