

Business Process Compliance

Barbara Re

Motivation

Motivation – Layers of Correctness

UNICAM Università di Camerino 1336

Compliance Rule

 (Business Process) Compliance Rule: "A Compliance Rule is a semantic condition on the execution of business processes."

Let $\Sigma = \{a_1, a_2, a_3, ...\}$ be the set of activities/tasks and Σ^* the set of all execution traces (i.e. sequences) of activities of A, then a compliance rule c can be considered as a function:

 $\mathsf{c} {:} \Sigma {*} \longmapsto \mathbb{B}$

Examples for Medical Compliance Rules

- § 1 Before a surgery may be performed, first the patient has to be prepared for it and then be sent to the surgical suite.
- § 2 After examining the patient a decision has to be made. However, this must not be done before the examination.
- § 3 After the examination, the patient has to be informed about the risks of the planned surgery.
- § 4 Before scheduling the surgery the patient has to be informed about anesthesia.
- § 5 If a surgery has not been scheduled it must not be perfomed.
- § 6 After a patient is discharged a discharge letter has to be written.
- § 7 After performing the surgery and before writing the discharge letter, a surgery report must be created and a lab test made.

Plain Text

§ 1 Before a surgery may be performed, first the patient has to be prepared for it and then be sent to the surgical suite.

- § 2 After examining the patient a decision has to be made. However, this must not be done before the examination.
- § 3 After the examination, the patient has to be informed about the risks of the planned surgery.
- § 4 Before scheduling the surgery the patient has to be informed about anesthesia.
- § 5 If a surgery has not been scheduled it must not be performed.
- § 6 After a patient is discharged a discharge letter has to be written.
- § 7 After performing the surgery and before writing the discharge letter, a surgery report must be created and a lab test made.

Usefulness?

How to ensure compliance?

$\$ 1 Before a surgery may be performed the patient has to be prepared for it and be sent to the surgical suite

- § 2 After examining the patient a decision has to be made. However, this must not be done before the examination.
- \$ 3 After the examination, the patient has to be informed about the risks of the planned surgery

Plain Text	For	ogical malisms	Graphical Models	
Linear Temporal Logic	- LTL			
LTL enriches proposition	al logic with the	temporal operato	ors:	
X (next)	F (finally)	G (gl	lobal)	
U (until)	W (weak u	until)		
Le Σ ={a ₁ , a ₂ , a ₃ ,} be	a of propositi	ons/activities; the	syntax of LTL is:	
<ltl> ::= $a_1 a_2 a_3$</ltl>	true false			
┓ <ltl> </ltl>	(<ltl>) <lt< td=""><td><math display="block">L> \Rightarrow <ltl> </ltl></math></td><th></th><td></td></lt<></ltl>	$L> \Rightarrow $		
<ltl> A <</ltl>	<ltl> <ltl></ltl></ltl>	V <ltl> </ltl>		
<ltl> U ·</ltl>	<ltl> <ltl></ltl></ltl>	• W <ltl></ltl>		
x < T >	F < T > G <	T >		

	Plain Text Formalisms Models		
§1	<pre>(¬Perform_surgery W Prepare_patient) Λ (¬Perform_surgery W Send_patient_to_surgical_suite)</pre>		
§ 2	(G (Examine_patient \Rightarrow F Make_decision)) Λ (¬Make_decision U Examine_patient)		
§ 3	G (Examine_patient \Rightarrow FInform_about_risks)		
§ 4	-Schedule_Surgery W Inform_about_anesthesia		
§ 5	$(G \neg Schedule_surgery) \Rightarrow (G \neg Perform_surgery)$		
§6	G (Discharge_Patient \Rightarrow F Write_discharge_letter)		
§ 7	G (¬Perform_surgery ⇒ (FWrite_discharge_letter ⇒((¬Write_discharge_letter U Create_surgery_report) Λ (¬Write_discharge_letter U Make_lab_test))))		

Pros and cons?

Alternative Logical Formalisms

- Predicate Logic
- Deontic Logic, Abduktive Logic
- μ-Calculus, π-Calculus, Event-Calculus
- CTL, PLTL, CTL*
- Grammars, FCL
- ...

→ But the problems remain the same

Compliance Rule Graphs – CRG

CRGs consist of an antecedent and a consequence pattern. The basic building bricks are the following elements:

Compliance Rules in the Model Analysis

Exercise

A B C D (♥) A D E C C A B D (♥) D C A A (♥) A C C A D ♥ D D A C D D ♥ (🗸)

Alternative Graphical Models

- Automata
- BPMN-Q
- G-CTL

Ensure Business Process Compliance

- A Prioir Compliance Checking
- Run Time Compliance Checking
- Change Time Compliance Checking
- A Posteriori Compliance Checking

A Priori Compliance

UNICAM Università di Camerino 1336

PLC

Compliance Checking

Compliance Checking - Model Checking

Exercise

Before an exam may be done, first the student has to attend classes.

The day before exam the student need to get enough sleep.

Exercise

While waiting for the exam to begin, avoid speaking to any nervous students and absorbing their negative energy.

The day before exam the student need to get enough sleep.

References

- Ly, L.T. and Rinderle-Ma, S. and Dadam P. (2008): Integration and verification of semantic constraints in adaptive process management systems. Data & Knowledge Engineering, 64(1): 3-23, Elsevier.
- Knuplesch, D. and Reichert, M. (2011): Ensuring Business Process Compliance Along the Process Life Cycle, Ulmer Informatik-Berichte (2011-06).
- Huth, M. and Ryan, M. (2004): Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press.
- Van der Aalst, W.M.P. and de Beer, H. and van Dongen, B. (2005): Process mining and verification of properties: An approach based on temporal logic. In: Proceedings of the 13th Conference on Cooperative Information Systems (CoopIS'05), Agia Napa, Cyprus.

