Bibliography in ETEX

Tux et al.

February 16, 2006

1 Introduction

Java programs are compiled into an intermediate language which is interpreted
by the Java Virtual Machine (JVM) [5]. The intermediate language, which,
following other authors, we call JVML, is a language of bytecode instructions.

Since JVML programs can be loaded from the network, security problems
may arise. For this reason, JVM embodies a bytecode verifier which performs a
set of checks on JVML programs before their execution. The aim of these checks
is to prevent the execution of malicious or wrong code which could corrupt the
integrity of the host. The verifier performs a data-flow analysis applied to a
type-level abstract interpretation of the JVM.

Given the importance of the bytecode verifier, a lot of research efforts have
been dedicated both to its formalization and to study extensions able to accept
larger classes of correct programs than the standard verifier does [2, 3, 4].

Finally [1] is very funny.

References

[1] Papérino, P. and De Paperoni, P. Rich Forever. The Walt Disney Journal
1(3), 300-350, 2005.

[2] Freund, S. N. and Mitchell, J. C. A Formal Framework for the Java Byte-
code Language and Verifier. ACM Conference on Object-Oriented Pro-
gramming Systems, Languages & Applications, 1999.

[3] Hagiya, M. and Tozawa, A. On a New Method for Dataflow Analysis of
Java Virtual Machine Subroutines. Static Analysis Symposium ’98, LNCS
1503, Springer, 1998.

[4] Leroy, X. Java bytecode verification: an overview. In Proceedings of
CAV’01, Springer LNCS 2102, 2001.

[5] Lindholm, T. and Yellin, F. The Java Virtual Machine Specification. The
Java Series, Addison-Wesley, 1999.



