
Logic and Constraint Programming

1- CP Introduction
A.A. 2021/2022

Lorenzo Rossi
lorenzo.rossi@unicam.it

University of Camerino



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

WHY LCP IN IAS?

L. Rossi LCP - CP Introduction 1 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

WHY LCP IN IAS?

Intelligent and Adaptive Systems (IAS) needs to:

• take decisions according to their knowledge

So, to program IAS, we need to:

• represent system’s knowledge
• facts and their relationships (i.e., rules, constraints)

• query the knowledge base to support autonomic decisions
• inference of an answer to a query, or solution of a CSP

Nowadays, other AI supports are available, e.g. Machine Learning

• LCP is programmable and verifiable

L. Rossi LCP - CP Introduction 1 / 31



An (gentle) Introduction to
Constraint Programming



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

WHAT IS CP

Constraint programming (CP) is paradigm for solving combinatorial
search problems that draws on a wide range of techniques from AI,
operations research, algorithms, graph theory ...

Constraint Programming represents
one of the closest approaches com-
puter science has yet made to the Holy
Grail of programming: the user states
the problem, the computer solves
it [1]

[1] Eugene C. Freuder, Inaugural issue of the Constraints Journal, 1997.

L. Rossi LCP - CP Introduction 2 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

CONSTRAINT SATISFACTION PROBLEMS
≫AN EXAMPLE

This is Bob, a Computer Science stu-
dent at first year

Apart from study, Bob likes eat, play,
chill, chat, do sport, travel, and so on

Considering the costs of these activ-
ities, and that Bob’s parents gives to
him 200C/month for all its expenses

What is the maximum number of activities Bob can do with this
amount of money?

L. Rossi LCP - CP Introduction 3 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

CONSTRAINT REASONING

L. Rossi LCP - CP Introduction 4 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

CONSTRAINT SATISFACTION PROBLEMS
≫LET’S TRY TO BE MORE FORMAL

Each row, columns, 3x3 square must contain numbers from 1 to 9,
without repetitions

L. Rossi LCP - CP Introduction 5 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

CONSTRAINT SATISFACTION PROBLEMS
≫A FORMAL TREATMENT

A constraint satisfaction problem (CSP) is a tuple X ,D, C where:

• X is a set of variables {X1,X2, . . . ,Xn};

• D is a set of domains {D1,D2, . . . ,Dn} one for each variable; and

• C is a set of constraints over variables.

A domain Di ={v1, . . . , vk} is the set of values allowed for a variable X1

A constraint Ci is a relation over Xj, . . . ,Xk

L. Rossi LCP - CP Introduction 6 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

A solution to a CSP is an assignment of
values to the variables which satisfies all the

constraints simultaneously

L. Rossi LCP - CP Introduction 6 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

CSP COMPLEXITY

Given a CSP the search space depends on the domains of the
variables

D(X1)× · · · × D(Xn) −→ very large..

Constraint satisfaction is NP-complete

Exist classes of CSP which are tractable, depending on the domains
and on the constraints (see [2] for details)

Rossi F., van Beek P., Walsh T.: Constraint Programming. In: Handbook of Constraint
Programming. Elsevier, 2008.

L. Rossi LCP - CP Introduction 7 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

CONSTRAINT SATISFACTION PROBLEMS
≫PYTHAGOREAN THEOREM

Can we consider the Pythagorean theorem as a CSP?

L. Rossi LCP - CP Introduction 8 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

CONSTRAINT SATISFACTION PROBLEMS
≫PYTHAGOREAN THEOREM

Can we consider the Pythagorean theorem as a CSP?

• Variables: X = {a, b, c}
• Domains: D(c) = R+

• Constraints: c2 = b2 + a2

L. Rossi LCP - CP Introduction 8 / 31



Minizinc introduction



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC

MiniZinc is a language designed for specifying constrained optimization and
decision problems over integers and real numbers

A MiniZinc model does not dictate how to solve the problem although the
model can contain annotations which are used to guide the underlying solver

MiniZinc is designed to interface easily to different backend solvers

• An input MiniZinc model and data file is transformed into a FlatZinc
model

• FlatZinc models consist of variable declaration and constraint
definitions as well as a definition of the objective function if the problem
is an optimization problem

• The translation from MiniZinc to FlatZinc is specializable to individual
backend solvers

L. Rossi LCP - CP Introduction 9 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫SOME MORE INFO

MiniZinc is a high-level, typed, mostly first-order, functional, modelling
language. It provides:

• mathematical notation-like syntax (automatic coercions, overloading,
iteration, sets, arrays);

• expressive constraints (finite domain, set, linear arithmetic, integer);

• support for different kinds of problems (satisfaction, explicit
optimisation);

• separation of data from model;

• extensibility (user-defined functions and predicates);

• reliability (type checking, instantiation checking, assertions);

• solver-independent modelling;

• simple, declarative semantics.

L. Rossi LCP - CP Introduction 10 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

FROM ZINC TO FLATZINC

FlatZinc is a low-level solver input language that is the target
language for MiniZinc. It is designed to be easy to translate into the
form required by a solver

Thus, you can integrate new solvers or implement your own!

L. Rossi LCP - CP Introduction 11 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫SOLVERS

FlatZinc Implementations

• Gecode/FlatZinc. The Gecode generic constraint development environment provides a FlatZinc interface. The source code for
the interface stripped of all Gecode-specific code is also available.

• ECLiPSe. The ECLiPSe Constraint Programming System provides support for evaluating FlatZinc using ECLiPSe’s constraint
solvers. MiniZinc models can be embedded into ECLiPSe code in order to add user-defined search and I/O facilities to the models.

• SICStus Prolog. SICStus (from version 4.0.5) includes a library for evaluating FlatZinc.

• JaCoP. The JaCoP constraint solver (from version 4.2) has an interface to FlatZinc.

• SCIP. SCIP, a framework for Constraint Integer Programming, has an interface to FlatZinc.

• Opturion CPX. Opturion CPX, a Constraint Programming solver with eXplanation system, has an interface to FlatZinc.

• MinisatID. MinisatID, an implementation of a search algorithm combining techniques from the fields of SAT, SAT Module Theories,
Constraint Programming and Answer Set Programming, has an interface to FlatZinc.

L. Rossi LCP - CP Introduction 12 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

USEFUL RESOURCES

https://www.minizinc.org/

https://www.minizinc.org/doc-2.4.3/en/index.html

L. Rossi LCP - CP Introduction 13 / 31

https://www.minizinc.org/
https://www.minizinc.org/doc-2.4.3/en/index.html


An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

A FIRST DEMO

Download and install Minizinc (https://www.minizinc.org/)

L. Rossi LCP - CP Introduction 14 / 31

https://www.minizinc.org/


An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

EXAMPLE
≫GRAPH COLOURING PROBLEM

We wish to colour regions in
a map. Each region must be
coloured so that adjacent re-
gions have different colours

In graph theory, graph coloring
is a special case of graph label-
ing; it is an assignment of labels
traditionally called “colours” to
elements of a graph subject to
certain constraints

L. Rossi LCP - CP Introduction 15 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

EXAMPLE
≫GRAPH COLOURING PROBLEM

Northern Italy includes: Valle d’Aosta, Piemonte, Liguria, Lombardia,
Trentino, Friuli, and Veneto region

int: nc = 4;
var 1..nc: va; var 1..nc: pi; var 1..nc: li; var 1..nc: lo; var 1..nc: taa; var 1..nc: ve; var 1..nc: fvg;

constraint va != pi;
constraint pi != li;
constraint pi != lo;
constraint lo != taa;
constraint lo != ve;
constraint taa != ve;
constraint ve != fvg;

solve satisfy;

output [”Valle d’Aosta = ”, show(va), ”\n”, ”Piemonte = ”, show(pi), ”\n”,
”Liguria = ”, show(li), ”\n”, ”Lombardia = ”, show(lo), ”\n”,
”Trentino Alto Adige = ”, show(taa), ”\n”, ”Veneto = ”, show(ve), ”\n”,
”Friuli Venezia Giulia = ”, show(fvg)];

L. Rossi LCP - CP Introduction 16 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

EXAMPLE
≫GRAPH COLOURING PROBLEM

L. Rossi LCP - CP Introduction 17 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫SYNTAX

Comments:

• ‘%’ Single line comment

• ‘/* */’ Comment on multiple lines

Variables: They must have a type and be declared. The basic
parameter types are integers (int), floating point numbers (float),
booleans (bool) and strings (string).

• ‘int: pippo = 3;’ Unique declaration and assignment

• ‘int: pippo; pippo = 3’ separated declaration and
assignment

Arrays and sets are also supported

L. Rossi LCP - CP Introduction 18 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫DECISION AND PARAMETERS

MiniZinc distinguishes between the two kinds of model variables:
parameters and decision variables

• Expressions that can be constructed using decision variables are
more restricted than those that can be built from parameters

• In any place that a decision variable can be used, so can a
parameter of the same type

The distinction between parameters and decision variables
concerns the instantiation of the variable

• The second is instantiated by the solver

• The former is instantiated by you (the modeller)

L. Rossi LCP - CP Introduction 19 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫BACK TO THE EXAMPLE

In model we associate a (unknown) decision variable to each region:

var 1..nc: va; var 1..nc: pi; var 1..nc: li; var 1..nc: lo; var 1..nc: taa; var 1..nc: ve; var 1..nc: fvg;

For each decision variable we decide set of possible values the
variable can take: the variable’s domain

In the example we use integers to model the different colours.

1..nc which is an integer range expression indicating the set {1,
2, 3}

L. Rossi LCP - CP Introduction 20 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫BACK TO THE EXAMPLE

The next component of the model are the constraints i.e., boolean
expressions that the decision variables must satisfy

We used not equal constraints between the decision variables: if two
states are adjacent then they must have different colours

constraint va != pi;
constraint pi != li;
constraint pi != lo;
constraint lo != taa;
constraint lo != ve;
constraint taa != ve;
constraint ve != fvg;

MiniZinc provides:
equal = or ==, not equal !=, strictly less than < strictly greater than
>, less than or equal to <=, and greater than or equal to >=

L. Rossi LCP - CP Introduction 21 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

BACK TO THE EXAMPLE

Then, we decide the kind of problem to solve

solve satisfy;

In this case it is a satisfaction problem: we wish to find a value for the
decision variables that satisfies the constraints but we do not care which one

Finally, we give the output statement followed by a list of strings

output [”Valle d’Aosta = ”, show(va), ”\n”, ”Piemonte = ”, show(pi), ”\n”, ”Liguria = ”, show(li), ”\n
”, ”Lombardia = ”, show(lo), ”\n”, ”Trentino Alto Adige = ”, show(taa), ”\n”, ”Veneto = ”,
show(ve), ”\n”, ”Friuli Venezia Giulia = ”, show(fvg)];

String are written between double quotes in a C like notation

L. Rossi LCP - CP Introduction 22 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

EXERCISE
≫GRAPH COLOURING PROBLEM

What about central Italy?

L. Rossi LCP - CP Introduction 23 / 31



Minizinc Syntax



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫DECISION VARIABLES, PARAMETERS, TYPES

Minizinc defines parameters and decision variables

int: i=3;

par int: i=3;

int: i; i=3;

var 0..4: i;

var 0,1,2,3,4: i;

var int: i; constraint i >=

0; constraint i <= 4;

• Integer: int or range 1..n or set of int

• Floating point: float or range 1.0 .. n.0 or set of

float

• Boolean: bool

• String: string (not for decision variables)

• Array: array[range] of type

• Set: set of type

L. Rossi LCP - CP Introduction 24 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

SYNTAX
≫STRING

Strings can be only parameters. They are used only for the output
statement

They are written between double quotes or are expression of the form
show(X) where X can be either a decision variable or a parameter

L. Rossi LCP - CP Introduction 25 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

SYNTAX
≫ARITHMETIC EXPRESSIONS

Operators:

• Float: * / + -

• Integer: * div mod + - abs pow

Relations:

• == != > < >= <=

Minizinc does not provide automatic casting from integer to float.
Function int2float(intexp) solve this issue

L. Rossi LCP - CP Introduction 26 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

MINIZINC
≫DATA FILES

Model input data can be loaded from file (.dzn) or from bash

Model:
var int: A;

int: B;

Data file:
A = 12;

B = 2;

minizinc model.mzn data.dzn

L. Rossi LCP - CP Introduction 27 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

SYNTAX
≫SET

Sets in Minizinc can contain integer, float or Boolean values

%Set of integer values
set of int: s = {1,23,22,3};

%Set of variables
var int: a = 0; var int: b = 3;
set of int: s = {a,...,b};

%Range as a set
set of int: s = 1..100;

Operators: in, union, intersect, subset, superset,

diff

A set can be used as a type

L. Rossi LCP - CP Introduction 28 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

SYNTAX
≫ARRAY

Arrays in Minizinc can be multi-dimensional

array[index set1,index set2, ..., ] of type

Index sets of an array can be either:

• Range of integers

• Variable names (representing sets of inegers)

Elements of an array can be of any type excluding other arrays
array[products, resources] of int: consumption;

array[products] of var 0..mproducts: produce;

L. Rossi LCP - CP Introduction 29 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

EXERCISE
≫BAKERY

Bob just opened a bakery in Camerino. Bob knows how to produce two
different cakes:

A banana cake which takes:

• 250g of flour,

• 2 mashed bananas,

• 75g sugar, and

• 100g of butter.

A chocolate cake which takes:

• 200g of flour,

• 75 of cocoa,

• 150g sugar, and

• 150g of butter.

We can sell a chocolate cake for C 4.50 and a banana cake for C 4.00. And
we have 4kg of flour, 6 bananas, 2kg of sugar, 500g of butter and 500g of
cocoa.

How many of each sort of cake should Bob cook to maximise the profit?

L. Rossi LCP - CP Introduction 30 / 31



An (gentle) Introduction to Constraint Programming Minizinc introduction Minizinc Syntax

EXERCISE
≫BAKERY

% Bob’s bakery
var 0..100: b;
var 0..100: c;
%flour
constraint 250*b + 200*c <= 4000;
%bananas
constraint 2*b <= 6;
%sugar
constraint 75*b + 150*c <= 2000;
%butter
constraint 100*b + 150*c <= 500;
%cocoa
constraint 75*c <= 500;
%maximize profit
solve maximize 400*b + 450*c;
output [”Prepare ”, show(b), ” banana cakes, and ”, show(c), ”chocolate cakes, now!”];

L. Rossi LCP - CP Introduction 31 / 31


	An (gentle) Introduction to Constraint Programming
	Minizinc introduction
	Minizinc Syntax

