
Logic and Constraint 
Programming

May 27, 2022

PROLOG
Prof. Fabrizio Fornari



Representation of lists

The list is a simple data structure widely used in non-numeric 
programming. 

A sequence list is a sequence of any number of items, such as:
[ ann, tennis, tom, skiing ]

Remember: all structured objects in Prolog are trees. Lists are no 
exception to this. 



Representation of lists

A list can be empty or non-empty.

Empty: [ ] .

Non-Empty: 

1. the first items is called the head of the list; 
2. the remaining part of the list is called the tail. 

[ ann, tennis, tom, skiing ]

Head Tail



Representation of lists

The tail has to be a list. The head and the tail are combined into a 
structure by the functor “.”:

.( Head, Tail)

[ ann, tennis, tom, skiing ]

Head Tail

Since Tails is in turn a list, it is either empty or it has its own head and tail



Representation of lists

[ ann, tennis, tom, skiing ]

Head Tail

.( Head, Tail)

.( ann, .(tennis, .( tom, .( skiing, [ ] ) ) ) )

Empty list

How Prolog interprets a List



Operations on lists

Membership relation. Checking whether some object is an 
element of a list

Concatenation of two lists, obtaining a third one

Adding a new object to a list, or deleting an object from it.



Sublist

Let us define the sublist relation such that: 

sublist( [c,d,e], [a,b,c,d,e,f] )
sublist( [c,e], [a,b,c,d,e,f] )

is true
is false

S is a sublist of L if:
1. L can be decomposed into two lists, L1 and L2, and
2. L2 can be decomposed into two lists, S and some L3.

sublist( S, L) :-
conc( L1, L2, L),
conc( S, L3, L2).

What if we ask sublist( S, [a,b,c] )?



Permutation

We can generate permutations of a list through backtracking using the 
permutation procedure, as in the following:

?- permutation( [a,b,c], P).

P = [a, b, c] ;
P = [a, c, b] ;
P = [b, a, c] ;
P = [b, c, a] ;
P = [c, a, b] ;
P = [c, b, a] ;
false.

?- random_permutation( [a,b,c], P).



List length

Let us count the elements in a list List and instantiate N to thein number.

1. If the list is empty then its length is 0

length( [ ], 0).

length([_ | Tail], N) :-
length( Tails, N1),
N is 1 + N1.

?- length([ a,b, [ c,d], e], N).
N = 4

2. If the list is not empty then List = [Head | Tail]; then its length is 
equal to 1 plus the length of the tail Tail



SWI-Prolog library

https://www.swi-prolog.org/pldoc/man?section=libpl

https://www.swi-prolog.org/pldoc/man?section=libpl


Let us define some relations

max( X, Y, Max) so that Max is the greater of two numbers X and Y.

max( X, Y, X) :-
X >= Y.

max( X, Y, Y) :-
Y > X.



Let us define some relations

maxlist( List, Max) so that Max is the greatest number in the list of 
numbers denoted by List.

maxlist([ X],X). % Maximum of single-element list

maxlist([X, Y | Rest], Max) :- % At least two elements in list
maxlist( [Y| Rest ], MaxRest),
max( X, MaxRest, Max). % Max is the greater of X and MaxRest



Let us define some relations

maxlist( List, Max) so that Max is the greatest number in the list of 
numbers denoted by List.

Which is the execution trace of maxlist([3, 7, 2, 10], MaxRest)



Let us define some relations

Which is the execution trace of maxlist([3, 7, 2, 10], MaxRest)



Let us define some relations
Which is the execution trace of maxlist([3, 7, 2, 10], MaxRest)



Let us define some relations
?- trace.
[trace]  ?- maxlist([3,7,2,10], Max).

Call: (10) maxlist([3, 7, 2, 10], _19236) ? creep
Call: (11) maxlist([7, 2, 10], _20488) ? creep
Call: (12) maxlist([2, 10], _21250) ? creep
Call: (13) maxlist([10], _22012) ? creep
Exit: (13) maxlist([10], 10) ? creep



Let us define some relations
?- trace.
[trace]  ?- maxlist([3,7,2,10], Max).

Call: (13) max(2, 10, _21250) ? creep
Call: (14) 2>=10 ? creep
Fail: (14) 2>=10 ? creep
Redo: (13) max(2, 10, _21250) ? creep
Call: (14) 10>2 ? creep
Exit: (14) 10>2 ? creep
Exit: (13) max(2, 10, 10) ? creep
Exit: (12) maxlist([2, 10], 10) ? creep

Call: (10) maxlist([3, 7, 2, 10], _19236) ? creep
Call: (11) maxlist([7, 2, 10], _20488) ? creep
Call: (12) maxlist([2, 10], _21250) ? creep
Call: (13) maxlist([10], _22012) ? creep
Exit: (13) maxlist([10], 10) ? creep

max( X, Y, X) :-
X >= Y.

max( X, Y, Y) :-
Y > X.



Let us define some relations
?- trace.
[trace]  ?- maxlist([3,7,2,10], Max). Call: (12) max(7, 10, _20488) ? creep

Call: (13) 7>=10 ? creep
Fail: (13) 7>=10 ? creep
Redo: (12) max(7, 10, _20488) ? creep
Call: (13) 10>7 ? creep
Exit: (13) 10>7 ? creep
Exit: (12) max(7, 10, 10) ? creep
Exit: (11) maxlist([7, 2, 10], 10) ? creep

Call: (13) max(2, 10, _21250) ? creep
Call: (14) 2>=10 ? creep
Fail: (14) 2>=10 ? creep
Redo: (13) max(2, 10, _21250) ? creep
Call: (14) 10>2 ? creep
Exit: (14) 10>2 ? creep
Exit: (13) max(2, 10, 10) ? creep
Exit: (12) maxlist([2, 10], 10) ? creep

Call: (10) maxlist([3, 7, 2, 10], _19236) ? creep
Call: (11) maxlist([7, 2, 10], _20488) ? creep
Call: (12) maxlist([2, 10], _21250) ? creep
Call: (13) maxlist([10], _22012) ? creep
Exit: (13) maxlist([10], 10) ? creep



Let us define some relations
?- trace.
[trace]  ?- maxlist([3,7,2,10], Max).

Call: (11) max(3, 10, _19236) ? creep
Call: (12) 3>=10 ? creep
Fail: (12) 3>=10 ? creep
Redo: (11) max(3, 10, _19236) ? creep
Call: (12) 10>3 ? creep
Exit: (12) 10>3 ? creep
Exit: (11) max(3, 10, 10) ? creep
Exit: (10) maxlist([3, 7, 2, 10], 10) ? creep

Max = 10 .

Call: (13) max(2, 10, _21250) ? creep
Call: (14) 2>=10 ? creep
Fail: (14) 2>=10 ? creep
Redo: (13) max(2, 10, _21250) ? creep
Call: (14) 10>2 ? creep
Exit: (14) 10>2 ? creep
Exit: (13) max(2, 10, 10) ? creep
Exit: (12) maxlist([2, 10], 10) ? creep

Call: (10) maxlist([3, 7, 2, 10], _19236) ? creep
Call: (11) maxlist([7, 2, 10], _20488) ? creep
Call: (12) maxlist([2, 10], _21250) ? creep
Call: (13) maxlist([10], _22012) ? creep
Exit: (13) maxlist([10], 10) ? creep



Let us define some relations
?- trace.
[trace]  ?- maxlist([3,7,2,10], Max).

Call: (11) max(3, 10, _19236) ? creep
Call: (12) 3>=10 ? creep
Fail: (12) 3>=10 ? creep
Redo: (11) max(3, 10, _19236) ? creep
Call: (12) 10>3 ? creep
Exit: (12) 10>3 ? creep
Exit: (11) max(3, 10, 10) ? creep
Exit: (10) maxlist([3, 7, 2, 10], 10) ? creep

Max = 10 .

Call: (13) max(2, 10, _21250) ? creep
Call: (14) 2>=10 ? creep
Fail: (14) 2>=10 ? creep
Redo: (13) max(2, 10, _21250) ? creep
Call: (14) 10>2 ? creep
Exit: (14) 10>2 ? creep
Exit: (13) max(2, 10, 10) ? creep
Exit: (12) maxlist([2, 10], 10) ? creep

Call: (10) maxlist([3, 7, 2, 10], _19236) ? creep
Call: (11) maxlist([7, 2, 10], _20488) ? creep
Call: (12) maxlist([2, 10], _21250) ? creep
Call: (13) maxlist([10], _22012) ? creep
Exit: (13) maxlist([10], 10) ? creep

Call: (12) max(7, 10, _20488) ? creep
Call: (13) 7>=10 ? creep
Fail: (13) 7>=10 ? creep
Redo: (12) max(7, 10, _20488) ? creep
Call: (13) 10>7 ? creep
Exit: (13) 10>7 ? creep
Exit: (12) max(7, 10, 10) ? creep
Exit: (11) maxlist([7, 2, 10], 10) ? creep



Let us define some relations
Define the predicate ordered( List)

which is true if List is an ordered list of numbers such as 

ordered([ 2, 3, 7, 10]).



Let us define some relations
Define the predicate ordered( List)

which is true if List is an ordered list of numbers such as 

ordered([ 2, 3, 7, 10]).

ordered([X]). % A single-element list is ordered

ordered([X,Y|Rest]) :-
X =< Y,
ordered([Y|Rest]).



Operators

2*a + b*c infix

+( *(2,a), *(b,c) ) In Prolog



Operators

A programmer can define his or her own operators.
peter has information.
floor supports table.

These facts are exactly equivalent to:
has( peter, information).
supports( floor, table).

:- op( 600, xfx, has).

precedence
infix

operator name



Operators

A programmer can define his or her own operators.
peter has information.
floor supports table.

These facts are exactly equivalent to:
has( peter, information).
supports( floor, table).

:- op( 600, xfx, has).

precedence
infix

operator name

the operator denoted by “f” is between two arguments denoted by “x”



Operators

Operators are normally used, as functors, only to combine objects into 
structures and not to invoke actions on data.

Operator names are atoms. An operator’s precedence must be in 
some range which depends on the implementation. We can assume a 
range between 1 and 1200.



Precedence of Argument

If an argument is enclosed in parentheses or it in an unstructured 
object then its precedence is 0; if an argument is a sctucture then its 
precedence is equal to the precedence of its principal functor. 

Three groups of operator types:
1. infix operators of three types: xfx xfy yfx
2. prefix operators of two types: fx fy
3. postfix operators of two types: xf yf

“x” represents an argument whose precedence must be strictly lower than 
that of the operator.
“y” represents an argument whose precedence is lower or equal to that of 
the operator.



Precedence of Argument

It helps to disambiguate expressions with several operators of the same 
precedence.

a – b – c is normally understood as (a – b) – c and not as a – (b – c).

The operator “-” to achieve the normal interpretation has to be defined as yfx

assuming that “-” has 
precedence 500

Valid Invalid



Precedence of Argument

Another example with the prefix operator not:

not not p

https://www.swi-prolog.org/pldoc/man?section=operators

is legal if not is defined as fy; it is illegal if defined as fx because the 
argument to the first not is not p, which has the same precedence 
as not itself.
In this case the expression has to be written 
with parentheses: 

not( not p)
Some operators in the Prolog system are already defined. What they are and their 
precedence depends on the specific implementation of Prolog.



Precedence of Argument

The use of operators can greatly improve the readability of programs.  

If we want to state one of de Morgan’s equivalence theorems written as:

One way is:

equivalence( not( and( A, B)), or( not( A), not( B) ) ).

It is a good programming practice to try to retain as much resemblance 
as possible between the original problem notation and the notation used 
in the program



Precedence of Argument

We can define operators such as:

And write the de Morgan’s theorem as:

Instead of:
equivalence( not( and( A, B)), or( not( A), not( B) ) ).

equivalence( not( and( A, B)), or( not( A), not( B) ) ).

A lot similar to: 

How can we visualize the tree structure?



Arithmetic
Some of the predefined operators can be used for basic arithmetic operations.

Try asking Prolog: ?- X = 1 + 2.

Try asking Prolog: ?- X is 1 + 2.

Try asking Prolog: ?- X is 5/2,
?- Y is 5//2,
?- Z is 5 mod 2.

Try asking Prolog: ?- 277 * 37 > 10000.



Arithmetic

?- 1 + 2 = 2 + 1.

?- 1 + 2 =:= 2 + 1.

?- 1 + A = B + 2.

false

true

A = 2,
B = 1.



Arithmetic

?- born( Name, Year),
Year >= 1980,
Year =< 1990.

Suppose we have a relation born that relates the names of people with 
their birth years. We could retrieve the names of people born between 
1980 and 1990 inclusive with the followin question:



Operators
Assume the operator definitions
:- op( 300, xfx, plays).
:- op( 200, xfy, and).

Then the following two terms are syntactically legal objects:
Term1 = jimmy plays football and squash
Term2 = susan plays tennis and basketball and volleyball

How are these terms understood by Prolog? 
What are their principal functors and what is theirs structure?

Term1 = plays( jimmy, and( football, squash ) )
Term2 = plays (susan, and( tennis, and( basketball, volleyball ) ) )



Summary

The list is a frequently used structure. It is either empty or consists of a 
head and a tail which is alist as well. Prolog provides a special notation for 
lists.

Common operations on lists, programmed in this chapter, are: list 
membership, concatenation, adding an item, deleting an item, sublist.

The operator notation allows the programmer to tailor the syntax of 
programs toward particular needs. Using operators the redability of 
programs can be greatly improved. 



Summary

New operators are defined by the directive op, standing the name of an 
operator, its type and precedence.

In principle, there is no operation associated with an operator; operators 
are merely a syntactic device providing an alternative syntax for terms.

Arithmetic is done by built-in procedures. Evaluation of an arithmetic 
expression is forced by the procedure is and by the copmarison predicates 
<, =<, etc.



Programming Examples

Directed graph 

Graph structures are useful abstract 
representation for many problems.



Programming Examples

Directed graph 

Graph structures are useful abstract 
representation for many problems.



Programming Examples

Directed graph 

Graph structures are useful abstract 
representation for many problems.

Which is the most common type of 
question concerning a graph?

Is there a path from node X to node Y? 
And if there is, show the path.



Programming Examples

Concrete practical questions are:
- How can I travel from Camerino to Rome?

- How can a user navigate from web page X to page Y?

- How many links of the type ‘P1 knows P2’ in a social 
network are needed to get from any person in the world 
to any other person, by following a chain of ‘knows’ 
links between people?

Milgram, S. (1967). The small world 
problem. Psychology today, 2(1), 60-67.
The average path length for social networks of 
people in the United States.

All these concrete questions can be answered by the same 
algorithms that work on abstract graphs where nodes and 
links have no concrete meaning

https://en.wikipedia.org/wiki/Average_path_length
https://en.wikipedia.org/wiki/Social_network


Programming Examples

link( a,b).
link( a,c).
link( b,d).
link( c,d).
link( c,f).
link( d,e).
link( d,f).
link( f,a).

Graph structures are useful abstract 
representation for many problems.



Programming Examples
path( StartNode, EndNode)

it is true if there exists a path from StartNode to EndNote in the given graph.

A path exists if
1. StartNode and EndNode are both the same node, or

How can we write these two rules in Prolog?

path( Node, Node). % StartNode and EndNode are both the same node

path( StartNode, EndNode) :-
link( StartNode, NextNode),
path( NextNode, EndNode).

When does a path exists from StartNode to EndNote? 

2. there is a link from StartNode to NextNode, and there is a path from NextNode to EndNode



Programming Examples

?- path(a,e).

path( Node, Node). % StartNode and EndNode are both the same node

path( StartNode, EndNode) :-
link( StartNode, NextNode),
path( NextNode, EndNode).

true

?- path(a,X).

What are we asking?



Programming Examples

?- path(a,e).

path( Node, Node). % StartNode and EndNode are both the same node

path( StartNode, EndNode) :-
link( StartNode, NextNode),
path( NextNode, EndNode).

true

?- path(a,X).

Which are the nodes X reachable from a?



Programming Examples

?- path(a,X).

Which are the nodes X reachable from a?

X = a ;
X = b ;
X = d ;
X = e ;
X = f ;
X = a ;
X = b ;
… 

Prolog has found that a
is connected to a itself, 
b, d, e, f. Then it is back 
to a restarting the cycle.

It will never find that a is 
linked to c, link( a,c).

Let us ask 
?- path( a,c).

Why does it happen? 

What happens?



Programming Examples

Which is the execution trace?

?- path( a,c).

link( a,b).
link( a,c).
link( b,d).
link( c,d).
link( c,f).
link( d,e).
link( d,f).
link( f,a).

path( Node, Node).

path( StartNode, EndNode) :-
link( StartNode, NextNode),
path( NextNode, EndNode).



Programming Examples
The execution trace of ?- path( a,c).



Programming Examples



Programming Examples



Programming Examples

The style in which our program searches a graph is called depht-first. 
Whenever there is a choice between alternatives where to continue the search, 
the program chooses a current deepest alternative.

Each recursive call takes some memory, that is why Prolog eventually runs out 
of memory. Because Prolog has to remember where to return in the event that 
backtracking occurs.

Our simple program with DFS (Depth-First Search), has a problem. The 
problem does not occur when the graph to be searched is finite and has no 
cyclical path. 

The problem can be fixed in many ways, for example by limiting the depth of 
search, or by checking for node repetition on the currently expanded path. 


