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Maude

It is used to model systems and the actions within those systems. 

It can be used to define executable formal models of distributed systems, and 
provides analysis tool to formally analyze the models. 
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It can model almost anything, from the set of rational numbers to a biological 
system to the programming language Maude itself. 

Maude is a language and environment based on rewriting logic.

Maude and rewriting logic were both developed by José Meseguer and his 
research group at the Computer Science Laboratory at Stanford Research 
Institute (SRI) International. He leads the Formal Methods and Declarative 
Languages Laboratory

http://formal.cs.illinois.edu/meseguer/


Maude Usage

3

Maude and its formal tool environment can be used in three, ways: 

• as a declarative programming language; 
• as an executable formal specification language; and 
• as a formal verification system.



Rewriting Logic

In rewriting logic, the data types of the system are defined algebraically by 
equations. In essence, defining data types amounts to define functions in a 
recursive, functional programming style. 

The dynamic behavior of a system is then defined by rewrite rules which describe 
how a part of the state can change in one step. 
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Maude References

5

http://maude.cs.illinois.edu/w/index.php/The_Maude_System

https://github.com/SRI-CSL/Maude/releases/tag/3.2.1

http://maude.cs.illinois.edu/w/images/6/65/Maude-3.2.1-manual.pdf

http://maude.cs.illinois.edu/w/images/6/63/Maude-primer.pdf

Maude official website

Maude github repository

Maude manual

Maude publicly released in 1998, and is still under active development. 

Maude binaries are provided for selected architectures and operating 
systems, including Linux and macOS

Maude Tutorial

http://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://github.com/SRI-CSL/Maude/releases/tag/3.2.1
http://maude.cs.illinois.edu/w/images/6/65/Maude-3.2.1-manual.pdf
http://maude.cs.illinois.edu/w/images/6/63/Maude-primer.pdf


Basic-list example

fmod BASIC-LIST is

sorts List Elt .

subsort Elt < List .

op nil : -> List [ctor] .

op __ : List List -> List [ctor] .     

vars E1 E2 : Elt . 

vars L1 L2 : List .

endfm
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***A bare-minimum list needs a sort List and 
an element sort, or as commonly 
represented, Elt, a constant for empty lists, 
and a concatenation operator. 

***Elt declared subsort because an element 
of a list is really just a special case of a list: a 
list of size one (called a singleton). 

***double underscore concatenation operator 
This also means we can form a list by 
concatenating two elements, because an 
operator that takes List will also take a 
subsort of List. This way, the Maude compiler 
understands not only “L1 L2” but also “E1 E2” 
and “E1 L1.” 

***finally, the constant constructor nil is a 
common way to name a list of size zero. 



Boolean

7

set include BOOL off .

fmod BOOLEAN is
sort Bool .
op true : -> Bool .
op false : -> Bool .
op not_ : Bool -> Bool .
op _and_ : Bool Bool -> Bool .
op _or_ : Bool Bool -> Bool .
var A : Bool .
eq not true = false .
eq not false = true .
eq true and A = A .
eq false and A = false .
eq true or A = true .
eq false or A = A .

endfm

set include BOOL on .

red true and not (false or not true) .

***(
reduce in BOOLEAN : true and not (false or not true) .
rewrites: 4 in -10ms cpu (0ms real) (~ rewrites/second)
result Bool: true
)



Modules

The module is the key concept of Maude.
It is essentially a set of definitions. These define a collection of operations and how 
they interact  (they define an algebra). An algebra is a set of sets and the 
operations on them. 
In Maude, a module will provide a collection of sorts and a collection of operations 
on these sorts, as well as the information necessary to reduce and rewrite 
expressions that the user inputs into the Maude environment. 

fmod NAME is ... endfm functional module
mod NAME is ... endm system module

all the declarations and statements are in between the beginning of the module 
and the end of it. 
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Supplied Modules

NAT Includes sort Nat, addition _+_, symmetric difference sd, multiplication _*_, 
quotient _quo_, modulo _rem_, and a host of other useful operations, and all the 
natural numbers written in normal, numeric notation. 

INT, FLOAT, and RAT support integer, floating point, and rational numbers.

STRING module, while handles strings of characters and provides useful functions 
for searching and determining length. A String is any group of characters enclosed 
in quote marks, for example, "hello world!" 

QID, or Quoted IDentifier. An apostrophe just before any word creates a quoted 
identifier, which can be used as a name. 
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Supplied Modules
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Importing Modules
As in most programming languages, one can import a module from another. 

protecting MODULENAME . ***Not modified anyway

including MODULENAME . ---Can change the sense in which the   
---declarations were used. 

(INT example)
extending MODULENAME . ---somewhere between these two extremes 

junk - adding new ground terms (constructors and constants) to a module’s 
sort(s).

confusion - redefining the already extant terms of the imported module. 
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Sorts

The first thing a specification needs to declare are the types of the data being 
defined and the corresponding operations.

A sort is a category for values. A sort can pretty much describe any type of value, 
including lists and stacks of other values. 

subsorts, are further specific groups all belonging to the same sort. 

sorts Rational Integer Positive Negative .
subsorts Positive Negative < Integer < Rational .
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Membership Axioms

“Membership” simply refers to how certain terms are “members” of sorts. When we 
declare a variable, we declare it as a member of a sort using the colon, which one 
can think of a symbol for “is a member of.” 

var N : Nat .

membership logic is at the bottom of pretty much every declaration in Maude. 
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op _+_ : Nat Nat -> Nat . subsort NzNat < Nat .



Variables

A variable is an indefinite value for a sort. Just as x is a common variable for a 
number, one can declare a variable x as being of sort number. 
Variables are never used as constants. Maude variables never have a definite 
value assigned to them. The only important use of variables is as placeholders, 
when defining operations through equations and rewrite laws.

var x : number .
vars c1 c2 c3 : color .

The expression var x : [number] . declares a variable for the kind of number as 
opposed to the sort. 
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Operations

You can think an operation as a pathway between sorts. Maude understands both 
prefix and mixfix notation for operations. 

ops + * : Nat Nat -> Nat . 
ops _ + _ _*_ : Nat Nat -> Nat . 

Operation names may contain the special characters, such as the parentheses 
and brackets, commas, and periods. 

Constant operations act as the equivalent of constants in other programming 
languages 

op pi : -> Irrational .
ops red blue yellow : -> Color .
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Overloaded operators

Maude allows overloaded operators; that is, we can define two different operators 
with the same name. 

op _+_ : Integer Integer -> Integer .
op _+_ : Nat Nat -> Nat . *** subsort overloading, requires (same flags)
op _+_ : Note Note -> Chord . *** Ad-hoc overloading
op _+_ : Wrong Wrong -> Right . *** Ad-hoc overloading
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Peano numbers
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Peano numbers are a simple way of representing the natural numbers using only a 
zero value and a successor function

The five Peano axioms are:

1. Zero is a natural number.
2. Every natural number has a successor in the natural numbers.
3. Zero is not the successor of any natural number.
4. If the successor of two natural numbers is the same, then the two original numbers 
are the same.
5. If a set contains zero and the successor of every number is in the set, then the set 
contains the natural numbers.



Peano numbers
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fmod PEANO-NAT-EXTRA is 
sort Nat . 
op 0 : -> Nat . 
op s : Nat -> Nat . 
op _+_ : Nat Nat -> Nat . 
vars N M : Nat . 
eq 0 + N = N . 
eq s(M) + N = s(M + N) . 

endfm

Peano numbers are a simple way of representing the natural numbers using only a 
zero value and a successor function



The Maude Environment

First, one must write the modules for the algebras to be used in the environment, 
either by typing them directly into the prompt, or by storing them in a file directory 
that the Maude environment can access, and then typing load MODULENAME into 
the prompt. 

Maude> reduce s(0) + s(s(0)) . 
result Nat: s(s(s(0))) 

For those interested in seeing exactly how an expression is reduced, step by step, 
by the Maude interpreter, type:

Maude> set trace on . 19



Peano numbers
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fmod PEANO-NAT-EXTRA is 
sort Nat . 
op 0 : -> Nat . 
op s : Nat -> Nat . 
op _+_ : Nat Nat -> Nat . 
vars N M : Nat . 
eq 0 + N = N . 
eq s(M) + N = s(M + N) . 

endfm

Peano numbers are a simple way of representing the natural numbers using only a 
zero value and a successor function

red s(0) + s(s(s(s(s(0))) + s(s(0)))) . 

***( 
reduce in PEANO-NAT-EXTRA : s(0) + s(s(s(s(s(0))) + s(s(0)))) . 
rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second) 
result Nat: s(s(s(s(s(s(s(s(0)))))))) 
) 



Equation Strategy 

The first and most important strategy is recursion. Nearly every set of equations is 
defined with some level of recursion in mind. 

fmod PEANO-NAT-MULT is
protecting PEANO-NAT-EXTRA .
op _*_ : Nat Nat -> Nat .
vars M N : Nat .
eq N * 0 = 0 .
eq N * s(M) = N + (N * M) .

endfm
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The Maude interpreter evaluates an expression in an 
equational Maude program by applying the equations
“from left to right” until no equation can be applied, 
thereby computing the normal form (or “value”) of the 
expression. 

Maude> reduce s(s(s(0))) * s(s(s(s(s(0))))) .
reduce in PEANO-NAT-MULT : s(s(s(0))) * s(s(s(s(s(0))))) .
rewrites: 26 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))



Equation Strategy 
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reduce s(s(0)) * s(s(0)) . 

Try to reduce it 
manually applying 
the equations. It 
corresponds to 
finding the execution 
trace

Maude> reduce s(s(0)) * s(s(0)) . 
reduce in PEANO-NAT-MULT : s(s(0)) * s(s(0)) .
rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(0))))



Equation Strategy 
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fmod FIBONACCI is
protecting NAT .
op fibo : Nat -> Nat .

var N : Nat .
eq fibo(0) = 0 .
eq fibo(1) = 1 .
eq fibo( s s N) = fibo(N) + fibo(s N) .

endfm

Maude> reduce fibo(35) .
reduce in FIBONACCI : fibo(35) .
rewrites: 44791054 in 6392ms cpu (7054ms real) (7007361 rewrites/second)
result NzNat: 9227465

Maude> reduce fibo(50) .



Equation Strategy 
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fmod FIBONACCI is
protecting NAT .
op fibo : Nat -> Nat [memo] .

var N : Nat .
eq fibo(0) = 0 .
eq fibo(1) = 1 .
eq fibo( s s N) = fibo(N) + fibo(s N) .

endfm

Maude> reduce in FIBONACCI : fibo(35) .
rewrites: 103 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNat: 9227465

Maude> reduce fibo(50) .
reduce in FIBONACCI : fibo(50) .
rewrites: 46 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNat: 12586269025

Whenever an application 
will perform an operation 
many times, it may be 
useful to give that operator 
the memo attribute.



Memo
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Maude> reduce fibo(3) .
reduce in FIBONACCI : fibo(3) .
rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNat: 2

Maude> reduce fibo(3) .
reduce in FIBONACCI : fibo(3) .
rewrites: 4 in 0ms cpu (0ms real) (~rewrites/second)
result NzNat: 2

Without Memo With Memo

Look at their trace. With the command: set trace on .



Memo
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reduce fibo(3) .
without and with memo



Operator and Statement Attributes

memo flag. When Maude comes across an operation with memo among its attributes, it 
“memorizes” the reduced form of any expression with that operator at the top (that is, if the 
expression were written in prefix mode, the outermost operator). 

Whenever such an expression appears, Maude refers to its memorization table and 
produces the reduced form much quicker than if it had to continually apply reduction 
equations over and over again. 

This is useful when we write programs where the same expression (important: the same 
expression, not just the same operator) pops up thousands and thousands of times, such 
as highly recursive number theory problems. 
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Operator Attributes
Three key flags assoc, comm, and id, impose the equational attributes of associativity, 
commutativity, and identity on any binary operator.

op __ : List List -> List [ctor assoc id: nil] . 

Associativity just means that the list formed by “(L1 L2) L3” is the same as the list formed 
by “L1 (L2 L3)” is the same as the list formed by “L1 L2 L3.” 

Identity property of addition n+0=n. The identity property of lists is that “L1 nil” is the same 
as just “L1.” In other words, concatenating a list with an empty list reduces to the original 
list.  One may also define identities for the left and right arguments left id: and right id: . 

op __ : Set Set -> Set [ctor assoc comm id: none] . 

Commutativity: for sets (not lists) order does not matter, that “S1 S2 S3” is the same as 
“S1 S3 S2” is the same as “S2 S1 S3” etc. 
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Operator Precedence

When there is any fear of ambiguous expressions the user may declare precedence for the 
operator using the flag prec and a natural number. 

expression 3 + 3 * 3 is ambiguous since (3 + 3) * 3 and 3 + (3 * 3) are valid parses

op _+_ : Num Num -> Num [prec 35] .
op _*_ : Num Num -> Num [prec 25] .

gathering pattern

X + Y makes no use of the gather flag 
X + Y + Z, involves the addition of a variable to another addition: either_+_(X,_+_(Y,Z)) or 
_+_(_+_(X,Y),Z) If,say, we were to declare the _+_ operator with the flag gather (E e), then 
only the latter is possible. 
E = smaller or equal precedence    & = any precedence value 
e = strictly lower precedence 29



Other flags

idem - which denotes the equational attribute idempotency, the property that 
repeated elements are discarded.  assoc and idem flags may not be used together 
in Maude. 

A useful flag for unary operators that must be iterated over and over again for 
example, the s_ operator where ‘five’ takes the monstrous form of s s s s s 0 – is 
the iter flag, which allows such chains of iteration to be expressed as a single 
instance of the operator, raised to the number of iterations. 

We may write s s s s s 0 as s_^5(0). 

30



owise attribute

It is rather useful in cases where one side of the condition is much easier to express 
than the other:

eq suicideking?( K of Hearts ) = true .
eq suicideking?( C:Card ) = false [owise] .

Other attributes are: 

[ label metadata nonexec print ditto frozen ]
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Peano numbers
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fmod PEANO-NAT-EXTRA is 
sort Nat . 
op 0 : -> Nat . 
op s : Nat -> Nat . 
op _+_ : Nat Nat -> Nat [comm] . 
vars N M : Nat . 
eq 0 + N = N . 
eq s(M) + N = s(M + N) . 

endfm

Peano numbers are a simple way of representing the natural numbers using only a 
zero value and a successor function

red s(0) + s(s(s(s(s(0))) + s(s(0)))) . 

***( 
reduce in PEANO-NAT-EXTRA : s(0) + s(s(s(s(s(0))) + s(s(0)))) . 
rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second) 
result Nat: s(s(s(s(s(s(s(s(0)))))))) 
) 



Equation Strategy 

The first and most important strategy is recursion. Nearly every set of equations is 
defined with some level of recursion in mind. 

fmod PEANO-NAT-MULT is
protecting PEANO-NAT-EXTRA .
op _*_ : Nat Nat -> Nat [comm] .
vars M N : Nat .
eq N * 0 = 0 .
eq N * s(M) = N + (N * M) .

endfm
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The Maude interpreter evaluates an expression in an 
equational Maude program by applying the 
equations “from left to right” until no equation can be 
applied, thereby computing the normal form (or 
“value”) of the expression. 

Maude> reduce s(s(s(0))) * s(s(s(s(s(0))))) .
reduce in PEANO-NAT-MULT : s(s(s(0))) * s(s(s(s(s(0))))) .
rewrites: 26 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))



Equation Strategy 
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reduce s(s(0)) * s(s(0)) . 

Analyze the result 
and write the
execution trace as
we did before

reduce s(s(0)) * s(s(0)) . 
rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(0))))



Unconditional Equations
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The equations we have seen until now are called Unconditional Equations

eq ⟨Term-1⟩ = ⟨Term-2⟩ [⟨StatementAttributes⟩] . 

E.g., we can have equations axiomatizing the addition operation, where we distinguish two cases 
for the second argument, according to whether it is zero or not: 

vars N M : Nat . 
eq N + zero = N . 
eq N + s M = s (N + M) . 



Unconditional Membership
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We can also have Unconditional Membership

mb ⟨Term⟩ : ⟨Sort⟩ [⟨StatementAttributes⟩] . 

Consider the module 3*NAT with the basic Peano number declarations as in the 
Peano-Nat-Extra module and a new sort 3*Nat. 

fmod 3*NAT is
sort Zero Nat .
subsort Zero < Nat .
op zero : -> Zero .
op s_ : Nat -> Nat .
sort 3*Nat .
subsorts Zero < 3*Nat < Nat . 
var M3 : 3*Nat . 
mb(s s s M3) : 3*Nat .

endfm



Conditional equations and memberships 
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Conditional Equations
ceq ⟨Term-1⟩ = ⟨Term-2⟩
if ⟨EqCondition-1⟩ /\ ... /\ ⟨EqCondition-k⟩ [⟨StatementAttributes⟩] .

sort Path .
subsort Edge < Path .
op _;_ : [Path] [Path] -> [Path] 

var E:Edge.
vars P Q R S : Path .
cmb E ; P : Path if target(E) = source(P) . 

The conditional membership axiom (introduced by the 
keyword cmb), in this example, states that an edge 
concatenated with a path is also a path when the target 
node of the edge coincides with the source node of the 
path 

Conditional Membership
cmb ⟨Term⟩ : ⟨Sort⟩
if ⟨EqCondition-1⟩ /\ ... /\ ⟨EqCondition-k⟩ [⟨StatementAttributes⟩] . 

An extract of the PATH module

Conditional equations are equations that depend on a Boolean statement. 

ceq different?( N , M ) = true if N =/= M .
ceq bothzero?( N , M ) = true if N == M /\ M == 0 .
ceq N – M = 0 if M > N .



Rewrite Laws

The real power of Maude is about transitions that occur within and between 
structures. These transitions are mapped out in rewrite laws. 

Rewriting logic consists of two key ideas: states and transitions. 

States are situations that, alone, are static, and transitions are the 
transformations that map one state to another. Defined in mod (system module).

A rewrite law declares the relationship between the states and the transitions 
between them. 

rl [<Label>] : <Term-1> => <Term-2> [<StatementAttributes>] . 

rl [raincloud] : sunnyday => rainyday . ----irreversibility; “one-way equations” 
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Rewrite Laws

mod CLIMATE is

sort weathercondition .

op sunnyday : -> weathercondition .

op rainyday : -> weathercondition .

rl [raincloud] : sunnyday => rainyday .

endm

rew [100] sunnyday .
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Maude> rew [100] sunnyday .

rewrite [100] in CLIMATE : sunnyday .
*********** rule
rl sunnyday => rainyday [label raincloud] .
empty substitution
sunnyday
--->
rainyday
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)
result weathercondition: rainyday



Example

mod CIGARETTES is

sort State .

op c : -> State [ctor] . *** cigarette

op b : -> State [ctor] . *** butt

op __ : State State -> State [ctor assoc comm] .

rl [smoke] : c => b .

rl [makenew] : b b b b => c .

endm

rew [100] c c c c c c c c c c c c c c c c .
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Example

set trace on .

rew [100] c c c .

41

Maude> rew [100] c c c .
rewrite [100] in CIGARETTES : c c c .
*********** rule
rl c => b [label smoke] .
empty substitution
c
--->
b
*********** rule
rl c => b [label smoke] .
empty substitution
c
--->
b
*********** rule
rl c => b [label smoke] .
empty substitution
c
--->
b
rewrites: 3 in 0ms cpu (0ms real) (~ 
rewrites/second)
result State: b b b



Example
mod COUNTING-CIGARETTES is

protecting NAT .

sort State .

op c : Nat -> State [ctor] .

op b : Nat -> State [ctor] .

op __ : State State -> State [ctor assoc comm] . 

vars W X Y Z : Nat .

rl [smoke] : c(X) => b(X + 1) .
rl [makenew] : b(W) b(X) b(Y) b(Z) => c(W + X + Y + Z) . 

endm

rew c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) 
c(0) c(0) c(0) c(0) c(0) .

we see rewriting laws drawing transitions from complex states to simpler states, 
and this does not have to be the case. 
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Search command

Maude provides a search command which searches through all behaviors from a 
given initial state and returns all—or a user-given number of—states which can be 
reached from the initial state and which satisfy the given search condition. The 
search may be restricted to analyze all behaviors up to n rewrite steps. 

The basic forms of the search command are

search t0 arrow pattern . 

search t0 arrow pattern such that cond . 

A term t satisfies the search condition if pattern matches t and cond holds for the 
matching substitution. 
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Search command

=>1: states which can be reached in exactly one step from the initial state t0; 

=>*: states reachable in zero or more steps;

=>+: states reachable in one or more steps; and

=>!: states that cannot be further rewritten. 
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Arcade-Crane
mod ARCADE-CRANE is

protecting QID .

sorts ToyID State .

subsort Qid < ToyID .

op floor : ToyID -> State [ctor] .

op on : ToyID ToyID -> State [ctor] .

op clear : ToyID -> State [ctor] .

op hold : ToyID -> State [ctor] .

op empty : -> State [ctor] .

op 1 : -> State [ctor] .

*** this is the identity State; it’s just good to have one.

op _&_ : State State -> State [ctor assoc comm id: 1] .

vars X Y : ToyID .

rl [pickup] : empty & clear(X) & floor(X) => hold(X) .

rl [putdown] : hold(X) => empty & clear(X) & floor(X) .

rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) .

endm
45



The search command searches for paths of rewrite laws between a beginning 
and end state supplied by the user.  

46

Maude> frew [1] empty & floor('mothergoose) & 
on('teddybear,'mothergoose) & on('soccerball,'teddybear) & 
clear('soccerball) & floor('dragondude) & clear('dragondude) .

Maude> continue 1 .  



The search command searches for paths of rewrite laws between a beginning 
and end state supplied by the user.  

47

search in ARCADE-CRANE : empty & floor('mothergoose) & 
on('teddybear, 'mothergoose) & on('soccerball, 'teddybear) & 
clear('soccerball) & floor('dragondude) & clear('dragondude) =>* S:State .

We can see all the reachable states



Show Path

Maude> show path 69 .
state 0, State: empty & ...
===[ rl empty & clear(X) & on(X, Y) => clear(Y) & hold(X) [label

unstack] . ]===>
state 2, State: floor(‘mothergoose) & ...
===[... [label stack] ...
state 4, State: ...
===[... [label unstack] ...
...
state 69, State: empty & floor('teddybear) & floor('dragondude) &

clear('soccerball) & clear('dragondude) & on('mothergoose,
'teddybear) & on('soccerball, 'mothergoose) 48

search in ARCADE-CRANE : empty & floor('mothergoose) & on('teddybear, 'mothergoose) & 
on('soccerball, 'teddybear) & clear('soccerball) & floor('dragondude) & clear('dragondude) =>+ empty 
& floor('teddybear) & on ('mothergoose,'teddybear) & on('soccerball,'mothergoose) & clear('soccerball) 
& floor('dragondude) & clear('dragondude) .

From Box A state, we could switch Teddy Bear and Mother Goose so that instead of 
on('teddybear, 'mothergoose) we have on('mothergoose, 'teddybear).



Conditional Rewrite Laws

crl [pickup] : empty & clear(X) & floor(X) => hold(X) 

if weight(X) < 10 .

49

Conditional rewrite laws use the keyword crl, and the rest is a rewrite law with an if statement at the end.

Imagine to extend the Arcade-Crane with the weight concept. For which an object can be hooked only 
if its weight is under a certain value

In general, conditional rewrite laws are used when there’s a condition that can’t be easily expressed as a state. 

crl [equation1] : a(X) => b(X – 1) if X > 0 .
crl [equation2] : a(X) => b(X – 1) if X > 0 == true .
crl [equation3] : a(X) => b(X – 1) if X > 0 = true .
crl [membership1] : a(X) => b(X – 1) if X :: NzNat .
crl [membership2] : a(X) => b(X – 1) if X : NzNat .
crl [pattern] : a(X) => b(X – 1) if s(N:Nat) := X .



Conditional Rewrite Laws
The condition of a rewrite rule may also be another rewrite rule.
crl [rewrite] : b(X) => c(X * 2) if a(X) => b(Y) .

It means that the rewrite law may be executed on b(X) only if a(X) could transition 
to a some state of b. Think of the => not so much as the rewrite symbol but as the 
search symbol: the idea is, the condition is fulfilled if it’s possible to rewrite the left-
hand side into the right-hand side. 
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Conditional Rewrite Laws
Equations and rewrite laws solve very different problems. 
Equations are much better than rewrite laws at simplification; however, rewrite laws are better at 
expressing problems with just one level of simplicity. 
Rewriting laws also can illustrate constitutional changes that equations can’t; though an equation may 
simplify an expression, the expression is still mathematically equal to its predecessor. 
In general, equational logic creates a framework through which rewriting laws trace transitions.
System modules often include equations; when they do, they set up and define all the operations 
that become states, and then the rewrite laws deal with these states. For example, in the slightly 
expanded arcade crane example, we would have to define the operation weight using an equation. 
We also use equations to define numbers (creating our own notation, such as the Peano notation, or 
using the library module INT, which is also defined with equations) that can later be used in rewrite 
laws. 
Equations are the nuts and bolts and gears and girders; rewrite laws create the machine. 
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Maude analysis and specifications
To analyze all possible behaviors from a given initial state one can use Maude’s 
high-performance search capabilities to investigate whether certain (un)desired 
states can be reached from the initial state.

We typically have two levels of specification: 

- a system specification describing which actions the system can perform, 

- a requirement specification describing the requirements that the system should 
satisfy. 

The requirements the system should satisfy in Maude can be defined as linear 
temporal logic formulas. 

Maude’s high-performance model checker can then be used to decide whether all 
possible behaviors from a given initial state satisfy the requirements, provided that 
the set of states reachable from the initial state is a finite set. 52



How I Applied Maude

53



Business Process
A Business Process is a collection of activities that are performed in coordination 
in an organizational and technical environment. These activities jointly realize a 
business goal taking one or more kinds of inputs and generating a product, or a 
service, as output. Each business process is enacted by a single organization, but it 
may interact with business processes performed by other organizations. 

Revisited version of: “Mathias Weske. Business process management : concepts, 
methods, technology. Springer, 2007”.
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Business Process
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BPMN Operational Semantics

Corradini, F., Polini, A., Re, B., & Tiezzi, F. (2015, October). An Operational Semantics of BPMN Collaboration*. In 
Pre-proceedings (p. 113).  

FACS2015 Formal Aspects of Component Software http://facs2015.ic.uff.br/

● It is a native semantics, rather than a mapping 

● It provides a compositional approach based on Labelled Transition Systems, which allows to use 
consolidated analysis techniques and related software tools

● It is suitable to model business processes with arbitrary topology, without imposing syntactic restrictions 
(Well-structured, SESE…)

● Not only Core elements but it takes into account collaborations and message exchange, which are often 
overlooked by other formalisations

http://facs2015.ic.uff.br/


Labelled Transition System (LTS)
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Backus Normal Form (BNF) Syntax
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Buyer-Reseller Example
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Buyer-Reseller “cuts”
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Buyer-Reseller post “cuts”
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Operational Semantics

The Operational semantics is based on a set of inference rules defined at different layers: 

● Collaboration Layer

● Process Layer 
○ Control Flow Constructs 
○ Task Constructs 
○ Node Collections 

Marking

A marking is a distribution of tokens over pool, messages, edges, and process elements, that 
indicates message arrivals and the process nodes that are active or not in a given step of the 
execution.
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Process Layer - Control Flow Constructs (1)
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Process Layer - Control Flow Constructs (2)

64



Process Layer - Control Flow Constructs (3)
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Process Layer - Task Constructs (1)
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Process Layer - Task Constructs (2)
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Process Layer - Propagation
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Example on collaboration (1)
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Conclusions



Example on collaboration (2)
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Semantics of the running example (1)
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Semantics of the running example (2)
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Semantics in Maude
BPMN Operational Semantics in Maude
https://github.com/PROSLab/BPMNOS-Maude

BProVe
http://pros.unicam.it/bprove/bprove-web-interface
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BProVe
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