
Logic and Constraint
Programming

June 10, 2022

Maude
Prof. Fabrizio Fornari

Maude

It is used to model systems and the actions within those systems.

It can be used to define executable formal models of distributed systems, and
provides analysis tool to formally analyze the models.

2

It can model almost anything, from the set of rational numbers to a biological
system to the programming language Maude itself.

Maude is a language and environment based on rewriting logic.

Maude and rewriting logic were both developed by José Meseguer and his
research group at the Computer Science Laboratory at Stanford Research
Institute (SRI) International. He leads the Formal Methods and Declarative
Languages Laboratory

http://formal.cs.illinois.edu/meseguer/

Maude Usage

3

Maude and its formal tool environment can be used in three, ways:

• as a declarative programming language;
• as an executable formal specification language; and
• as a formal verification system.

Rewriting Logic

In rewriting logic, the data types of the system are defined algebraically by
equations. In essence, defining data types amounts to define functions in a
recursive, functional programming style.

The dynamic behavior of a system is then defined by rewrite rules which describe
how a part of the state can change in one step.

4

Maude References

5

http://maude.cs.illinois.edu/w/index.php/The_Maude_System

https://github.com/SRI-CSL/Maude/releases/tag/3.2.1

http://maude.cs.illinois.edu/w/images/6/65/Maude-3.2.1-manual.pdf

http://maude.cs.illinois.edu/w/images/6/63/Maude-primer.pdf

Maude official website

Maude github repository

Maude manual

Maude publicly released in 1998, and is still under active development.

Maude binaries are provided for selected architectures and operating
systems, including Linux and macOS

Maude Tutorial

http://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://github.com/SRI-CSL/Maude/releases/tag/3.2.1
http://maude.cs.illinois.edu/w/images/6/65/Maude-3.2.1-manual.pdf
http://maude.cs.illinois.edu/w/images/6/63/Maude-primer.pdf

Basic-list example

fmod BASIC-LIST is

sorts List Elt .

subsort Elt < List .

op nil : -> List [ctor] .

op __ : List List -> List [ctor] .

vars E1 E2 : Elt .

vars L1 L2 : List .

endfm

6

***A bare-minimum list needs a sort List and
an element sort, or as commonly
represented, Elt, a constant for empty lists,
and a concatenation operator.

***Elt declared subsort because an element
of a list is really just a special case of a list: a
list of size one (called a singleton).

***double underscore concatenation operator
This also means we can form a list by
concatenating two elements, because an
operator that takes List will also take a
subsort of List. This way, the Maude compiler
understands not only “L1 L2” but also “E1 E2”
and “E1 L1.”

***finally, the constant constructor nil is a
common way to name a list of size zero.

Boolean

7

set include BOOL off .

fmod BOOLEAN is
sort Bool .
op true : -> Bool .
op false : -> Bool .
op not_ : Bool -> Bool .
op _and_ : Bool Bool -> Bool .
op _or_ : Bool Bool -> Bool .
var A : Bool .
eq not true = false .
eq not false = true .
eq true and A = A .
eq false and A = false .
eq true or A = true .
eq false or A = A .

endfm

set include BOOL on .

red true and not (false or not true) .

***(
reduce in BOOLEAN : true and not (false or not true) .
rewrites: 4 in -10ms cpu (0ms real) (~ rewrites/second)
result Bool: true
)

Modules

The module is the key concept of Maude.
It is essentially a set of definitions. These define a collection of operations and how
they interact (they define an algebra). An algebra is a set of sets and the
operations on them.
In Maude, a module will provide a collection of sorts and a collection of operations
on these sorts, as well as the information necessary to reduce and rewrite
expressions that the user inputs into the Maude environment.

fmod NAME is ... endfm functional module
mod NAME is ... endm system module

all the declarations and statements are in between the beginning of the module
and the end of it.

8

Supplied Modules

NAT Includes sort Nat, addition _+_, symmetric difference sd, multiplication _*_,
quotient _quo_, modulo _rem_, and a host of other useful operations, and all the
natural numbers written in normal, numeric notation.

INT, FLOAT, and RAT support integer, floating point, and rational numbers.

STRING module, while handles strings of characters and provides useful functions
for searching and determining length. A String is any group of characters enclosed
in quote marks, for example, "hello world!"

QID, or Quoted IDentifier. An apostrophe just before any word creates a quoted
identifier, which can be used as a name.

9

Supplied Modules

10

Importing Modules
As in most programming languages, one can import a module from another.

protecting MODULENAME . ***Not modified anyway

including MODULENAME . ---Can change the sense in which the
---declarations were used.

(INT example)
extending MODULENAME . ---somewhere between these two extremes

junk - adding new ground terms (constructors and constants) to a module’s
sort(s).

confusion - redefining the already extant terms of the imported module.
11

Sorts

The first thing a specification needs to declare are the types of the data being
defined and the corresponding operations.

A sort is a category for values. A sort can pretty much describe any type of value,
including lists and stacks of other values.

subsorts, are further specific groups all belonging to the same sort.

sorts Rational Integer Positive Negative .
subsorts Positive Negative < Integer < Rational .

12

Membership Axioms

“Membership” simply refers to how certain terms are “members” of sorts. When we
declare a variable, we declare it as a member of a sort using the colon, which one
can think of a symbol for “is a member of.”

var N : Nat .

membership logic is at the bottom of pretty much every declaration in Maude.

13

op _+_ : Nat Nat -> Nat . subsort NzNat < Nat .

Variables

A variable is an indefinite value for a sort. Just as x is a common variable for a
number, one can declare a variable x as being of sort number.
Variables are never used as constants. Maude variables never have a definite
value assigned to them. The only important use of variables is as placeholders,
when defining operations through equations and rewrite laws.

var x : number .
vars c1 c2 c3 : color .

The expression var x : [number] . declares a variable for the kind of number as
opposed to the sort.

14

Operations

You can think an operation as a pathway between sorts. Maude understands both
prefix and mixfix notation for operations.

ops + * : Nat Nat -> Nat .
ops _ + _ _*_ : Nat Nat -> Nat .

Operation names may contain the special characters, such as the parentheses
and brackets, commas, and periods.

Constant operations act as the equivalent of constants in other programming
languages

op pi : -> Irrational .
ops red blue yellow : -> Color .

15

Overloaded operators

Maude allows overloaded operators; that is, we can define two different operators
with the same name.

op _+_ : Integer Integer -> Integer .
op _+_ : Nat Nat -> Nat . *** subsort overloading, requires (same flags)
op _+_ : Note Note -> Chord . *** Ad-hoc overloading
op _+_ : Wrong Wrong -> Right . *** Ad-hoc overloading

16

Peano numbers

17

Peano numbers are a simple way of representing the natural numbers using only a
zero value and a successor function

The five Peano axioms are:

1. Zero is a natural number.
2. Every natural number has a successor in the natural numbers.
3. Zero is not the successor of any natural number.
4. If the successor of two natural numbers is the same, then the two original numbers
are the same.
5. If a set contains zero and the successor of every number is in the set, then the set
contains the natural numbers.

Peano numbers

18

fmod PEANO-NAT-EXTRA is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars N M : Nat .
eq 0 + N = N .
eq s(M) + N = s(M + N) .

endfm

Peano numbers are a simple way of representing the natural numbers using only a
zero value and a successor function

The Maude Environment

First, one must write the modules for the algebras to be used in the environment,
either by typing them directly into the prompt, or by storing them in a file directory
that the Maude environment can access, and then typing load MODULENAME into
the prompt.

Maude> reduce s(0) + s(s(0)) .
result Nat: s(s(s(0)))

For those interested in seeing exactly how an expression is reduced, step by step,
by the Maude interpreter, type:

Maude> set trace on . 19

Peano numbers

20

fmod PEANO-NAT-EXTRA is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars N M : Nat .
eq 0 + N = N .
eq s(M) + N = s(M + N) .

endfm

Peano numbers are a simple way of representing the natural numbers using only a
zero value and a successor function

red s(0) + s(s(s(s(s(0))) + s(s(0)))) .

***(
reduce in PEANO-NAT-EXTRA : s(0) + s(s(s(s(s(0))) + s(s(0)))) .
rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(s(s(s(s(0))))))))
)

Equation Strategy

The first and most important strategy is recursion. Nearly every set of equations is
defined with some level of recursion in mind.

fmod PEANO-NAT-MULT is
protecting PEANO-NAT-EXTRA .
op _*_ : Nat Nat -> Nat .
vars M N : Nat .
eq N * 0 = 0 .
eq N * s(M) = N + (N * M) .

endfm

21

The Maude interpreter evaluates an expression in an
equational Maude program by applying the equations
“from left to right” until no equation can be applied,
thereby computing the normal form (or “value”) of the
expression.

Maude> reduce s(s(s(0))) * s(s(s(s(s(0))))) .
reduce in PEANO-NAT-MULT : s(s(s(0))) * s(s(s(s(s(0))))) .
rewrites: 26 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))

Equation Strategy

22

reduce s(s(0)) * s(s(0)) .

Try to reduce it
manually applying
the equations. It
corresponds to
finding the execution
trace

Maude> reduce s(s(0)) * s(s(0)) .
reduce in PEANO-NAT-MULT : s(s(0)) * s(s(0)) .
rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(0))))

Equation Strategy

23

fmod FIBONACCI is
protecting NAT .
op fibo : Nat -> Nat .

var N : Nat .
eq fibo(0) = 0 .
eq fibo(1) = 1 .
eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

Maude> reduce fibo(35) .
reduce in FIBONACCI : fibo(35) .
rewrites: 44791054 in 6392ms cpu (7054ms real) (7007361 rewrites/second)
result NzNat: 9227465

Maude> reduce fibo(50) .

Equation Strategy

24

fmod FIBONACCI is
protecting NAT .
op fibo : Nat -> Nat [memo] .

var N : Nat .
eq fibo(0) = 0 .
eq fibo(1) = 1 .
eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

Maude> reduce in FIBONACCI : fibo(35) .
rewrites: 103 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNat: 9227465

Maude> reduce fibo(50) .
reduce in FIBONACCI : fibo(50) .
rewrites: 46 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNat: 12586269025

Whenever an application
will perform an operation
many times, it may be
useful to give that operator
the memo attribute.

Memo

25

Maude> reduce fibo(3) .
reduce in FIBONACCI : fibo(3) .
rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNat: 2

Maude> reduce fibo(3) .
reduce in FIBONACCI : fibo(3) .
rewrites: 4 in 0ms cpu (0ms real) (~rewrites/second)
result NzNat: 2

Without Memo With Memo

Look at their trace. With the command: set trace on .

Memo

26

reduce fibo(3) .
without and with memo

Operator and Statement Attributes

memo flag. When Maude comes across an operation with memo among its attributes, it
“memorizes” the reduced form of any expression with that operator at the top (that is, if the
expression were written in prefix mode, the outermost operator).

Whenever such an expression appears, Maude refers to its memorization table and
produces the reduced form much quicker than if it had to continually apply reduction
equations over and over again.

This is useful when we write programs where the same expression (important: the same
expression, not just the same operator) pops up thousands and thousands of times, such
as highly recursive number theory problems.

27

Operator Attributes
Three key flags assoc, comm, and id, impose the equational attributes of associativity,
commutativity, and identity on any binary operator.

op __ : List List -> List [ctor assoc id: nil] .

Associativity just means that the list formed by “(L1 L2) L3” is the same as the list formed
by “L1 (L2 L3)” is the same as the list formed by “L1 L2 L3.”

Identity property of addition n+0=n. The identity property of lists is that “L1 nil” is the same
as just “L1.” In other words, concatenating a list with an empty list reduces to the original
list. One may also define identities for the left and right arguments left id: and right id: .

op __ : Set Set -> Set [ctor assoc comm id: none] .

Commutativity: for sets (not lists) order does not matter, that “S1 S2 S3” is the same as
“S1 S3 S2” is the same as “S2 S1 S3” etc.

28

Operator Precedence

When there is any fear of ambiguous expressions the user may declare precedence for the
operator using the flag prec and a natural number.

expression 3 + 3 * 3 is ambiguous since (3 + 3) * 3 and 3 + (3 * 3) are valid parses

op _+_ : Num Num -> Num [prec 35] .
op _*_ : Num Num -> Num [prec 25] .

gathering pattern

X + Y makes no use of the gather flag
X + Y + Z, involves the addition of a variable to another addition: either_+_(X,_+_(Y,Z)) or
+(_+_(X,Y),Z) If,say, we were to declare the _+_ operator with the flag gather (E e), then
only the latter is possible.
E = smaller or equal precedence & = any precedence value
e = strictly lower precedence 29

Other flags

idem - which denotes the equational attribute idempotency, the property that
repeated elements are discarded. assoc and idem flags may not be used together
in Maude.

A useful flag for unary operators that must be iterated over and over again for
example, the s_ operator where ‘five’ takes the monstrous form of s s s s s 0 – is
the iter flag, which allows such chains of iteration to be expressed as a single
instance of the operator, raised to the number of iterations.

We may write s s s s s 0 as s_^5(0).

30

owise attribute

It is rather useful in cases where one side of the condition is much easier to express
than the other:

eq suicideking?(K of Hearts) = true .
eq suicideking?(C:Card) = false [owise] .

Other attributes are:

[label metadata nonexec print ditto frozen]

31

Peano numbers

32

fmod PEANO-NAT-EXTRA is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat [comm] .
vars N M : Nat .
eq 0 + N = N .
eq s(M) + N = s(M + N) .

endfm

Peano numbers are a simple way of representing the natural numbers using only a
zero value and a successor function

red s(0) + s(s(s(s(s(0))) + s(s(0)))) .

***(
reduce in PEANO-NAT-EXTRA : s(0) + s(s(s(s(s(0))) + s(s(0)))) .
rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(s(s(s(s(0))))))))
)

Equation Strategy

The first and most important strategy is recursion. Nearly every set of equations is
defined with some level of recursion in mind.

fmod PEANO-NAT-MULT is
protecting PEANO-NAT-EXTRA .
op _*_ : Nat Nat -> Nat [comm] .
vars M N : Nat .
eq N * 0 = 0 .
eq N * s(M) = N + (N * M) .

endfm

33

The Maude interpreter evaluates an expression in an
equational Maude program by applying the
equations “from left to right” until no equation can be
applied, thereby computing the normal form (or
“value”) of the expression.

Maude> reduce s(s(s(0))) * s(s(s(s(s(0))))) .
reduce in PEANO-NAT-MULT : s(s(s(0))) * s(s(s(s(s(0))))) .
rewrites: 26 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))

Equation Strategy

34

reduce s(s(0)) * s(s(0)) .

Analyze the result
and write the
execution trace as
we did before

reduce s(s(0)) * s(s(0)) .
rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(0))))

Unconditional Equations

35

The equations we have seen until now are called Unconditional Equations

eq ⟨Term-1⟩ = ⟨Term-2⟩ [⟨StatementAttributes⟩] .

E.g., we can have equations axiomatizing the addition operation, where we distinguish two cases
for the second argument, according to whether it is zero or not:

vars N M : Nat .
eq N + zero = N .
eq N + s M = s (N + M) .

Unconditional Membership

36

We can also have Unconditional Membership

mb ⟨Term⟩ : ⟨Sort⟩ [⟨StatementAttributes⟩] .

Consider the module 3*NAT with the basic Peano number declarations as in the
Peano-Nat-Extra module and a new sort 3*Nat.

fmod 3*NAT is
sort Zero Nat .
subsort Zero < Nat .
op zero : -> Zero .
op s_ : Nat -> Nat .
sort 3*Nat .
subsorts Zero < 3*Nat < Nat .
var M3 : 3*Nat .
mb(s s s M3) : 3*Nat .

endfm

Conditional equations and memberships

37

Conditional Equations
ceq ⟨Term-1⟩ = ⟨Term-2⟩
if ⟨EqCondition-1⟩ /\ ... /\ ⟨EqCondition-k⟩ [⟨StatementAttributes⟩] .

sort Path .
subsort Edge < Path .
op _;_ : [Path] [Path] -> [Path]

var E:Edge.
vars P Q R S : Path .
cmb E ; P : Path if target(E) = source(P) .

The conditional membership axiom (introduced by the
keyword cmb), in this example, states that an edge
concatenated with a path is also a path when the target
node of the edge coincides with the source node of the
path

Conditional Membership
cmb ⟨Term⟩ : ⟨Sort⟩
if ⟨EqCondition-1⟩ /\ ... /\ ⟨EqCondition-k⟩ [⟨StatementAttributes⟩] .

An extract of the PATH module

Conditional equations are equations that depend on a Boolean statement.

ceq different?(N , M) = true if N =/= M .
ceq bothzero?(N , M) = true if N == M /\ M == 0 .
ceq N – M = 0 if M > N .

Rewrite Laws

The real power of Maude is about transitions that occur within and between
structures. These transitions are mapped out in rewrite laws.

Rewriting logic consists of two key ideas: states and transitions.

States are situations that, alone, are static, and transitions are the
transformations that map one state to another. Defined in mod (system module).

A rewrite law declares the relationship between the states and the transitions
between them.

rl [<Label>] : <Term-1> => <Term-2> [<StatementAttributes>] .

rl [raincloud] : sunnyday => rainyday . ----irreversibility; “one-way equations”

38

Rewrite Laws

mod CLIMATE is

sort weathercondition .

op sunnyday : -> weathercondition .

op rainyday : -> weathercondition .

rl [raincloud] : sunnyday => rainyday .

endm

rew [100] sunnyday .

39

Maude> rew [100] sunnyday .

rewrite [100] in CLIMATE : sunnyday .
*********** rule
rl sunnyday => rainyday [label raincloud] .
empty substitution
sunnyday
--->
rainyday
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)
result weathercondition: rainyday

Example

mod CIGARETTES is

sort State .

op c : -> State [ctor] . *** cigarette

op b : -> State [ctor] . *** butt

op __ : State State -> State [ctor assoc comm] .

rl [smoke] : c => b .

rl [makenew] : b b b b => c .

endm

rew [100] c c c c c c c c c c c c c c c c .

40

Example

set trace on .

rew [100] c c c .

41

Maude> rew [100] c c c .
rewrite [100] in CIGARETTES : c c c .
*********** rule
rl c => b [label smoke] .
empty substitution
c
--->
b
*********** rule
rl c => b [label smoke] .
empty substitution
c
--->
b
*********** rule
rl c => b [label smoke] .
empty substitution
c
--->
b
rewrites: 3 in 0ms cpu (0ms real) (~
rewrites/second)
result State: b b b

Example
mod COUNTING-CIGARETTES is

protecting NAT .

sort State .

op c : Nat -> State [ctor] .

op b : Nat -> State [ctor] .

op __ : State State -> State [ctor assoc comm] .

vars W X Y Z : Nat .

rl [smoke] : c(X) => b(X + 1) .
rl [makenew] : b(W) b(X) b(Y) b(Z) => c(W + X + Y + Z) .

endm

rew c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0)
c(0) c(0) c(0) c(0) c(0) .

we see rewriting laws drawing transitions from complex states to simpler states,
and this does not have to be the case.

42

Search command

Maude provides a search command which searches through all behaviors from a
given initial state and returns all—or a user-given number of—states which can be
reached from the initial state and which satisfy the given search condition. The
search may be restricted to analyze all behaviors up to n rewrite steps.

The basic forms of the search command are

search t0 arrow pattern .

search t0 arrow pattern such that cond .

A term t satisfies the search condition if pattern matches t and cond holds for the
matching substitution.

43

Search command

=>1: states which can be reached in exactly one step from the initial state t0;

=>*: states reachable in zero or more steps;

=>+: states reachable in one or more steps; and

=>!: states that cannot be further rewritten.

44

Arcade-Crane
mod ARCADE-CRANE is

protecting QID .

sorts ToyID State .

subsort Qid < ToyID .

op floor : ToyID -> State [ctor] .

op on : ToyID ToyID -> State [ctor] .

op clear : ToyID -> State [ctor] .

op hold : ToyID -> State [ctor] .

op empty : -> State [ctor] .

op 1 : -> State [ctor] .

*** this is the identity State; it’s just good to have one.

op _&_ : State State -> State [ctor assoc comm id: 1] .

vars X Y : ToyID .

rl [pickup] : empty & clear(X) & floor(X) => hold(X) .

rl [putdown] : hold(X) => empty & clear(X) & floor(X) .

rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) .

endm
45

The search command searches for paths of rewrite laws between a beginning
and end state supplied by the user.

46

Maude> frew [1] empty & floor('mothergoose) &
on('teddybear,'mothergoose) & on('soccerball,'teddybear) &
clear('soccerball) & floor('dragondude) & clear('dragondude) .

Maude> continue 1 .

The search command searches for paths of rewrite laws between a beginning
and end state supplied by the user.

47

search in ARCADE-CRANE : empty & floor('mothergoose) &
on('teddybear, 'mothergoose) & on('soccerball, 'teddybear) &
clear('soccerball) & floor('dragondude) & clear('dragondude) =>* S:State .

We can see all the reachable states

Show Path

Maude> show path 69 .
state 0, State: empty & ...
===[rl empty & clear(X) & on(X, Y) => clear(Y) & hold(X) [label

unstack] .]===>
state 2, State: floor(‘mothergoose) & ...
===[... [label stack] ...
state 4, State: ...
===[... [label unstack] ...
...
state 69, State: empty & floor('teddybear) & floor('dragondude) &

clear('soccerball) & clear('dragondude) & on('mothergoose,
'teddybear) & on('soccerball, 'mothergoose) 48

search in ARCADE-CRANE : empty & floor('mothergoose) & on('teddybear, 'mothergoose) &
on('soccerball, 'teddybear) & clear('soccerball) & floor('dragondude) & clear('dragondude) =>+ empty
& floor('teddybear) & on ('mothergoose,'teddybear) & on('soccerball,'mothergoose) & clear('soccerball)
& floor('dragondude) & clear('dragondude) .

From Box A state, we could switch Teddy Bear and Mother Goose so that instead of
on('teddybear, 'mothergoose) we have on('mothergoose, 'teddybear).

Conditional Rewrite Laws

crl [pickup] : empty & clear(X) & floor(X) => hold(X)

if weight(X) < 10 .

49

Conditional rewrite laws use the keyword crl, and the rest is a rewrite law with an if statement at the end.

Imagine to extend the Arcade-Crane with the weight concept. For which an object can be hooked only
if its weight is under a certain value

In general, conditional rewrite laws are used when there’s a condition that can’t be easily expressed as a state.

crl [equation1] : a(X) => b(X – 1) if X > 0 .
crl [equation2] : a(X) => b(X – 1) if X > 0 == true .
crl [equation3] : a(X) => b(X – 1) if X > 0 = true .
crl [membership1] : a(X) => b(X – 1) if X :: NzNat .
crl [membership2] : a(X) => b(X – 1) if X : NzNat .
crl [pattern] : a(X) => b(X – 1) if s(N:Nat) := X .

Conditional Rewrite Laws
The condition of a rewrite rule may also be another rewrite rule.
crl [rewrite] : b(X) => c(X * 2) if a(X) => b(Y) .

It means that the rewrite law may be executed on b(X) only if a(X) could transition
to a some state of b. Think of the => not so much as the rewrite symbol but as the
search symbol: the idea is, the condition is fulfilled if it’s possible to rewrite the left-
hand side into the right-hand side.

50

Conditional Rewrite Laws
Equations and rewrite laws solve very different problems.
Equations are much better than rewrite laws at simplification; however, rewrite laws are better at
expressing problems with just one level of simplicity.
Rewriting laws also can illustrate constitutional changes that equations can’t; though an equation may
simplify an expression, the expression is still mathematically equal to its predecessor.
In general, equational logic creates a framework through which rewriting laws trace transitions.
System modules often include equations; when they do, they set up and define all the operations
that become states, and then the rewrite laws deal with these states. For example, in the slightly
expanded arcade crane example, we would have to define the operation weight using an equation.
We also use equations to define numbers (creating our own notation, such as the Peano notation, or
using the library module INT, which is also defined with equations) that can later be used in rewrite
laws.
Equations are the nuts and bolts and gears and girders; rewrite laws create the machine.

51

Maude analysis and specifications
To analyze all possible behaviors from a given initial state one can use Maude’s
high-performance search capabilities to investigate whether certain (un)desired
states can be reached from the initial state.

We typically have two levels of specification:

- a system specification describing which actions the system can perform,

- a requirement specification describing the requirements that the system should
satisfy.

The requirements the system should satisfy in Maude can be defined as linear
temporal logic formulas.

Maude’s high-performance model checker can then be used to decide whether all
possible behaviors from a given initial state satisfy the requirements, provided that
the set of states reachable from the initial state is a finite set. 52

How I Applied Maude

53

Business Process
A Business Process is a collection of activities that are performed in coordination
in an organizational and technical environment. These activities jointly realize a
business goal taking one or more kinds of inputs and generating a product, or a
service, as output. Each business process is enacted by a single organization, but it
may interact with business processes performed by other organizations.

Revisited version of: “Mathias Weske. Business process management : concepts,
methods, technology. Springer, 2007”.

54

Business Process

55

BPMN Operational Semantics

Corradini, F., Polini, A., Re, B., & Tiezzi, F. (2015, October). An Operational Semantics of BPMN Collaboration*. In
Pre-proceedings (p. 113).

FACS2015 Formal Aspects of Component Software http://facs2015.ic.uff.br/

● It is a native semantics, rather than a mapping

● It provides a compositional approach based on Labelled Transition Systems, which allows to use
consolidated analysis techniques and related software tools

● It is suitable to model business processes with arbitrary topology, without imposing syntactic restrictions
(Well-structured, SESE…)

● Not only Core elements but it takes into account collaborations and message exchange, which are often
overlooked by other formalisations

http://facs2015.ic.uff.br/

Labelled Transition System (LTS)

57

Backus Normal Form (BNF) Syntax

58

Buyer-Reseller Example

59

Buyer-Reseller “cuts”

60

Buyer-Reseller post “cuts”

61

Operational Semantics

The Operational semantics is based on a set of inference rules defined at different layers:

● Collaboration Layer

● Process Layer
○ Control Flow Constructs
○ Task Constructs
○ Node Collections

Marking

A marking is a distribution of tokens over pool, messages, edges, and process elements, that
indicates message arrivals and the process nodes that are active or not in a given step of the
execution.

62

Process Layer - Control Flow Constructs (1)

63

Process Layer - Control Flow Constructs (2)

64

Process Layer - Control Flow Constructs (3)

65

Process Layer - Task Constructs (1)

66

Process Layer - Task Constructs (2)

67

Process Layer - Propagation

68

Example on collaboration (1)

69

Premises

Conclusions

Example on collaboration (2)

70

Semantics of the running example (1)

71

Semantics of the running example (2)

72

Semantics in Maude
BPMN Operational Semantics in Maude
https://github.com/PROSLab/BPMNOS-Maude

BProVe
http://pros.unicam.it/bprove/bprove-web-interface

73

Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., & Vandin, A. (2021). A formal approach for the analysis of BPMN collaboration
models. Journal of Systems and Software, 180, 111007.

Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., & Vandin, A. (2017, October). BProVe: tool support for business process verification.
In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 937-942). IEEE.

Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., & Vandin, A. (2017, October). BProVe: a formal verification framework for business
process models. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 217-228). IEEE.

Corradini, F., Fornari, F., Polini, A., Re, B., & Tiezzi, F. (2018). A formal approach to modeling and verification of business process
collaborations. Science of Computer Programming, 166, 35-70.

Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., & Vandin, A. (2017, October). BProVe: a formal verification framework for business
process models. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 217-228). IEEE.

https://github.com/PROSLab/BPMNOS-Maude
http://pros.unicam.it/bprove/bprove-web-interface

BProVe

74

