
Test Generation – Predicate Analysis

Andrea Polini

Fundamentals of Software Testing
MSc in Computer Science

University of Camerino

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 1 / 38

Dependency modeling

CEG aka Dependency Modeling

The very general idea is to make explicit, also through a graphical representation, the
relation among input conditions (causes) and output conditions (effects) and to exploit
such relations for testing purposes.
In any case the relation can be fruitfully represented by a boolean expression

Cause and effects

A cause is any condition in the requirements that may effect the program output.
An effect is the response of the program to some combination of input conditions. An
effect is not necessarily visible to the external user, while it can be retrieved
introducing suitable probes (test points)

Exercise

The LED close to the product description should be switched on when the credit
becomes greater then the price of the snack

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 2 / 38

Dependency modeling

CEG aka Dependency Modeling

The very general idea is to make explicit, also through a graphical representation, the
relation among input conditions (causes) and output conditions (effects) and to exploit
such relations for testing purposes.
In any case the relation can be fruitfully represented by a boolean expression

Cause and effects

A cause is any condition in the requirements that may effect the program output.
An effect is the response of the program to some combination of input conditions. An
effect is not necessarily visible to the external user, while it can be retrieved
introducing suitable probes (test points)

Exercise

The LED close to the product description should be switched on when the credit
becomes greater then the price of the snack

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 2 / 38

Dependency modeling

CEG aka Dependency Modeling

The very general idea is to make explicit, also through a graphical representation, the
relation among input conditions (causes) and output conditions (effects) and to exploit
such relations for testing purposes.
In any case the relation can be fruitfully represented by a boolean expression

Cause and effects

A cause is any condition in the requirements that may effect the program output.
An effect is the response of the program to some combination of input conditions. An
effect is not necessarily visible to the external user, while it can be retrieved
introducing suitable probes (test points)

Exercise

The LED close to the product description should be switched on when the credit
becomes greater then the price of the snack

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 2 / 38

Test generation from CEG

CEG and test generation
▶ Identify cause and effects reading the requirements. Assign a

unique identifier
▶ Express the relationship between causes and effects using a CEG
▶ Tranform the CEG into a decision table
▶ Generate tests from the decision table

Are we checking iff relations?
The strategy reported above checks that “if the conditions happen the
effect should be visible”. In general effects could be produced as
consequence of additional behaviour so it may possible that you are
not interested in checking the other way around i.e. an effect is present
only if those conditions holds

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 3 / 38

Test generation from CEG

CEG and test generation
▶ Identify cause and effects reading the requirements. Assign a

unique identifier
▶ Express the relationship between causes and effects using a CEG
▶ Tranform the CEG into a decision table
▶ Generate tests from the decision table

Are we checking iff relations?
The strategy reported above checks that “if the conditions happen the
effect should be visible”. In general effects could be produced as
consequence of additional behaviour so it may possible that you are
not interested in checking the other way around i.e. an effect is present
only if those conditions holds

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 3 / 38

CEG Notation

The mask relation can be expressed as additional relations on the causes

What if I would like to check iff relations among causes and effects?

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 4 / 38

CEG Notation

The mask relation can be expressed as additional relations on the causes

What if I would like to check iff relations among causes and effects?

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 4 / 38

Creating a CFG

Process
To create a CFG follow the process below:
▶ carefully identify causes and effects from a thoughtful analysis of

the requirements.
▶ assign to each cause and each effect a unique identifier
▶ represent the identified relations in a CFG

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 5 / 38

Example

Computer purchase system

A web based company sells computers (CPU), printers (PR), monitors (M), and
additional memories (RAM). The Web GUI will include 4 windows for driving the buyer
through the selection process. A final window with the free giveaway items is then
displayed. For simplicity only one item per category can be purchased.
Conditions: For each order the buyer may select from 3 CPU, 2 PR, 3M. RAM is
available only as a “free” upgrade. M20 and M23 any CPU or as stand alone. M30
only with CPU 3. PR 1 is available free with CPU 2 or 3. M and PR can be purchased
as stand alone. Not M30. CPU 1 gets RAM 256 upgrade. CPU 2 o 3 gets RAM 512
upgrade. RAM 1G upgrade and free PR2 available if CPU 3 purchased with M30.
There is a window to make selection with menus in particular a widget displaying the
free item available and a “Price” widget reports the calculation related to prices.
The strategyy asks you to:

▶ Read carefully the requirements
▶ Identify causes and effects
▶ Identify relations among them

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 6 / 38

Example - The CFG for the Computer Purchase
System

Construct the CFG for the Computer Purchase System
▶ causes?
▶ effects?
▶ relations?
▶ Do we need to consider relations as iff?

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 7 / 38

Decision Tables from a CEG

CEG models relations among different aspects of the system. The
derivation of test requires the definition of the corresponding decision
table

Decision tables
For each cause and effect use a row and put test as columns of the
matrix. Each entry in the decision table is a 0 or a 1 depending on
whether or not the corresponding condition is false or true, respectively.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 8 / 38

How to derive a DT

Input: A CEG containing causes C1,C2, ...,Cp and effects Ef1,Ef2, ...,Efq
Output: A decision table containing p + q rows and M columns where M depends on
relationship between causes and effects.

Procedure CFG2DT
Step1: Initialize DT to an empty DT
Step2: Execute the following steps for i=1 to q

2.1 Select the next effect e
2.2 Find combinations of conditions that cause e to be present and store

the m generated vector. Avoid combinatorial explosion.
2.3 update the decision table adding the generated vectors

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 9 / 38

DT derivation

Consider the following CEG and derive the corresponding decision
table:

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 10 / 38

DT derivation

How can we deal with Mask relations?

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 11 / 38

Example

Apply the procedure to the following CEG:

You need to automatize the process.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 12 / 38

Example

Apply the procedure to the following CEG:

You need to automatize the process.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 12 / 38

Heuristic to avoid combinatorial explosion

The described approach could lead to exponential generation on the
number of tests with respect to causes. Indeed having an effect
depending on n causes can lead to the generation of a number of
vectors in the order of 2n

Reduction strategies
▶ For or relations: enumerate just those situations in which two

causes are both false (0) or one of them true (1)
▶ For and relations: enumerate those situations for which causes

assume different values (0), and those in which all of them are
true (1)

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 13 / 38

Test generation

Tests from a decision table
Each column of the decision table constitutes the source for generating
tests. Consider that each condition could be satisfied by more
assignement to the variable leading to the generation of more than one
test for each column.
To derive a test case you need then to identify the inputs correlated to
the cause and the value that makes the cause valid. On such sets you
can apply previously considered approaches. Let’s go back to the LED
example.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 14 / 38

Test generation from predicates
Techniques aiming at finding bugs in the coding of conditions

Predicate testing

if the printer is ON and has paper then send the document for printing

pr:(printer_status=ON) ∧ printer_tray=!empty

We are interested in generating test cases from predicates such that any fault
belonging to a class is detected.

Consider the following predicate:

(a < b) ∨ (c > d) ∧ e

The following test:

t = (a = 1, b = 2, c = 4, d = 2, e = true)

results in

p(t) = true

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 15 / 38

Fault model

Which kind of faults are generally targetted:
Boolean operator fault

incorrect boolean operator used
negation missing or placed incorrectly
parentheses are incorrect
incorrect Boolean variable used

relational operator fault
incorrect relational operator is used

arithmetic expression fault
arithmetic expression is off by an amount equal to ϵ
(off-by-ϵ,off-by-ϵ+,off-by-ϵ∗)

Objective of predicate testing
To generate a test set T such that there is at least one test cast t ∈ T
for which pc and its faulty version pi are distinguishable

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 16 / 38

Fault model

Which kind of faults are generally targetted:
Boolean operator fault

incorrect boolean operator used
negation missing or placed incorrectly
parentheses are incorrect
incorrect Boolean variable used

relational operator fault
incorrect relational operator is used

arithmetic expression fault
arithmetic expression is off by an amount equal to ϵ
(off-by-ϵ,off-by-ϵ+,off-by-ϵ∗)

Objective of predicate testing
To generate a test set T such that there is at least one test cast t ∈ T
for which pc and its faulty version pi are distinguishable

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 16 / 38

Missing or extra boolean faults

Missing or extra boolean faults corresponds to situation in which the
programmer forgot to include a variable in a condition or added a not
needed variable

The following approaches do not provide any guarantee on the
possible identification of such kind of faults

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 17 / 38

Predicate constraints

Let BR denote the following set of symbols {t, f, <,=, >,+ϵ,−ϵ}. A BR
specifies a constraint on a Boolean variable of a relational expression.
In particular +ϵ and −ϵ are constraints on an expression e1 < e2 that
can be respectively satisfied by tests such that 0 < e1 − e2 ≤ ϵ and
−ϵ ≤ e1 − e2 < 0
A constraint is considered infeasible if there exist no input values for
the variable in the predicate that can satisfy the constraint.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 18 / 38

Predicate constraints

Let BR denote the following set of symbols {t, f, <,=, >,+ϵ,−ϵ}. A BR
specifies a constraint on a Boolean variable of a relational expression.
In particular +ϵ and −ϵ are constraints on an expression e1 < e2 that
can be respectively satisfied by tests such that 0 < e1 − e2 ≤ ϵ and
−ϵ ≤ e1 − e2 < 0
A constraint is considered infeasible if there exist no input values for
the variable in the predicate that can satisfy the constraint.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 18 / 38

Predicate constraints

Let BR denote the following set of symbols {t, f, <,=, >,+ϵ,−ϵ}. A BR
specifies a constraint on a Boolean variable of a relational expression.
In particular +ϵ and −ϵ are constraints on an expression e1 < e2 that
can be respectively satisfied by tests such that 0 < e1 − e2 ≤ ϵ and
−ϵ ≤ e1 − e2 < 0
A constraint is considered infeasible if there exist no input values for
the variable in the predicate that can satisfy the constraint.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 18 / 38

Predicate testing criteria

Three common criteria:
▶ BOR (Boolean Operator): A test set T that satisfied the BOR-testing criterion for

a compound predicate pr , guarantees the detection of single or multiple Boolean
operator faults in the implementation of pr . T is referred to as a BOR-adequate
test set and sometimes written as TBOR .

▶ BRO (Boolean and relational Operator): A test set T that satisfied the
BRO-testing criterion for a compound predicate pr , guarantees the detection of
single or multiple Boolean operator and relational operator faults in the
implementation of pr . T is referred to as a BRO-adequate test set and
sometimes written as TBRO .

▶ BRE (Boolean and relational expression): A test set T that satisfied the
BRE-testing criterion for a compound predicate pr , guarantees the detection of
single or multiple Boolean operator, relational operator and arithmetic expression
faults in the implementation of pr . T is referred to as a BRO-adequate test set
and sometimes written as TBRE .

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 19 / 38

Predicate testing criteria

Three common criteria:
▶ BOR (Boolean Operator): A test set T that satisfied the BOR-testing criterion for

a compound predicate pr , guarantees the detection of single or multiple Boolean
operator faults in the implementation of pr . T is referred to as a BOR-adequate
test set and sometimes written as TBOR .

▶ BRO (Boolean and relational Operator): A test set T that satisfied the
BRO-testing criterion for a compound predicate pr , guarantees the detection of
single or multiple Boolean operator and relational operator faults in the
implementation of pr . T is referred to as a BRO-adequate test set and
sometimes written as TBRO .

▶ BRE (Boolean and relational expression): A test set T that satisfied the
BRE-testing criterion for a compound predicate pr , guarantees the detection of
single or multiple Boolean operator, relational operator and arithmetic expression
faults in the implementation of pr . T is referred to as a BRO-adequate test set
and sometimes written as TBRE .

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 19 / 38

Predicate testing criteria

Three common criteria:
▶ BOR (Boolean Operator): A test set T that satisfied the BOR-testing criterion for

a compound predicate pr , guarantees the detection of single or multiple Boolean
operator faults in the implementation of pr . T is referred to as a BOR-adequate
test set and sometimes written as TBOR .

▶ BRO (Boolean and relational Operator): A test set T that satisfied the
BRO-testing criterion for a compound predicate pr , guarantees the detection of
single or multiple Boolean operator and relational operator faults in the
implementation of pr . T is referred to as a BRO-adequate test set and
sometimes written as TBRO .

▶ BRE (Boolean and relational expression): A test set T that satisfied the
BRE-testing criterion for a compound predicate pr , guarantees the detection of
single or multiple Boolean operator, relational operator and arithmetic expression
faults in the implementation of pr . T is referred to as a BRO-adequate test set
and sometimes written as TBRE .

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 19 / 38

BOR example

Let pr : a < b ∧ c > d and S constraints on pr where
S = {(t, t), (t, f), (f, t)} the following test set T satisfies constraint set

S and the BOR-testing criterion:

T = {t1 :< a = 1, b = 2, c = 1, d = 0 >;
t2 :< a = 1, b = 2, c = 1, d = 2 >;
t3 :< a = 1, b = 0, c = 1, d = 0 >;

}

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 20 / 38

BOR example
Covered faults

To discover the covered faults lets modify the proposition introducing one or more
operational fault

Predicate t1 t2 t3
a < b ∧ c > d true false false
a < b ∨ c > d true true true

a < b ∧ ¬c > d false true false
¬a < b ∧ c > d false false true
a < b ∨ ¬c > d true true false
¬a < b ∨ c > d true false true
¬a < b ∧ ¬c > d false false false
¬a < b ∨ ¬c > d true true true

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 21 / 38

Generating BOR, BRO, BRE adequate tests

A predicate constraint C for predicate pr is a sequence of n + 1
boolean and relational symbols.
A test case t satisfies C for predicate pr , if each component of pr
satisfies the corresponding constraint in C when evaluted against t .
e.g.: given pr = b ∧ r < s ∨ u ≥ v and C : (t ,=, >) the following test
case satisfies C: <b = true, r = 1, s = 1,u = 1, v = 0>

There exist algorithms for the generation of adequate tests given
constraints on the predicate. They are based on the definition of:

Cartesian product of sets
onto set product operator
AST (pr)

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 22 / 38

Onto Operator

Onto Operator
Given two sets A and B the onto operator constructs the minimal set of
pairs ⟨a,b⟩ where a ∈ A and b ∈ B and each element of the two sets is
used in at least one of the pairs in the onto set A ⊗ B.
Which is the cardinality of the onto set?

Let A = {t ,0, >} and B = {f , <} lets derive the cartesian product and
some examples of onto product sets

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 23 / 38

Abstract Syntax Tree for a Predicate p

AST
The abstract sintax tree provides a tree based representation of a
predicate that captures the syntactic relations among the predicate
constituents, and that is tipically useful for associating meaning to the
predicate itself.
Leaves of the tree are atomic propositions while nodes are boolean
operators

AST
Let’s build the AST for the proposition:
a < b ∨ q ∧ ¬p ∨ (a == c ∧ p)

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 24 / 38

Generating the BOR-constraint set
Let pr be a predicate and AST (Pr) its abstract syntax tree, SN the constraint set
attached to a node N (where St

N and Sf
N are the true and false constraints

associated with the node). The following alg. generates the BOR-constraint set for pr

Input: AST (pr) (only singular expressions)
Output: BOR-Constraint set attached to the root node

1 Label each leaf node N of AST (pr) with its constraint set SN = {t , f}
2 Visit the AST bottom-up. Let N1 and N2 direct descendants of node N and SN 1

and SN 2 the corresponding BOR-constraint set. SN is computed as follows:

2.1 N is an OR-node:
Sf

N = Sf
N 1 ⊗ Sf

N 2

St
N = (St

N 1 × {f2}) ∪ ({f1} × St
N 2) where f1 ∈ Sf

N 1 and f2 ∈ Sf
N 2

2.2 N is an AND-node:
St

N = St
N 1 ⊗ St

N 2

Sf
N = (Sf

N 1 × {t2}) ∪ ({t1} × Sf
N 2) where t1 ∈ St

N 1 and t2 ∈ St
N 2

2.3 N is NOT-node:
St

N = Sf
N 1

Sf
N = St

N 1

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 25 / 38

BOR-constraint set example

Let’s apply the BOR-constraint procedure to:
▶ (a + b < c) ∧ ¬p ∨ (r > s)

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 26 / 38

Generating the BRO-constraint set

Input: AST (pr) (only singular expressions)
Output: BRO-Constraint set attached to the root node

1 Label each leaf node N of AST (pr) with its constraint set SN . For each leaf node
that represents a Boolean variable SN = {t , f}. For each leaf node that is a
relational expression SN = {(>), (=), (<)}.

2 Visit the AST bottom-up. Let N1 and N2 direct descendants of node N and SN 1

and SN 2 the corresponding BRO-constraint set. SN is computed as done for the
BOR procedure.

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 27 / 38

Generating the BRO-constraint set

Let’s apply the BRO-constraint procedure to:
▶ (a + b < c) ∧ ¬p ∨ (r > s)

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 28 / 38

BRE constraint sets

Constraint Satisfying condition
+ϵ 0 < e1 − e2 ≤ +ϵ
−ϵ −ϵ ≤ e1 − e2 < 0

True and false components for a relational operator are defined as follows:

relop St Sf

> {(+ϵ)} {(=), (−ϵ)}
≥ {(+ϵ), (=)} {(−ϵ)}
= {(=)} {(+ϵ), (−ϵ)}
< {(−ϵ)} {(=), (+ϵ)}
≤ {(−ϵ), (=)} {(+ϵ)}

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 29 / 38

Generating the BRE-constraint set

Input: AST (pr) (only singular expressions)
Output: BRE-Constraint set attached to the root node

1 Label each leaf node N of AST (pr) with its constraint set SN . For each leaf node
that represents a Boolean variable SN = {t , f}. For each leaf node that is a
relational expression SN = {(+ϵ), (=), (−ϵ)}.

2 Visit the AST bottom-up. Let N1 and N2 direct descendants of node N and SN 1

and SN 2 the corresponding BRE-constraint set. SN is computed as done for the
BOR procedure.

Which are the relations among the test suites generated by the different methods?

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 30 / 38

Generating the BRE-constraint set

Input: AST (pr) (only singular expressions)
Output: BRE-Constraint set attached to the root node

1 Label each leaf node N of AST (pr) with its constraint set SN . For each leaf node
that represents a Boolean variable SN = {t , f}. For each leaf node that is a
relational expression SN = {(+ϵ), (=), (−ϵ)}.

2 Visit the AST bottom-up. Let N1 and N2 direct descendants of node N and SN 1

and SN 2 the corresponding BRE-constraint set. SN is computed as done for the
BOR procedure.

Which are the relations among the test suites generated by the different methods?

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 30 / 38

Generating the BRE-constraint set

Let’s apply the BRE-constraint procedure to:
▶ (a + b < c) ∧ ¬p ∨ (r > s)

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 31 / 38

Generating test sets for non singular expressions
MI-CSET Procedure

Input: A boolean expression E = e1 + e2 + ...+ en in minimal DNF containing n
terms. Term ei contains li > 0 literals.
Output: A set of constraints SE that guarantees the detection of missing or extra NOT
operator fault in a faulty version of E .

1 For each term ei , 1 ≤ i ≤ n construct Tei as the set of constraints making ei true

2 Let TSei = Tei −
n⋃

j=1,j ̸=i
Tej . Note that for i ̸= j , TSei ∩ TSej = ∅

3 Contruct St
E by including one constraint from each TSei

4 Let ej
i denotes the term obtained by complementing the j th literal in ei , for

1 ≤ i ≤ n and 1 ≤ j ≤ li . Construct Fej
i

as the set of contraints that make ej
i true

5 Let FSej
i
= Fej

i
−

n⋃
k=1

Tek . Thus for any constraint c ∈ FSej
i
,E(c) = false

6 Construct Sf
E that is minimal and covers each FSej

i
a least once.

7 Construct the desired constraint set for E as SE = St
E ∪ Sf

E .

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 32 / 38

MI-CSET

Let’s apply the procedure to: a ∧ ((b ∧ c) ∨ (¬b ∧ d))

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 33 / 38

Generating test sets for non singular expressions

BOR-MI-CSET Procedure

Input: A boolean expression E
Output: A set of constraints SE that guarantees the detection of boolean operator
faults in E

1 Partition E in a set of n mutually singular components E = {E1,E2, · · · ,En}
2 Generate the BOR constraint set for each singluar component in E using the

BOR-CSET procedure.
3 Generate the MI-constraint set for each non-singular component in E using the

MI-CSET procedure
4 Combine the constraints generated in the previous two steps as indicated in step

2 of the BOR-CSET procedure. The result of the combination is the constraint
set for E

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 34 / 38

BOR-MI-CSET procedure - an example

Let’s apply the procedure to: a ∧ ((b ∧ c) ∨ (¬b ∧ d))

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 35 / 38

CEG and Predicate testing

CEG
CEG strategy to define relations among causes and effects
(“oracles”)
Decision table technique to identify test cases

Predicate testing

Stategies for deriving test from predicates, fault coverage
guarantees

“Better together”

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 36 / 38

CEG and Predicate testing

CEG
CEG strategy to define relations among causes and effects
(“oracles”)
Decision table technique to identify test cases

Predicate testing

Stategies for deriving test from predicates, fault coverage
guarantees

“Better together”

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 36 / 38

CEG and Predicate testing

CEG
CEG strategy to define relations among causes and effects
(“oracles”)
Decision table technique to identify test cases

Predicate testing

Stategies for deriving test from predicates, fault coverage
guarantees

“Better together”

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 36 / 38

Usage of predicate testing techniques

Approaches to test set derivation from predicates can be applied
considering different starting points:
▶ Specification based testing
▶ Program based testing

The different settings have different consequences

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 37 / 38

Exercise

Consider the BOR, BRO, BRE criteria for testing predicates including
expressions and relational operator, and shortly introduce their
objectives and differences. Use the most appropriate criteria for
singular expressions to generate a test set, able to discover logical,
and relational faults, for the following compound predicates (possibly
transforming them):

¬((z · y) ≥ (x + y) ∧ ¬p) ∧ ((y = w) ∨ p)

((x (̇y2 + 1) ≥ x) ∧ a ∧ (x2ẏ = 7)) ∨ ((x2ẏ − 7 = 0) ∧ xy2 < 0 ∧ d)

(Fundamentals of Software Testing) Test Generation – Predicate Analysis CS@UNICAM 38 / 38

