O

Parallel and
Distributed
Programming

Hello!

| am Diego Bonura

Mi occupo di:
Frontend
Backend
Mobile
loT
R&D

diego@bonura.dev

https://medium.com/@diegobonura

:DZ LOCCIONI

@SR __[5)
Consiglio Nazionale ‘[-F?)'
i | dc|le Ricerche SIAAH

ISMAR

Istituto di Scienze Marine

GRUPPO EDITORIALE
RAFFAELLO

mailto:diego@bonura.dev
https://medium.com/@diegobonura

OREILLY"

Designing
Data-Intensive
Applications

THE BIG IDEAS BEHIND RELIABLE, SCALABLE,
AND MAINTAINABLE SYSTEMS .

Martin Kleppmann

¢¢

ata-Intensiv
f

o5, Applications
\(? The big ideas behind reliable,
scalable & maintainable systems
K’;ﬂ"\
;

Tolerating [-
4l hardware& R 5 y Qper:f\l?ltlti
Gl Software faults |[f \ simplicity
| Latency j| evolvability
| percentiles, 3

¢¢

Distribuited programming is complex

4]

Use only on complex applications

Distributed Computing

| Processor /

Processor |
Memory |

Processor Procassor
) *-—-—q

\

Parallel Computing

Memory

[Processor

[Processor J l Processor J

!

!

!

|

Memory

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

Network

Why?

Performance
Maintains System Performance During High Demand Periods
Adapts to the Increase/Decrease Workloads and User Demands

Scalability
Boosts Performance and Utilization through Collaboration

Resilience
Ensures System Continuity in the Face of Failures

Redundancy
Enhances User Experience with Geographically Distributed
Systems

https://youtu.be/CZ3wluvmHeM?si=eHIQOEqZkHpZWhHDm&t=604

https://youtu.be/CZ3wIuvmHeM?si=eHlQEqZkHpZWhHDm&t=604

How?

Main types:

Cluster Computing
https://www.mongodb.com/basics/clusters
https://www.elastic.co/guide/en/elasticsearch/refere
nce/current/high-availability.html

Grid computing
https://en.wikipedia.org/wiki/Great Internet Mersen
ne Prime Search
https://en.wikipedia.org/wiki/SETI@home

Cloud computing
https://www.linkedin.com/pulse/how-cloud-
computing-made-netflix-possible-keimo-edwards/
https://cloudacademy.com/blog/aws-reinvent-

netflix/

Peer-2-Peer
Torrent
Bitcoin

https://www.mongodb.com/basics/clusters
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/SETI@home
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://cloudacademy.com/blog/aws-reinvent-netflix/
https://cloudacademy.com/blog/aws-reinvent-netflix/

Example of complex system?

Two of Twitter’s main operations are:

Post tweet

* Auser can publish a new message to their followers (4.6k requests/sec on average, over 12k
requests/sec at peak).

Home timeline

* A user can view tweets posted by the people they follow (300k requests/sec)....

Continue to book «Designing Data-Intensive Applications» page 11

Main agenda

Object oriented programming (message passing)
Async programming
In-process | out-of-process programming

Distributed programming
Message brokers
Actor Model
Serialization
Transaction
Saga
Idempotent operations
Stream processing
Event sourcing

Deploy a distributed application
Infrastructure as code

Update and maintain
Observability

10

How to start?

https://visualstudio.microsoft.com/it/vs/community/

or

https://code.visualstudio.com/

https://marketplace.visualstudio.com/items?itemName=

ms-dotnettools.csdevkit

11

https://visualstudio.microsoft.com/it/vs/community/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit

How to start?

https://github.com/meriturva/Parallel-and-Distributed-Programming

12

https://github.com/meriturva/Parallel-and-Distributed-Programming

Message Passing

Message passing is a technique for invoking behavior

public class Producer
{
public void Start()
{
var consumer = new Consumer();
int 1 = 0;
while (true)
{
var result = consumer.Elaborate(i, i);
Console.WriteLine($"Counter: {i} with result: {result}");
it+;
}
}
}

Example project: 01 MessagePassing

https://en.wikipedia.org/wiki/Message passing

https://en.wikipedia.org/wiki/Message_passing

Async programming

\ Code run in the background while other code is executing.

public cldss Producer
{
public async Task StartAsync()
{
var consumer = new Consumer();
int i = 0;
while (true)
{
var result = await consumer.ElaborateAsync(i, i);
Console.WriteLine($"Counter: {i} with result: {result}");
i++;
}
}
}

Example project: 02 AsyncAwait

On the C# side of things, the compiler transforms your
code into a state machine that keeps track of things like
yielding execution when an await is reached and
resuming execution when a background job has
finished.

https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios

14

https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios

Async programming (on single thread)

JavaScript is a single-thread!

async function doWork()

{
console.log("frist");
await wait(1000);
cgmnsole.log("second");

}

doWork();

IS N WebAPIs
i | oMy
- - aiox (XMLHpReguest)
. Bar
et o sefimeow
Event Loop Baz
u Foo
Event Loop

Callback Queue onClick onLoad

https://www.youtube.com/watch?v=8aGhZQkoFbQ 15

https://www.youtube.com/watch?v=8aGhZQkoFbQ

Javascript — Callback and Promise

1

2 | Call Stack Web Apis
3 = function printHello() {

4 console. log("Hello from baz');
5 I

6

7 = function baz() {

8 setTimeout{printHello, 3888);
g I

18

11 ~ function bar() {

12 baz();

13 %

14

15 ~ function fool) {

16 bar();

17 3
s N
19 +ool); w

Callback Queue -

Click mel

https://latentflip.com/loupe/

https://latentflip.com/loupe/

In-process / sync

Ohjecti Ohjact2

I

|

|

|

|

|

|

|

|

|

' 1.2

Message()
1.3 Retum
Maszage()

| |

| |

| |

stack stack stack stack
frame of frame of frame of - frame of
stack frame main() main() main() stack frame main() stack frame
of main() of main() of main()
- tack
start routine in stack stack stack call to foo s
the ELF file calls frame of frame of frame of returns in frame of call to bar
main at the foo() foo() foo() main bar() returns in
program start main
stack
call to bar .
frame of . main calls bar
main calls foo bar() returns in foo

foo calls bar

17

In-process / sync with mediator pattern

Mediator pattern — Diagram of sequence
ComponentA Mediator ComponentB
AwB/ = =

mediate()
>
mediate() N
return
<
return
BtoA / J mediate()
. mediate() b
return
..................... >
return
..................... >

Objects no longer communicate directly with each other, but instead
communicate through the mediator. This reduces the dependencies
between communicating objects, thereby reducing coupling.

https://en.wikipedia.org/wiki/Mediator pattern

https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

In-process / sync with mediator pattern

namespace Events.Controllers

{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase

{

private readonly IPublisher _publisher;

public OrderController(IPublisher publisher)
{

}

_publisher = publisher;

[HttpGet]
public async Task NewOrder()
{

var @event = new NewOrderEvent();
await _publisher.Publish(@event);

Example project: 03 EventsinProcessByMediator

19

In-process / sync with mediator pattern

Performance

Scalability

Resilience 7
Redundancy

Identity
provider

i

ssL
offloading : ;
| Routing

% @ e

Client apps

Service A

Response
caching

v

% Logging

Microsoft
Azure

-

%

Region: US-EAST-1

US-EAST-1A

EC2
Instances

US-EAST-1B
Elastic
Load
Balancer .
EC2
Instances

2

20

Out of process / async

Producer O
_I Queue

Consumer

dequeue

engqueaue

'

‘ Producer I Q“E:UE

‘ Consumer I

21

Out of process / async with producer/consumer

Producer Threads

BlockingQueue

Consumer Threads

Thread 3

Thread 4

22

Queue Producer

namespace EventsOutOfProcessByChannel.Controllers

{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase

{

private readonly ChannelWriter<NewOrderEvent> _channelWriter;

public OrderController(ChannelWriter<NewOrderEvent> channelWriter)

{
}

_channellWriter = channelWriter;

[HttpGet]
public async Task NewOrder()
{

// Produce a new event and sent to channel
var @event = new NewOrderEvent();
await _channelWriter.WriteAsync(@event);

C# Channels are an implementation of the
producer/consumer programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Example project: 04 EventsOutOfProcessByChannel

23

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Queue Consumer

namespace EventsOutOfProcessByChannel

{

public class Consumer

{

public static async ValueTask ConsumeWithWhileAsync(ChannelReader<NewOrderEvent> reader)
{

while (true)
{

var @event = await reader.ReadAsync();N
// Simulate some work

Console.WriteLine($"Event elaborating {@event.Created}");
Thread.Sleep(5000);

Console.WriteLine($"Event comsumed {@event.Created}");
}

C# Channels are an implementation of the
producer/consumer conceptual programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Example project: 04 EventsOutOfProcessByChannel

24

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Monolith Microservices

. @ itoutposts.com

In a monolithic application running on a single A microservices-based application is a distributed
process, components invoke one another system running on multiple processes or services,
using language-level method or function calls. usually even across multiple servers or hosts

O

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-
microservice-container-applications/communication-in-microservice-
architecture

e . O

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture

Out of-process / sync with microservice

namespace MicroserviceA.Controllers

{
[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{
private readonly HttpClient _client;
public OrderController(HttpClient client)
{
_client = client;
}
[HttpGet]
public async Task<long> NewOrder()
{
Console.WriteLine("Sending request to MicroserviceB");
var paymentResult = await _client.GetFromJsonAsync<long>("https://localhost:7165/payment");
Console.WriteLine($"Sent request MicroserviceB Wggth result {paymentResult}");
}
}
}

Example project: 05 MicroserviceA/B

26

Out of-process / sync with microservice

namespace MicroserviceB.Controllers

{
[ApiController]
[Route("[controller]")]
public class PaymentController : ControllerBase
{
[HttpGet]
public long Get()
{
Console.WriteLine("Elaborating request");
var result = Random.Shared.Next(0, 100);
Thread.Sleep(16000);
Console.WriteLine($"Elaborated request with result: {result}");
return result;
}
}
}

Example project: 05 MicroserviceA/B

27

Out of-process / sync with microservice

Performance
Scalability 9
Resilience .
Redundancy
B rososessomssesnsessessssssssmsasssnssnsed YNBSS s crmsnnsmensmsmsssesnmsassessnsesmsmsaseasnton
Caching """""""""""" ik Lo R
— Qo= o=
1 | Microservice 1 DB1 Microservice 2 DB2

Client : ' Load Balancer API lateway Related Services

Internal Routing

O-=

= Logging (—; Microservice 3 DB3 Microservice 4

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-
gateway-private-network-services-f25c73cc8e02

28

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

Out of-process / async with microservice - producer

namespace EventsOutOfProcessByDB.Controllers

{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase

{
private readonly EventBusContext _eventBusContext;
public OrderController(Event text eventBusContext)
{
_eventBusContext = eventBusContex
}
[HttpGet]
public async Task NewOrder()
{
// Produce a new event and sent to channel
var @event = new NewOrderEvent();
@event.UserEmail = "diego@bonura.dev";
var content = JsonSerializer.Serialize(@event, @event.GetType());
var typeName = @event.GetType().FullName!;
var message = new Message()
{
Type = typeName,
Content = content
b
_eventBusContext.Add(message) ;
await _eventBusContext.SaveChangesAsync();
}
}

Example project: 06 EventsOutOfProcessByDatabaseConsumer

29

Out of-process / async with microservice - consumer

protected override async Task ExecuteAsync(CangellationToken stoppingToken)

{
while (true)
{
var messageToElaborate = _eventBusContext.Set<Message>().Where(m => m.ProcessedOn == null).OrderBy(m
=> m.OccurredOn) .FirstOrDefault();
if (messageToElaborate != null)
{

var type = AppDomain.CurrentDomain.GetAssemblies().Where(a => !a.IsDynamic).SelectMany(a =>
a.GetTypes()).FirstOrDefault(t => t.FullName == messageToElaborate.Type);
var domainEvent = (INotification)JsonSerializer.Deserialize(messageToElaborate.Content, type);

await _publisher.Publish(domainEvent);
messageToElaborate.Pro®gsedOn = DateTime.Now;

await _eventBusContext.Sa%eChangesAsync();

}

await Task.Delay(1000);

Example project: 06 EventsOutOfProcessByDatabaseConsumer 30

Out of-process / async with microservice consumer

Performance

Scalability

Resilience 7
Redundancy

Is it easy to add new consumers to increase
performance?

we need to introduce a row lock (on db side) or optimistic
concurrency control (occ)

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-
gateway-private-network-services-f25¢c73cc8e0?2

31

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

O

O

Message broker

an intermediary for messaging

Message broker

Message flow in an microservice architecture

using a messagebroker

U/ 7
Message

PRODUCER

MESSAGE BROK

)

)

SYIINNSNOD

33

Message broker

Message brokers

can validate, store, route, and deliver messages to the appropriate
destinations.

act as intermediaries between other applications, allowing senders to
Issue messages without knowing where the recipients are located,
whether or not they are active, or how many there are.

simplifies the separation of processes and services within systems.

Protocols

AMQP: The Advanced Message Queuing Protocol (RabbitMQ/ Azure
Service Bus / Amazon MQ / Apache ActiveMQ)

Kafka: binary protocol over TCP

MQTT: Lightweight and Efficient for loT Messages (Mosquitto)

34

RabbitMQ

01

type=topic *orange*

* ¥ rabbit Q2

rpc_quele

) Request
Client reply_to—=amgp.genXaz...

correlation_id=abc

Server

reply_to=amg.gen-xXa2z...

Reply
correlation_id=abc

RabbitMQ

>, =R
= &

Dead Letter Dead Letter Exchange
Queue

36

RabbitMQ - Producer

public class EventBusRabbitMQ : IEventBus
{
public void Publish(IEvent @event)
{
var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

channel.QueueDeclare(queue: "task_queue",
durable: true,
exclusive: false,
autoDelete: false,
arguments: null);

string message = JsonSerializer.Serialize(@event, typeof(NewOrderEvent));
var body = Encoding.UTF8.GetBytes(message);

var properties = channel.CreateBasicProperties();
properties.Persistent = true;

channel.BasicPublish(exchange: string.Empty,
routingKey: "task_queue",
basicProperties: properties,
body: body);

37

RabbitMQ - Consumer

var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

channel.QueueDeclare(queue: "task_queue",
durable: true,
exclusive: false,
autoDelete: false,
arguments: null);

channel.BasicQos(prefetchSize: 0, prefetchCount: 1, global: false);
var messageConsumer = new EventingBasicConsumer(channel);

messageConsum eceived += async (model, ea) =>

{

ody = ea.Body.ToArray();
@event = (NewOrderEvent)JsonSerializer.Deserialize(body, typeof(NewOrderEvent));
Console.WriteLine($"Received from {@event.UserEmail}");

by

await Task.Delay(100);

channel.BasicAck(deliveryTag: ea.DeliveryTag, multiple: false);

H

channel.BasicConsume(queue: "task_queue",
autoAck: false,
consumer: messageConsumer);

nsole.ReadLine();

38

Distribute application with message broker

Performance

Scalability

Resilience 7
Redundancy

Is it easy to add new consumers to increase
performance?

39

Serialization performance

i —

3500
3000
2500
2000
1500
1000
500
MessagePack
Serialize(ns) 1273
Deserialize(ns) 113
SerializeAllocated(B) 54
DeserializeAllocated(B) 48

B Serialize(ns)

8 integer field object benchmark(lower is better)

MPC{Ctless) | protobuf-net

1401 350
1818 2594
128 536
48 152

B Deserialize(ns)

https://github.com/neuecc/Utf8Json

Utiglson Jil
305.9 7745
5918 789.3

176 1464
48 464

——SerializeAllocated(B)

JilTextWniter Metlson JsonNet

960.6 8472 21634

1,403.40 1112.3 3,137.70
5890 o0 2016
3544 1032 3206

———DeserializeAllocated(B)

7000

5000

3000

2000

1000

40

https://github.com/neuecc/Utf8Json

Serialization performance

Json

Overview

MName Type
task_queue classic

Add a new queue

Protobuf

Overview

MName Type

task_queue classic

Add a new queue

Features

b]

Features

D

Messages Message rates +/-
State Ready Unacked Total incoming deliver / get ack
running 1,835 0 1,835 36/s
Messages Message rates +/-
State Ready Unacked Total incoming deliver / get ack
running 237 0 237 52/s

f

41

Communication types

Synchronous vs. async communication across microservices

Anti-pattern

Http sync. Http sync. Http sync. Http sync.
SynChronous Client request request et O request Catal request
. rderin atalo —_—
all request/response Ien 3 > e ey —
Http sync. Http sync. H‘L'tp sync. Http sync.

cycle response response
4 Such as MVC app, response response p p

API Gateway Same http request/fesponse cycle!

W«
Asynchronou§ Hitp sync.
. t
Cc_)mm. across internal reques Backet . N 0NN Catalog YRl
ien 9 J
microservices
) Http sync.

(EVGI‘ItBUSI like AMQP) response
Such as MVC app,

L 4

APl Gateway
“ " Http sync. Http Http Http
Asynchronous Cl request . o Polling o Polling Catal Polling
Comm. across ient p > Bask rdering atalog
internal microservices Http sync
. response
(Polling: Http) Such as MVC app,
API Gateway

Polling

Distributed
application with a
framework

Masstransit

Easily build reliable
distributed applications

First class testing support
Write once, then deploy using RabbitMQ, Azure Service Bus, and Amazon SQS
Observability via Open Telemetry (OTEL)

Fully-supported, widely-adopted, a complete end-to-end solution

44

Masstransit - Producer

public class OrderController : ControllerBase

{
private readonly IBus _bus;
public OrderController(IBus bus)
{
_bus = bus;
}
[HttpGet]
public async Task NewOrderAsync()
{
// Produce a new event and sent to channel
var @event = new NewOrderEvent();
@event.UserEmail = "diego@bonura.dev";
await _bus.Publish(@event);
}
}

45

Masstransit - Consumer

namespace DistributedAppWithMassTransitConsumer

{
public class MessageConsumer : IConsumer<NewOrderEvent>
{
readonly ILogger<Messag umer> _logger;
public MessageC er(ILogger<MessageConsumer> logger)
{
_logger = logger;
public Task Consume(ConsumeContext<NewOrderEvent> context)
{
_ .LogInformation("Received ordine from: {emaill}", context.Message.UserEmail);
return Task.CompletedTask;
}
}
}

46

O .

Applications go
. wrong

O

The major difference between a thing that might go wrong and a thing that cannot possibly
g0 wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out
to be impossible to get at or repair.

—Douglas Adams, Mostly Harmless (1992)

Applications go wrong

Alice:
l} begin transaction name on.call
currently_on_call = (Alice true
select count(¥) from doctors Bob true
where on_call =true Carol false
and shift_id = 1234
)
Now currently_on_call=2
O if (currently_on_call >=2) {
update doctors -
set on_call =false ‘ Mlice _false ‘
where name ="Alice’
and shift_id = 1234
}
|Bob false |
O commit transaction
name on_call
Alice false
Bob false
Carol false

Bob:
begin transaction

currently_on_call = (
select count(*) from doctors
where on_call = true
and shift_id = 1234

)

Now currently_on_call=2

if (currently_on_call >=2) {
update doctors
set on_call = false
where name ='Bob’
and shift_id =1234
}

commit transaction

Figure 7-8. Example of write skew causing an application bug.

Page 246 of Design Data-Intensive Applications

48

Logging on distributed application

I N N e

Producer Consumerl Consumer2

\

Log files

Log files Log files

How to get information when things go wrong?

49

Call logs in one place

Server 1

App X1

Logging in
format F1

Filebeat

Server 2

App X2

Logging in
format F2

Filebeat

ELK Stack Server

-

logstash elasticsearch

-
i > - v K

kibana

50

Call logs in one place

95,471,548 hits New Save Open Share Inspect Bl 5seconds <€ O Last60days 2
‘ kibana . A 3
> Search... (e.g. status:200 AND extension:PHP) Options C Refresh
Discover Add a filter +
Visualize flb-* January 17th 2021, 11:00:56.983 - March 18th 2021, 11:00:56.983 — Auto v
Selected fields
Dashboard 2,000,000
? _source
. 1,500,000
Timelion Available & £
fields 3 1,000,000
o
Prometheus ol 500,000 HHHHHHHHH m
t logs.message 0 |_|
Alerting 2021-01-24 2021-01-31 2021-02-07 2021-02-14 2021-02-21 2021-02-28 2021-03-07 2021-03-14
© @fb_timestamp time per day
Dev Tools t _id
Time _source
Management t _index
B » March 18th 2021, 11:00:39.239 @Gf timestamp: March 18th 2021, 11:00:39.239 log: stream: stdout time: March 18th 2021,
¥ _score 11:00:39.239 kubernetes.pod name: api-78b695c46b-j8v69 kubernetes.namespace name: default
t _type kubernetes.pod_id: f162dd48-e68d-461d-bcc6-b3581fc6a97a

kubernetes.labels.app_kubernetes_io/component: backend
t kubernetes.anno...
kubernetes.labels.app_kubernetes_io/managed-by: hybris-operator

? kubernetes.anno...

» March 18th 2021, 11:00:39.238 Gfp timestamp: March 18th 2021, 11:00:39.238 log: stream: stdout time: March 18th 2021,

? kubernetes.anno... ; ;
11:00:39.238 kubernetes.pod _name: api-78b695c46b-j8v69 kubernetes.namespace name: default

Collapse

t kubernetes.anno... kubernetes.pod_id: f162dd48-e68d-461d-bcc6-b3581fc6a97a

“wk Seq
Stack DATADOG

51

O

O | =
Observability

could be difficult

Main concepts of observability

Three Pillars of Ol:se_r*va\b?h‘tlfi

Lc>5r:.=.

Metrics

Logs in the technology and
development field give a

written record of happenings
within a system, similar to the

captain's log on a ship.

N\

Troces

Metrics are a set of values that are

tracked over time.

A trace is a means to track a user request
from the user interface all the way through
the system and back to the user when they
receive confirmation that their request has
been completed. As part of the trace, every
operation executed in response to the
request is recorded.

53

Observability standard

é Telemetry

OpenTelemetry is an open-source CNCF (Cloud Native
Computing Foundation) project formed from the merger of
the OpenCensus and OpenTracing projects. It provides a
collection of tools, APIs, and SDKs for capturing metrics,
distributed traces and logs from applications.

54

OpenTelemetry on distributed application

I R

Producer Consumerl

—
OpenTelemetry
Collector

L]

Consumer2

55

Example

Trace:

MassTransit Producer\QOrder 182aidc

4 Spans

Metric:

Mast Transit Consumer (2) MassTransit Producer (2)

MassTransit Producer

.I\/IassTransit Consumer

10.58ms

Today 4:5917 pm

@ minute ago

56

O .

Distributed lock

Distributed locks are a very useful primitive in
many environments where different
processes must operate with shared resources
in a mutually exclusive way.

Redis

The open source, in-memory data store used by millions of
developers as a database, cache, streaming engine, and
message broker.

Created by: Salvatore Sanfilippo

https://redis.io/ ®

g_» 5 — ERabblt
Place an /\
order

Update user Update user
statistics history

Lock user _id

Redis lock

static async Task Main(string[] args)

{
var endPoints = new List<RedLockEndPoint> { new DnsEndPoint("localhost", 6379) };
var redlockFactory = RedLockFactory.Create(endPoints);

var resource = "my-order-id";
var expiry = TimeSpan.FromSeconds(30);

await using (var redLock = await redlockFactory.CreatelLockAsync(resource, expiry))
{

// make sure we got the lock

if (redLock.IsAcquired)

{

}

// do stuff

60

Saga

When you have to orchestrate events!

I I
iSaga i
. e
I

: Service Service Service :
| |
! —_ — —~ !
| -— Megsage/fventh] Mesgage/Eventt] :
: -— -— -— i
| Local Local Local i
: Transaction Transaction Transaction :
I I
I I
]]

Saga: consistency models

Immediate consistency: once a write operation (e.g., updating a piece of data) is
completed, any subsequent read operation (e.g., retrieving that data) will reflect the
updated value.

* expensive in terms of performance
* not ideal in all distributed systems

ACID (atomicity, consistency, isolation, durability).

Eventual consistency: may be a period of time during which different nodes or
replicas in the system have different versions of the data.

« commonly used in systems like NoSQL databases

BASE (basically-available, soft-state, eventual consistency)

62

Saga: trade off

Immediate
Consistency

High
Availability

Microservices Monoliths

https://privalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-
effective-microservices-86671be0b604

https://www.youtube.com/watch?v=p2GIRToY5HI

63

https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://www.youtube.com/watch?v=p2GlRToY5HI

Saga approaches: choreography and orchestration

Choreography: without a centralized point of control

= Ve

Service A

Client Request /
“—>

| > MMM

Message broke\

NE

Service C

N

Service B

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

64

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga approaches: choreography and orchestration

Orchestration: centralized controller tells participants what to execute

3 =

Orchestrator Service A
Client request . s\
| >N > IS
Service B
NS
Service C

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

65

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga choreography

public OrderStateMachine()
{

InstanceState(x => x.CurrentState);

Event(() => NewOrderEvent, x => x.CorrelateById(context => context.Message.OrderId));
Event(() => OrderProcessed, x => x.CorrelateById(context => context.Message.OrderId));
Event(() => OrderCancelled, x => x.CorrelateById(context => context.Message.OrderId));

Initially(
When(NewOrderEvent)
.Then(context =>

{

/ context.Saga.ProcessingId = Guid.NewGuid();
B
.Publish(context => new ProcessOrder(context.Saga.CorrelationId))

.TransitionTo(Pending)
.Then(context => Console.Out.WriteLineAsync($"From New to Pending: {context.Saga.CorrelationId}"))

);
During(Pending,
When(OrderProcessed)
.TransitionTo(Accepted)
.Then(context => Console.Out.WriteLineAsync($"From Pending to Accepted: {context.Saga.CorrelationId}"))
/ .Finalize(),
When(OrderCancelled)

.TransitionTo(Cancelled)
.Then(context => Console.Out.WriteLineAsync($"From Pending to Faulted: {context.Saga.CorrelationId} for reason:
{context.Message.Reason}"))
.Finalize(Q)
);

SetCompletedWhenFinalized();

Saga choreography
MassTransit elaborates saga and creates few queue and exchanges on RabbitMq

Exchanges

All exchanges (13)

Pagination

Page of 1 - Filter: [] Regex ?

Virtual host Name Type Features Message rate in Message rate out +/-
! (AMQP default) direct »
Message fanout »
! Orderstate fanout D
SagaWithMasstransitShared:NewOrderEvent fanout D 0.00/s 0.00/s
! SagaWithMasstransitShared:OrderCancelled fanout D 0.00/s 0.00/s
SagaWithMasstransitShared:OrderProcessed fanout D 0.00/s 0.00/s
! SagaWithMasstransitShared:ProcessOrder fanout D 0.00/s 0.00/s
amaq.direct direct »)
! amq.fanout fanout D
amq.headers headers D
! amq.match headers »
amq.rabbitmq.trace topic DI

! amq.topic topic D

Actor model

Instead of calling methods, actors send
messages to each other!

https://doc.akka.io/docs/akka/current/typed/guide/actors-intro.html

https://learn.microsoft.com/en-us/dotnet/orleans/overview ¢

Actor model

The Actor Model: A Paradigm for Concurrent and
Distributed Computing

The actor model is a programming model in which each actor is a lightweight,
concurrent, immutable object that encapsulates a piece of state and corresponding

behavior. Actors communicate exclusively with each other using asynchronous
messages.

69

Actor model

When we have a Producer and Consumer we
usually send message to a queue

Actors interacting with each other
by sending messages to each other

On actor model, we can implement Producer and
Consumer as actor.

In Producer, we just get the actor reference of
Consumer actor to send messages to Consumer’s
mailbox.

70

Actor model

Mailbox

71

Actor model: History 1973

The Actor Model is a mathematical theory of computation that treats
“Actors” as the universal conceptual primitives of concurrent digital
computation.

The actor model was inspired by physics

Actors is based on “behavior’ as opposed to the “class”
concept of object-oriented programming.

https://en.wikipedia.org/wiki/Actor_model

Carl Hewitt

72

Actor model

Main principles:

1. Isolation: Actors are independent, with their own state and
behavior.

2. Single thread: Actors process requests one at time

3. Messaging: Actors interact by exchanging asynchronous
messages.

4. Location Transparency: Actors' locations are abstracted,
enabling distribution.

73

Actor model: life cycle

74

Actor model: implementations

A& akka Orleans

Java / c# c#

https://akka.io/ _ _
https://learn.microsoft.com/en-us/dotnet/orleans/overview

https://getakka.net/

75

Actor model implementations on Orleans
Microsoft research (2010)

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Orleans invented the Virtual Actor abstraction

Actors are purely logical entities that always exist, virtually. An actor cannot
be explicitly created nor destroyed, and its virtual existence is unaffected by
the failure of a server that executes it. Since actors always exist, they are
always addressable.

76

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Actor model implementations on Orleans - Grain

1. Grain: grains are implementation of a virtual actor.
2. Interfaces: grains define interfaces.

3. Grain: has always an identity (string, number, guid)
4. Persistence: grains could volatile or persisted

5. Lifecycle: grains could be terminated to free computer
resources

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

77

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

Actor model implementations on Orleans - Silo

A silo hosts one or more grains

Cluster (1/n) Grains

=

Grains

7 AN

You can have any number of clusters, each cluster has one or more silos, and
each silo has one or more grains

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo
S

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo

Actor model implementations on Orleans - Silo

1. Host grains
2. Responsible to activate and deactivate grains
3. Typically: 1 silo per container/node

4. Could be embedded into main application or in separate
container/node

5. Clustering silos is easy

79

Actor model implementations on Orleans - Dashboard

https://github.com/OrleansContrib/OrleansDashboard

(O CEREDER oo EIG M Overview

TOTAL ACTIVATIONS ACTIVE SILOS

& E :
More info @ More info @

ERROR RATE REQ/SEC AVERAGE RESPONSE TIME

0.00% ﬂ 4.62 525.04ms

Cluster Profiling

in Details

Silos

Immvberof requests per second

/ failed requests average latency in milliseconds
30 4500
4000
® 3500
20 3000
2500
1 2000
10 1500
1000
5 500
0 0
105200 105230 10:53:00 105330
Methods with Most Calls Methods with Most Exceptions Methods with Highest Laten
ReadAll 1.22req/sec No data ReadAll 0.35ms/req
Orleans.Runtime.Membership embershipTableSystemTarget Orleans.Runtime. MembershipService. MembershipTableSystemTarget

GetRuntimeStatistics 0.52req/sec GetRuntimeStatistics 1.27ms/req

Orleans.Runtime. Management. ManagementGrain Orleans. Runtime. Management. ManagementGrain

GetRuntimeStatistics 0.52req/sec GetRuntimeStatistics 0.22ms/req

Orleans.Runtime.SiloControl Orleans.Runtime.

loControl

TopGrainMethods 0.52req/sec TopGrainMethods 0.53ms/req
OrleansDashboard.Implementation. Grains. DashboardGrain OrleansDashboard Implementation.Grains. DashboardGrain
SubmitTracing 0.52req/sec SubmitTracing 0.08ms/req

OrleansDashboard.Imple

tion.Grains.DashboardGrain OrleansDashboard.Imple shboardGrain

R Preferences

http://localhost:8080

http://localhost:8080/

Actor model implementations on Orleans — Calling actors

In-memory
User/jane@email.com or persisted

(—l—\

Grain = identity + behavior [+
\ J

class User : Grain, IUser

You can start an actor using grainFactory:

_grainFactory.GetGrain<IGrainA>("my-id");

Inside an actor:

var grainB = this.GrainFactory.GetGrain<IGrainB>(id);

Orleans: Actor mailbox addresses are full typed

81

Actor model implementations on Orleans — Deadlock

Single thread: Actors process requests one at time

A B

a.Callother(b) b.Call0ther(a)

Log(nlll)
await other.Ping()

| |
[[
| |
;{ | Blocked until timeout |
[[
| Each grain is busy !
Timeout I and cannot process !
exception % : the Ping() request : [0 Actively executing
thrown back
o |
to caller o |] Awaiting response
I
' Callchain 1
I cCalichain2

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

82

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

	Diapositiva 1: Parallel and Distributed Programming
	Diapositiva 2: Hello!
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7: Why?
	Diapositiva 8: How?
	Diapositiva 9: Example of complex system?
	Diapositiva 10: Main agenda
	Diapositiva 11: How to start?
	Diapositiva 12: How to start?
	Diapositiva 13: Message Passing
	Diapositiva 14: Async programming
	Diapositiva 15: Async programming (on single thread)
	Diapositiva 16: Javascript – Callback and Promise
	Diapositiva 17: In-process / sync
	Diapositiva 18: In-process / sync with mediator pattern
	Diapositiva 19: In-process / sync with mediator pattern
	Diapositiva 20: In-process / sync with mediator pattern
	Diapositiva 21: Out of process / async
	Diapositiva 22: Out of process / async with producer/consumer
	Diapositiva 23: Queue Producer
	Diapositiva 24: Queue Consumer
	Diapositiva 25
	Diapositiva 26: Out of-process / sync with microservice
	Diapositiva 27: Out of-process / sync with microservice
	Diapositiva 28: Out of-process / sync with microservice
	Diapositiva 29: Out of-process / async with microservice - producer
	Diapositiva 30: Out of-process / async with microservice - consumer
	Diapositiva 31: Out of-process / async with microservice consumer
	Diapositiva 32: Message broker
	Diapositiva 33: Message broker
	Diapositiva 34: Message broker
	Diapositiva 35: RabbitMQ
	Diapositiva 36: RabbitMQ
	Diapositiva 37: RabbitMQ - Producer
	Diapositiva 38: RabbitMQ - Consumer
	Diapositiva 39: Distribute application with message broker
	Diapositiva 40: Serialization performance
	Diapositiva 41: Serialization performance
	Diapositiva 42: Communication types
	Diapositiva 43: Distributed application with a framework
	Diapositiva 44: Masstransit
	Diapositiva 45: Masstransit - Producer
	Diapositiva 46: Masstransit - Consumer
	Diapositiva 47: Applications go wrong
	Diapositiva 48: Applications go wrong
	Diapositiva 49: Logging on distributed application
	Diapositiva 50: Call logs in one place
	Diapositiva 51: Call logs in one place
	Diapositiva 52: Observability
	Diapositiva 53: Main concepts of observability
	Diapositiva 54: Observability standard
	Diapositiva 55: OpenTelemetry on distributed application
	Diapositiva 56: Example
	Diapositiva 57: Distributed lock
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60: Redis lock
	Diapositiva 61: Saga
	Diapositiva 62: Saga: consistency models
	Diapositiva 63: Saga: trade off
	Diapositiva 64: Saga approaches: choreography and orchestration
	Diapositiva 65: Saga approaches: choreography and orchestration
	Diapositiva 66: Saga choreography
	Diapositiva 67: Saga choreography
	Diapositiva 68: Actor model
	Diapositiva 69: Actor model
	Diapositiva 70: Actor model
	Diapositiva 71: Actor model
	Diapositiva 72: Actor model: History 1973
	Diapositiva 73: Actor model
	Diapositiva 74: Actor model: life cycle
	Diapositiva 75: Actor model: implementations
	Diapositiva 76: Actor model implementations on Orleans Microsoft research (2010)
	Diapositiva 77: Actor model implementations on Orleans - Grain
	Diapositiva 78: Actor model implementations on Orleans - Silo
	Diapositiva 79: Actor model implementations on Orleans - Silo
	Diapositiva 80: Actor model implementations on Orleans - Dashboard
	Diapositiva 81: Actor model implementations on Orleans – Calling actors
	Diapositiva 82: Actor model implementations on Orleans – Deadlock

