
OMG Data Distribution Service (DDS)

DDS

DDS specification describes the Data-Centric Publish-Subscribe (DCPS) model

for distributed application communication and integration

“Efficient and Robust Delivery of the Right Information to the Right Place at the Right Time”

What is DDS?

A middleware protocol and API standard for data-centric connectivity integrating the
components of a system together

Benefits:

1. low-latency data connectivity
2. extreme reliability
3. scalable architecture

(Middleware: software layer between the operating system and applications. It
enables the various components of a system to communicate and share data by
letting developers focus on the specific purpose of their applications rather than the
mechanics of passing information between applications and systems)

DDS Benefits

Real-time: right information is delivered at the right place at the right time all
the time. Failing to deliver key information within the required deadlines can
lead to life-, mission- or business-threatening situations

Dependable: thus ensuring availability, reliability, safety and integrity in spite of
hardware and software failures

High-Performance: hence able to distribute very high volumes of data with
very low latency

DDS Middleware

Source: https://www.dds-foundation.org/what-is-dds-3/

https://www.dds-foundation.org/what-is-dds-3/

Why DDS

Many real-time applications need to create a data-centric communication

where the published data is then available to a remote application

In this context, predictable data distribution with minimal overhead is a

primary concern

→ Important to assign resources to critical requirements (QoS)

DDS Scalability

Scalable and flexible infrastructure supporting thousands of publisher and

subscribers

To achieve this, entities are decoupled so to become easy to extend

DDS: Typed Interfaces

DDS relies on typed interfaces (taking into account data type) providing the

following benefits:

1. simple to use → the developer directly manipulates data

2. safe to use → verification can be performed at compile time

3. more efficient → execution code can rely on specific expected data in

advance (e.g., allocate resource)

Quality of Service (QoS)

QoS is a general concept used to specify the behavior of a service

QoS settings: permits developer to indicate ‘what’ is wanted rather than ‘how’

this QoS should be achieved.

QoS policies: independent descriptions that associate a name with a value →

high flexibility

Quality of Service (QoS)

Are a set of configurable parameters that control the behavior of a DDS system,

such as resource consumption, fault tolerance, and communication reliability

DDS Data Memory

Distributed shared memory is difficult to implement efficiently over a network and does not
offer the required scalability and flexibility

Data-Centric Publish-Subscribe (DCPS) model, has become popular in many real-time
applications

A global data space is accessible to all interested applications becoming Publishers

Applications that want to access data space declare their intent to become Subscribers

Each time a Publisher posts new data into this global data space the middleware propagates
the information to all interested Subscribers

Data Model

a Data Model defines the global data space and specifies how publishers and

subscribers refer to portions of this space

Data model contains unrelated data-structures, each identified by a

topic and a type

Contains unique identifiers for data

items

Structural information to tell how

to manipulate data

The advantage?

 The purpose of the DDS specification is to define the standardized interfaces

and behaviors that enable application portability

Data-Centric Publish-Subscribe (DCPS)

DCPS allows 3 main functionalities:

1. Publishing applications can identify data objects to publish and provide

values

2. Subscribing applications can identify data objects to read and access

values

3. Applications can define topics, create pub/sub entities, and attach QoS

policies

Platform Independent Model (PIM)

Platform Independent Model (PIM) is a model of a subsystem that contains no

information specific to the computing platform or the technology that is used

to realize it

Focuses on the operation of a system while hiding the details necessary for a

particular platform. A platform independent view shows that part of the

complete specification that does not change from one platform to another

PIM class

<parameter> can contain the modifier in, out, or inout ahead of the parameter

name (default “in”)

A collection of elements of a <type> is identified by <type> []

An Example of PIM

PIM Return Codes

DDS Information Flow

Sending: Publisher and DataWriter

Receiving: Subscriber and

DataReader

Publisher

A Publisher is an object responsible for data distribution (according to QoS)

A DataWriter acts as a typed accessor to a publisher and it is the object the
application must use to communicate to a publisher the existence and value of
data-objects of a given type

A publication is defined by the association of a data-writer to a publisher. This
association expresses the intent of the application to publish the data
described by the data-writer in the context provided by the publisher

Subscriber

A Subscriber is an object responsible for receiving published data and making

it available (according to QoS) to the receiving application.

The application must use a typed DataReader attached to the subscriber.

A subscription is defined by the association of a data-reader with a subscriber

expressing the intent of the application to subscribe to the data described by

the data-reader in the context provided by the subscriber

Topics and QoS

Topic objects conceptually fit between publications and subscriptions and

represents the unit for information that can produced or consumed by a DDS

application

A Topic associates a name, a data-type, and QoS related to the data itself.

Topics and QoS of the DataWriter/DataReader associated with

Publisher/Subscriber control the behavior on the different sides

Topic types

Independence from a specific programming language and OS, portability and

interoperability → subset of IDL as the formalism for describing topic types

A topic is made by struct plus a key

Struct can contain as many fields as you want and each field can be:

1. a primitive type

2. a template type

3. a constructed type

IDL Types

Source: https://www.laas.fr/files/SLides-A_Corsaro.pdf

https://www.laas.fr/files/SLides-A_Corsaro.pdf

Filtering and Conditions

DDS data management also supports two ways of capturing specific data

Content-Filtered Topics: permit to

subscribe to filtered topics and receiving

only values matching it

Query Conditions: simply queries data

received and available on the existing

reader cache

Source: https://www.dds-foundation.org/what-is-dds-3/

https://www.dds-foundation.org/what-is-dds-3/

Domain

A Domain is a communication context, which provides a virtual environment,
encapsulating different concerns and thereby optimizing communications.

DDS applications send and receive data within a domain which also isolates
participants associated with different domains

Scoping Information

DDS provides two mechanism for scoping information:

1. Domains: A domain establishes a virtual network linking all the DDS
applications that have joined it. No communication can ever happen
across domains unless explicitly mediated by the user application

2. Partitions: Domains can be further organized into partitions, where each
partition represent a logical grouping of topics

DDS Conceptual Model

DDS Conceptual Model

Communication objects patterns:
1. each entity supports specialized QoS policies
2. each entity accepts a specialized Listener as mechanism to notify the application of events such as the

arrival of data corresponding to a subscription, violation of QoS
3. each entity accepts a StatusCondition providing an alternative communication style between the

middleware and the application

All the entities are attached to a DomainParticipant which represents the local membership of an application
in a domain

A Domain links all the applications and represents a communication plane, only pubs/subs attached to the
same domain can interact

Status condition

Status conditions are mechanisms that allow applications to monitor the state

of DDS entities (such as Data Writers, Data Readers, Publishers, and

Subscribers) by setting specific triggers or callbacks for key events.

Status conditions help in managing and responding to changes or updates in

the system, such as new data availability, connection status, or errors.

DDS PIM

DCPS Modules
The DCPS is comprised of five modules:

1. Infrastructure Module: defines the abstract classes and the interfaces that are refined by the other modules. It also provides

support for the interaction with the middleware

2. Domain Module: contains the DomainParticipant class that acts as an entry-point of the Service and acts as a factory for many of

the classes. The DomainParticipant also acts as a container for the other objects that make up the Service

3. Topic-Definition Module: contains the Topic, ContentFilteredTopic, and MultiTopic classes, the TopicListener interface, and more

generally, all that is needed by the application to define Topic objects and attach QoS policies to them

4. Publication Module: contains the Publisher and DataWriter classes as well as the PublisherListener and DataWriterListener

interfaces, and more generally, all that is needed on the publication side

5. Subscription Module: contains the Subscriber, DataReader, ReadCondition, and QueryCondition classes, as well as the

SubscriberListener and DataReaderListener interfaces, and more generally, all that is needed on the subscription side

Entity Class

Entity is the abstract base class for all the DCPS objects that support QoS

policies, a listener and a status condition

1. set_qos
2. get_qos
3. set_listener
4. get_listener
5. get_statuscondition
6. get_status_change
7. enable
8. get_instance_handle

WaitSet Class

A WaitSet object allows an application to wait until one or more of the attached

Condition objects has a trigger_value of TRUE or else until the timeout expires

1. attach_condition
2. detach_condition
3. wait
4. get_conditions

Supported QoS

DDS relies on Quality of Service which is a set of characteristics that controls

some aspect of the behavior of the DDS Service.

QoS is comprised of individual QoS policies

https://community.rti.com/static/documentation/connext-dds/5.3.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/QosPolicies.htm

Some Significant QoS

Reliability indicates the level of

guarantee provided to the subscribers

in the data exchange phase

1. Reliable: middleware guarantees

that all the samples in the DataWriter

will be delivered to all the DataReader

2. Best Effort: it is acceptable to not

retry the samples propagation

Some Significant QoS

History controls which value should

be delivered in terms of time

1. Keep Last: DDS keeps only the most

recent sample

2. Keep All: DDS keeps all the samples

Some Significant QoS

Durability controls data variability

1. Volatile: no need to keep data for late
joinings

2. Transient Local: data availability for
late joinings is tied to data writer
availability

3. Transient: data availability outlives the
data writer

4. Persistent: data availability otulives
system restart

QoS Inconsistency

QoS Policies may not be consistent with others!

Policies are added to verified ones to catch inconsistent states, how to manage

this?

Create Policies compatible on Publisher and Subscriber side following the

subscriber-requested, publisher-offered pattern

Subscriber-requested, publisher-offered pattern

Subscriber specifies a requested value for a QoS Policy

Publisher specifies an offered value for that QoS Policy

If the two policies are compatible then the connection is established

RxO property indicates compatibility need:

• Yes: policy can be set at both sides and they are dependent
• No: policy can be set at both sides but they are independent
• N/A: policy can be set only at one side

Listeners, Conditions, and Wait-sets

Listeners and conditions (in conjunction with wait-sets) are two alternative

mechanisms that allow the application to be aware of changes in the DCPS

communication status

Communication Status

The communication statuses whose changes can be communicated to the

application depend on the Entity

Catch Status Change

Associated with each one of an Entity’s communication status is a logical flag.

This flag indicates whether that particular communication status has changed

since the last time the status was ‘read’ by the application

Access through Listeners

Listeners provide a mechanism for the middleware to asynchronously alert the

application of the occurrence of relevant status changes

All Entity support a listener, which type of which is specialized to the specific

type of the related Entity

Each dedicated listener presents a list of operations that correspond to the

relevant communication status changes

Conditions and Wait-sets

conditions (in conjunction with wait-sets) provide an alternative mechanism to

allow the middleware to communicate communication status changes to the

application

1. The application indicates which relevant information it wants to get, by

creating Condition objects and attaching them to a WaitSet

2. It then waits on that WaitSet until the trigger_value of one or several

Condition objects become TRUE

3. It then uses the result of the wait to actually get the information by calling

Conditions and Wait-sets

Built-in Topics

The middleware must discover and possibly keep track of the presence of

remote entities such as a new participant in the domain

→ Built-in topics and corresponding DataReader objects that can then be used

by the application

→ No need to introduce a new API to access information

A Real Example

Who: V-Charge Research program with industrial (Bosch and Volkswagen AG) and academic (ETH Zurich and the
universities of Braunschweig, Oxford and Parma) partners

Goal: automatically park an electric car in a large parking garage with centimeter accuracy at an induction-based
charging station.

Setup: Automated and driverless parking in a multi-story car park cannot rely on GPS to facilitate navigational
guidance. Instead, a suite of 2 stereo cameras, 4 mono-cameras and 12 or more sensors in the car compare their
information against a pre-mapped car park layout to determine location. For safety, the system must recognize
other static and moving objects, and adjust automated drive control appropriately

Source: https://info.rti.com/hubfs/Collateral_2017/Customer_Snapshots/RTI_Customer-Snapshot_60016_Volkswagen_V6_0718.pdf

https://info.rti.com/hubfs/Collateral_2017/Customer_Snapshots/RTI_Customer-Snapshot_60016_Volkswagen_V6_0718.pdf

A Real Example

Challenge: researchers can stay focused on application level issues rather than dealing with system architecture
problems created by changes in systems integration. To enable the compute intensive sensor integration across
the distributed environment, the team needed a common way to deliver data between modules and sub-systems
that integrated with existing software toolchains.

Solution: RTI Connext DDS as the integration middleware. DDS enables the decoupling of the applications from
the underlying communication infrastructure. This means that any process or module can be moved around the
network completely unchanged. DDS discovers the modules new location at boot time and routes
communication as needed. No IP reconfiguration or network interface changes are required by the application.
DDS includes a Quality of Service (QoS) capability that ensures that the data needs of each and every
communicating process and module are being met. If they are not, the discrepancy between publisher and
subscriber is noted and both applications are informed. No application module needs to know about any other –
it just needs to know it requires specific data within certain timing and delivery constraints and to know when
those constraints are not being met.

