
Parallel and
Distributed
Programming

Hello!
I am Diego Bonura

Mi occupo di:

• Frontend

• Backend

• Mobile

• IoT

• R&D

diego@bonura.dev

https://medium.com/@diegobonura

2

mailto:diego@bonura.dev
https://medium.com/@diegobonura

“

3

“

Distribuited programming is complex

4

Use only on complex applications

5

.

6

.

Why?

7

◎ Performance
○ Maintains System Performance During High Demand Periods
○ Adapts to the Increase/Decrease Workloads and User Demands

◎ Scalability
○ Boosts Performance and Utilization through Collaboration

◎ Resilience
○ Ensures System Continuity in the Face of Failures

◎ Redundancy
○ Enhances User Experience with Geographically Distributed

Systems

https://youtu.be/CZ3wIuvmHeM?si=eHlQEqZkHpZWhHDm&t=604

https://youtu.be/CZ3wIuvmHeM?si=eHlQEqZkHpZWhHDm&t=604

How?

8

Main types:

◎ Cluster Computing
○ https://www.mongodb.com/basics/clusters
○ https://www.elastic.co/guide/en/elasticsearch/refere

nce/current/high-availability.html

◎ Grid computing
○ https://en.wikipedia.org/wiki/Great_Internet_Mersen

ne_Prime_Search
○ https://en.wikipedia.org/wiki/SETI@home

◎ Cloud computing
○ https://www.linkedin.com/pulse/how-cloud-

computing-made-netflix-possible-keimo-edwards/
○ https://cloudacademy.com/blog/aws-reinvent-

netflix/

◎ Peer-2-Peer
○ Torrent
○ Bitcoin

https://www.mongodb.com/basics/clusters
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/SETI@home
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://cloudacademy.com/blog/aws-reinvent-netflix/
https://cloudacademy.com/blog/aws-reinvent-netflix/

Example of complex system?

9

Two of Twitter’s main operations are:
Post tweet
• A user can publish a new message to their followers (4.6k requests/sec on average, over 12k

requests/sec at peak).
Home timeline
• A user can view tweets posted by the people they follow (300k requests/sec)….
• ….

Continue to book «Designing Data-Intensive Applications» page 11

Main agenda

10

◎ Object oriented programming (message passing)

◎ Async programming

◎ In-process / out-of-process programming

◎ Distributed programming
○ Message brokers
○ Actor Model
○ Serialization
○ Transaction
○ Saga
○ Idempotent operations
○ Stream processing
○ Event sourcing

◎ Deploy a distributed application

◎ Infrastructure as code

◎ Update and maintain

◎ Observability

How to start?

11

https://visualstudio.microsoft.com/it/vs/community/

https://code.visualstudio.com/

https://marketplace.visualstudio.com/items?itemName=

ms-dotnettools.csdevkit

or

https://visualstudio.microsoft.com/it/vs/community/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit

How to start?

12

https://github.com/meriturva/Parallel-and-Distributed-Programming

https://github.com/meriturva/Parallel-and-Distributed-Programming

Message Passing

13

https://en.wikipedia.org/wiki/Message_passing

Message passing is a technique for invoking behavior

public class Producer
{
 public void Start()
 {
 var consumer = new Consumer();
 int i = 0;
 while (true)
 {
 var result = consumer.Elaborate(i, i);

Console.WriteLine($"Counter: {i} with result: {result}");
 i++;
 }
 }
}

Example project: 01 MessagePassing

https://en.wikipedia.org/wiki/Message_passing

Async programming

14
https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios

On the C# side of things, the compiler transforms your

code into a state machine that keeps track of things like

yielding execution when an await is reached and

resuming execution when a background job has

finished.

public class Producer
{
 public async Task StartAsync()
 {
 var consumer = new Consumer();
 int i = 0;
 while (true)
 {
 var result = await consumer.ElaborateAsync(i, i);

Console.WriteLine($"Counter: {i} with result: {result}");
 i++;
 }
 }
}

Code run in the background while other code is executing.

Example project: 02 AsyncAwait

https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios

Async programming (on single thread)

15

async function doWork()
{
 console.log("frist");
 await wait(1000);
 console.log("second");
}

doWork();

JavaScript is a single-thread!

https://www.youtube.com/watch?v=8aGhZQkoFbQ

https://www.youtube.com/watch?v=8aGhZQkoFbQ

Javascript – Callback and Promise

16https://latentflip.com/loupe/

https://latentflip.com/loupe/

In-process / sync

17

In-process / sync with mediator pattern

18

https://en.wikipedia.org/wiki/Mediator_pattern

Objects no longer communicate directly with each other, but instead

communicate through the mediator. This reduces the dependencies

between communicating objects, thereby reducing coupling.

https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

In-process / sync with mediator pattern

19

Example project: 03 EventsInProcessByMediator

namespace Events.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class OrderController : ControllerBase
 {
 private readonly IPublisher _publisher;

 public OrderController(IPublisher publisher)
 {
 _publisher = publisher;
 }

 [HttpGet]
 public async Task NewOrder()
 {
 var @event = new NewOrderEvent();
 await _publisher.Publish(@event);
 }
 }
}

In-process / sync with mediator pattern

20

Performance

Scalability

Resilience

Redundancy

?

Out of process / async

21

Out of process / async with producer/consumer

22

Queue Producer

23Example project: 04 EventsOutOfProcessByChannel

C# Channels are an implementation of the

producer/consumer programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

namespace EventsOutOfProcessByChannel.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class OrderController : ControllerBase
 {

private readonly ChannelWriter<NewOrderEvent> _channelWriter;

 public OrderController(ChannelWriter<NewOrderEvent> channelWriter)
 {
 _channelWriter = channelWriter;
 }

 [HttpGet]
 public async Task NewOrder()
 {

// Produce a new event and sent to channel
 var @event = new NewOrderEvent();
 await _channelWriter.WriteAsync(@event);
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Queue Consumer

24Example project: 04 EventsOutOfProcessByChannel

C# Channels are an implementation of the

producer/consumer conceptual programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

namespace EventsOutOfProcessByChannel
{
 public class Consumer
 {

public static async ValueTask ConsumeWithWhileAsync(ChannelReader<NewOrderEvent> reader)
 {
 while (true)
 {
 var @event = await reader.ReadAsync();
 // Simulate some work
 Console.WriteLine($"Event elaborating {@event.Created}");
 Thread.Sleep(5000);
 Console.WriteLine($"Event comsumed {@event.Created}");
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

In a monolithic application running on a single

process, components invoke one another

using language-level method or function calls.

A microservices-based application is a distributed

system running on multiple processes or services,

usually even across multiple servers or hosts

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-

microservice-container-applications/communication-in-microservice-

architecture

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture

Out of-process / sync with microservice

26

Example project: 05 MicroserviceA/B

namespace MicroserviceA.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class OrderController : ControllerBase
 {
 private readonly HttpClient _client;

 public OrderController(HttpClient client)
 {
 _client = client;
 }

 [HttpGet]
public async Task<long> NewOrder()

 {
Console.WriteLine("Sending request to MicroserviceB");

 var paymentResult = await _client.GetFromJsonAsync<long>("https://localhost:7165/payment");
Console.WriteLine($"Sent request MicroserviceB with result {paymentResult}");

 …
 }
 }
}

Out of-process / sync with microservice

27

Example project: 05 MicroserviceA/B

namespace MicroserviceB.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class PaymentController : ControllerBase
 {
 [HttpGet]
 public long Get()
 {
 Console.WriteLine("Elaborating request");

var result = Random.Shared.Next(0, 100);
 Thread.Sleep(1000);

Console.WriteLine($"Elaborated request with result: {result}");
 return result;
 }
 }
}

Out of-process / sync with microservice

28

Performance

Scalability

Resilience

Redundancy

?

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-

gateway-private-network-services-f25c73cc8e02

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

namespace EventsOutOfProcessByDB.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class OrderController : ControllerBase
 {
 private readonly EventBusContext _eventBusContext;

 public OrderController(EventBusContext eventBusContext)
 {
 _eventBusContext = eventBusContext;
 }

 [HttpGet]
 public async Task NewOrder()
 {

// Produce a new event and sent to channel
 var @event = new NewOrderEvent();
 @event.UserEmail = "diego@bonura.dev";

var content = JsonSerializer.Serialize(@event, @event.GetType());
 var typeName = @event.GetType().FullName!;

 var message = new Message()
 {
 Type = typeName,
 Content = content
 };

 _eventBusContext.Add(message);
 await _eventBusContext.SaveChangesAsync();
 }
 }
}

Out of-process / async with microservice - producer

29Example project: 06 EventsOutOfProcessByDatabaseConsumer

protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
 while (true)
 {
 var messageToElaborate = _eventBusContext.Set<Message>().Where(m => m.ProcessedOn == null).OrderBy(m
=> m.OccurredOn).FirstOrDefault();
 if (messageToElaborate != null)
 {
 var type = AppDomain.CurrentDomain.GetAssemblies().Where(a => !a.IsDynamic).SelectMany(a =>
a.GetTypes()).FirstOrDefault(t => t.FullName == messageToElaborate.Type);
 var domainEvent = (INotification)JsonSerializer.Deserialize(messageToElaborate.Content, type);

 await _publisher.Publish(domainEvent);

 messageToElaborate.ProcessedOn = DateTime.Now;
 await _eventBusContext.SaveChangesAsync();
 }

 await Task.Delay(1000);
 }
}

Out of-process / async with microservice - consumer

30Example project: 06 EventsOutOfProcessByDatabaseConsumer

Out of-process / async with microservice consumer

31

Performance

Scalability

Resilience

Redundancy

?

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-

gateway-private-network-services-f25c73cc8e02

Is it easy to add new consumers to increase

performance?

we need to introduce a row lock (on db side) or optimistic

concurrency control (occ)

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

Message broker

an intermediary for messaging

Message broker

33

Message broker

34

Message brokers

• can validate, store, route, and deliver messages to the appropriate

destinations.

• act as intermediaries between other applications, allowing senders to

issue messages without knowing where the recipients are located,

whether or not they are active, or how many there are.

• simplifies the separation of processes and services within systems.

Protocols

• AMQP: The Advanced Message Queuing Protocol (RabbitMQ/ Azure

Service Bus / Amazon MQ / Apache ActiveMQ)

• Kafka: binary protocol over TCP

• MQTT: Lightweight and Efficient for IoT Messages (Mosquitto)

RabbitMQ

35

RabbitMQ

36

RabbitMQ - Producer

37

public class EventBusRabbitMQ : IEventBus
{

public void Publish(IEvent @event)
 {

var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

 channel.QueueDeclare(queue: "task_queue",
 durable: true,
 exclusive: false,
 autoDelete: false,
 arguments: null);

 string message = JsonSerializer.Serialize(@event, typeof(NewOrderEvent));
var body = Encoding.UTF8.GetBytes(message);

 var properties = channel.CreateBasicProperties();
 properties.Persistent = true;

channel.BasicPublish(exchange: string.Empty,
 routingKey: "task_queue",
 basicProperties: properties,
 body: body);

 }
}

RabbitMQ - Consumer

38

var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

channel.QueueDeclare(queue: "task_queue",
 durable: true,
 exclusive: false,
 autoDelete: false,
 arguments: null);

channel.BasicQos(prefetchSize: 0, prefetchCount: 1, global: false);
var messageConsumer = new EventingBasicConsumer(channel);

messageConsumer.Received += async (model, ea) =>
{

byte[] body = ea.Body.ToArray();
var @event = (NewOrderEvent)JsonSerializer.Deserialize(body, typeof(NewOrderEvent));
Console.WriteLine($"Received from {@event.UserEmail}");

 await Task.Delay(100);

 channel.BasicAck(deliveryTag: ea.DeliveryTag, multiple: false);
};

channel.BasicConsume(queue: "task_queue",
 autoAck: false,
 consumer: messageConsumer);

Console.ReadLine();

Distribute application with message broker

39

Performance

Scalability

Resilience

Redundancy

?

Is it easy to add new consumers to increase

performance?

Serialization performance

40
https://github.com/neuecc/Utf8Json

https://github.com/neuecc/Utf8Json

Serialization performance

41

Json

Protobuf

Communication types

42

Distributed
application with a

framework

Masstransit

44

Masstransit - Producer

45

public class OrderController : ControllerBase
{
 private readonly IBus _bus;

 public OrderController(IBus bus)
 {
 _bus = bus;
 }

 [HttpGet]
 public async Task NewOrderAsync()
 {

// Produce a new event and sent to channel
 var @event = new NewOrderEvent();
 @event.UserEmail = "diego@bonura.dev";

 await _bus.Publish(@event);
 }
}

Masstransit - Consumer

46

namespace DistributedAppWithMassTransitConsumer
{

public class MessageConsumer : IConsumer<NewOrderEvent>
 {
 readonly ILogger<MessageConsumer> _logger;

 public MessageConsumer(ILogger<MessageConsumer> logger)
 {
 _logger = logger;
 }

 public Task Consume(ConsumeContext<NewOrderEvent> context)
 {
 _logger.LogInformation("Received ordine from: {email}", context.Message.UserEmail);

 return Task.CompletedTask;
 }
 }
}

Applications go
wrong

Applications go wrong

48Page 246 of Design Data-Intensive Applications

Logging on distributed application

49

Producer Consumer1 Consumer2

Log files Log files Log files

How to get information when things go wrong?

Call logs in one place

50

Call logs in one place

51

Observability

On distributed application logs monitoring
could be difficult

Main concepts of observability

53

Logs in the technology and
development field give a
written record of happenings
within a system, similar to the
captain's log on a ship. Metrics are a set of values that are

tracked over time.

A trace is a means to track a user request
from the user interface all the way through
the system and back to the user when they
receive confirmation that their request has
been completed. As part of the trace, every
operation executed in response to the
request is recorded.

Observability standard

54

OpenTelemetry is an open-source CNCF (Cloud Native
Computing Foundation) project formed from the merger of
the OpenCensus and OpenTracing projects. It provides a
collection of tools, APIs, and SDKs for capturing metrics,
distributed traces and logs from applications.

OpenTelemetry on distributed application

55

Producer Consumer1 Consumer2

OpenTelemetry

Collector

Example

56

Metric:

Trace:

Distributed lock

Distributed locks are a very useful primitive in
many environments where different

processes must operate with shared resources
in a mutually exclusive way.

https://redis.io/

Created by: Salvatore Sanfilippo

Place an

order

Update user

statistics
Update user

history

Lock user_id

Redis lock

60

static async Task Main(string[] args)
{

var endPoints = new List<RedLockEndPoint> { new DnsEndPoint("localhost", 6379) };
var redlockFactory = RedLockFactory.Create(endPoints);

 var resource = "my-order-id";
var expiry = TimeSpan.FromSeconds(30);

 await using (var redLock = await redlockFactory.CreateLockAsync(resource, expiry))
 {

// make sure we got the lock
 if (redLock.IsAcquired)
 {
 // do stuff
 }
 }
}

Saga

When you have to orchestrate events!

Saga: consistency models

62

Immediate consistency: once a write operation (e.g., updating a piece of data) is

completed, any subsequent read operation (e.g., retrieving that data) will reflect the

updated value.

• expensive in terms of performance

• not ideal in all distributed systems

ACID (atomicity, consistency, isolation, durability).

Eventual consistency: may be a period of time during which different nodes or

replicas in the system have different versions of the data.

• commonly used in systems like NoSQL databases

BASE (basically-available, soft-state, eventual consistency)

Saga: trade off

63

https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-

effective-microservices-86671be0b604

https://www.youtube.com/watch?v=p2GlRToY5HI

https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://www.youtube.com/watch?v=p2GlRToY5HI

Saga approaches: choreography and orchestration

64

Choreography: without a centralized point of control

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga approaches: choreography and orchestration

65

Orchestration: centralized controller tells participants what to execute

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga choreography

66

public OrderStateMachine()
{
 InstanceState(x => x.CurrentState);

 Event(() => NewOrderEvent, x => x.CorrelateById(context => context.Message.OrderId));
 Event(() => OrderProcessed, x => x.CorrelateById(context => context.Message.OrderId));
 Event(() => OrderCancelled, x => x.CorrelateById(context => context.Message.OrderId));

 Initially(
 When(NewOrderEvent)
 .Then(context =>
 {

context.Saga.ProcessingId = Guid.NewGuid();
 })

.Publish(context => new ProcessOrder(context.Saga.CorrelationId))
 .TransitionTo(Pending)
 .Then(context => Console.Out.WriteLineAsync($"From New to Pending: {context.Saga.CorrelationId}"))
);

 During(Pending,
 When(OrderProcessed)
 .TransitionTo(Accepted)
 .Then(context => Console.Out.WriteLineAsync($"From Pending to Accepted: {context.Saga.CorrelationId}"))
 .Finalize(),
 When(OrderCancelled)
 .TransitionTo(Cancelled)
 .Then(context => Console.Out.WriteLineAsync($"From Pending to Faulted: {context.Saga.CorrelationId} for reason:
{context.Message.Reason}"))
 .Finalize()
);

 SetCompletedWhenFinalized();
}

Saga choreography

67

MassTransit elaborates saga and creates few queue and exchanges on RabbitMq

Actor model

Instead of calling methods, actors send
messages to each other!

https://doc.akka.io/docs/akka/current/typed/guide/actors-intro.html

https://learn.microsoft.com/en-us/dotnet/orleans/overview

Actor model

69

The actor model is a programming model in which each actor is a lightweight,

concurrent, immutable object that encapsulates a piece of state and corresponding

behavior. Actors communicate exclusively with each other using asynchronous

messages.

The Actor Model: A Paradigm for Concurrent and

Distributed Computing

Actor model

70

When we have a Producer and Consumer we

usually send message to a queue

On actor model, we can implement Producer and

Consumer as actor.

In Producer, we just get the actor reference of

Consumer actor to send messages to Consumer’s

mailbox.

Actor model

71

Actor model: History 1973

72

https://en.wikipedia.org/wiki/Actor_model

Carl Hewitt

The actor model was inspired by physics

The Actor Model is a mathematical theory of computation that treats

“Actors” as the universal conceptual primitives of concurrent digital

computation.

Actors is based on “behavior” as opposed to the “class”

concept of object-oriented programming.

Actor model

73

1. Isolation: Actors are independent, with their own state and

behavior.

2. Single thread: Actors process requests one at time

3. Messaging: Actors interact by exchanging asynchronous

messages.

4. Location Transparency: Actors' locations are abstracted,

enabling distribution.

Main principles:

Actor model: life cycle

74

Actor model: implementations

75

Java / c# c#

https://akka.io/

https://getakka.net/
https://learn.microsoft.com/en-us/dotnet/orleans/overview

Actor model implementations on Orleans
Microsoft research (2010)

76

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Orleans invented the Virtual Actor abstraction

Actors are purely logical entities that always exist, virtually. An actor cannot

be explicitly created nor destroyed, and its virtual existence is unaffected by

the failure of a server that executes it. Since actors always exist, they are

always addressable.

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Actor model implementations on Orleans - Grain

77

1. Grain: grains are implementation of a virtual actor.

2. Interfaces: grains define interfaces.

3. Grain: has always an identity (string, number, guid)

4. Persistence: grains could volatile or persisted

5. Lifecycle: grains could be terminated to free computer

resources

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

Actor model implementations on Orleans - Silo

78

A silo hosts one or more grains

You can have any number of clusters, each cluster has one or more silos, and

each silo has one or more grains

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo

s

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo

Actor model implementations on Orleans - Silo

79

1. Host grains

2. Responsible to activate and deactivate grains

3. Typically: 1 silo per container/node

4. Could be embedded into main application or in separate

container/node

5. Clustering silos is easy

Actor model implementations on Orleans - Dashboard

80

http://localhost:8080

https://github.com/OrleansContrib/OrleansDashboard

http://localhost:8080/

Actor model implementations on Orleans – Calling actors

81

_grainFactory.GetGrain<IGrainA>("my-id");

You can start an actor using grainFactory:

Inside an actor:

var grainB = this.GrainFactory.GetGrain<IGrainB>(id);

Orleans: Actor mailbox addresses are full typed

Actor model implementations on Orleans – Deadlock

82

Single thread: Actors process requests one at time

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

	Diapositiva 1: Parallel and Distributed Programming
	Diapositiva 2: Hello!
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7: Why?
	Diapositiva 8: How?
	Diapositiva 9: Example of complex system?
	Diapositiva 10: Main agenda
	Diapositiva 11: How to start?
	Diapositiva 12: How to start?
	Diapositiva 13: Message Passing
	Diapositiva 14: Async programming
	Diapositiva 15: Async programming (on single thread)
	Diapositiva 16: Javascript – Callback and Promise
	Diapositiva 17: In-process / sync
	Diapositiva 18: In-process / sync with mediator pattern
	Diapositiva 19: In-process / sync with mediator pattern
	Diapositiva 20: In-process / sync with mediator pattern
	Diapositiva 21: Out of process / async
	Diapositiva 22: Out of process / async with producer/consumer
	Diapositiva 23: Queue Producer
	Diapositiva 24: Queue Consumer
	Diapositiva 25
	Diapositiva 26: Out of-process / sync with microservice
	Diapositiva 27: Out of-process / sync with microservice
	Diapositiva 28: Out of-process / sync with microservice
	Diapositiva 29: Out of-process / async with microservice - producer
	Diapositiva 30: Out of-process / async with microservice - consumer
	Diapositiva 31: Out of-process / async with microservice consumer
	Diapositiva 32: Message broker
	Diapositiva 33: Message broker
	Diapositiva 34: Message broker
	Diapositiva 35: RabbitMQ
	Diapositiva 36: RabbitMQ
	Diapositiva 37: RabbitMQ - Producer
	Diapositiva 38: RabbitMQ - Consumer
	Diapositiva 39: Distribute application with message broker
	Diapositiva 40: Serialization performance
	Diapositiva 41: Serialization performance
	Diapositiva 42: Communication types
	Diapositiva 43: Distributed application with a framework
	Diapositiva 44: Masstransit
	Diapositiva 45: Masstransit - Producer
	Diapositiva 46: Masstransit - Consumer
	Diapositiva 47: Applications go wrong
	Diapositiva 48: Applications go wrong
	Diapositiva 49: Logging on distributed application
	Diapositiva 50: Call logs in one place
	Diapositiva 51: Call logs in one place
	Diapositiva 52: Observability
	Diapositiva 53: Main concepts of observability
	Diapositiva 54: Observability standard
	Diapositiva 55: OpenTelemetry on distributed application
	Diapositiva 56: Example
	Diapositiva 57: Distributed lock
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60: Redis lock
	Diapositiva 61: Saga
	Diapositiva 62: Saga: consistency models
	Diapositiva 63: Saga: trade off
	Diapositiva 64: Saga approaches: choreography and orchestration
	Diapositiva 65: Saga approaches: choreography and orchestration
	Diapositiva 66: Saga choreography
	Diapositiva 67: Saga choreography
	Diapositiva 68: Actor model
	Diapositiva 69: Actor model
	Diapositiva 70: Actor model
	Diapositiva 71: Actor model
	Diapositiva 72: Actor model: History 1973
	Diapositiva 73: Actor model
	Diapositiva 74: Actor model: life cycle
	Diapositiva 75: Actor model: implementations
	Diapositiva 76: Actor model implementations on Orleans Microsoft research (2010)
	Diapositiva 77: Actor model implementations on Orleans - Grain
	Diapositiva 78: Actor model implementations on Orleans - Silo
	Diapositiva 79: Actor model implementations on Orleans - Silo
	Diapositiva 80: Actor model implementations on Orleans - Dashboard
	Diapositiva 81: Actor model implementations on Orleans – Calling actors
	Diapositiva 82: Actor model implementations on Orleans – Deadlock

