OMG Data Distribution Service (DDS)

DDS

DDS specification describes the Data-Centric Publish-Subscribe (DCPS) model
for distributed application communication and integration

“Efficient and Robust Delivery of the Right Information to the Right Place at the Right Time”

What is DDS?

A middleware protocol and API standard for data-centric connectivity integrating the
components of a system together

Benefits:

1. low-latency data connectivity
2. extreme reliability
3. scalable architecture

(Middleware: software layer between the operating system and applications. It
enables the various components of a system to communicate and share data by
letting developers focus on the specific purpose of their applications rather than the
mechanics of passing information between applications and systems)

DDS Benefits

Real-time: right information is delivered at the right place at the right time all
the time. Failing to deliver key information within the required deadlines can
lead to life-, mission- or business-threatening situations

Dependable: thus ensuring availability, reliability, safety and integrity in spite of
hardware and software failures

High-Performance: hence able to distribute very high volumes of data with
very low latency

«» DDS Middleware

API
C, C++, Java, CH, ...

PRESENTATION
Data, Topics, Types, Serialization, QoS, Cache, Filtering...

PROTOCOL

Session, Reliability, QoS, Discovery, ...

PLatform

OPERATING SYSTEM

Windows, Unix (Linux, MacOS), VxWorks, Android, .
NETWORK
UDP, TCP, STCP, .
LINK / PHYSICAL LAYER
Ethernet, IEEE 802.11, 3G, 4G

Source: https://www.dds-foundation.org/what-is-dds-3/

https://www.dds-foundation.org/what-is-dds-3/

Why DDS

Many real-time applications need to create a data-centric communication
where the published data is then available to a remote application

In this context, predictable data distribution with minimal overhead is a

primary concern

— Important to assign resources to critical requirements (QoS)

DDS Scalability

Scalable and flexible infrastructure supporting thousands of publisher and
subscribers

To achieve this, entities are decoupled so to become easy to extend

DDS: Typed Interfaces

DDS relies on typed interfaces (taking into account data type) providing the
following benefits:

1. simple to use — the developer directly manipulates data

2. safe to use — verification can be performed at compile time

3. more efficient — execution code can rely on specific expected data in
advance (e.g., allocate resource)

© Quality of Service (QoS)

QoS is a general concept used to specify the behavior of a service

QoS settings: permits developer to indicate ‘what’ is wanted rather than ‘how’
this QoS should be achieved.

QoS policies: independent descriptions that associate a name with a value —
high flexibility

Quality of Service (QoS)

Are a set of configurable parameters that control the behavior of a DDS system,
such as resource consumption, fault tolerance, and communication reliability

(,)Hv::rf‘:fl BEST Required RELIABLE
EFFORT Communication

R -

Offered RELIABLE

Communication

communication

DDS Data Memory

Distributed shared memory is difficult to implement efficiently over a network and does not
offer the required scalability and flexibility

Data-Centric Publish-Subscribe (DCPS) model, has become popular in many real-time
applications

A global data space is accessible to all interested applications becoming Publishers
Applications that want to access data space declare their intent to become Subscribers

Each time a Publisher posts new data into this global data space the middleware propagates
the information to all interested Subscribers

Data Model

a Data Model defines the global data space and specifies how publishers and
subscribers refer to portions of this space

Data model contains unrelated data-structures, each identified by a

topic and a type

N

Contains unique identifiers for data Structural information to tell how
items to manipulate data

The advantage?

The purpose of the DDS specification is to define the standardized interfaces
and behaviors that enable application portability

Data-Centric Publish-Subscribe (DCPS)

DCPS allows 3 main functionalities:

1.

Publishing applications can identify data objects to publish and provide

values
Subscribing applications can identify data objects to read and access

values
Applications can define topics, create pub/sub entities, and attach QoS

policies

Platform Independent Model (PIM)

Platform Independent Model (PIM) is a model of a subsystem that contains no
information specific to the computing platform or the technology that is used
to realize it

Focuses on the operation of a system while hiding the details necessary for a
particular platform. A platform independent view shows that part of the
complete specification that does not change from one platform to another

PIM class

<parameter> can contain the modifier in, out, or inout ahead of the parameter
name (default “in”

A collection of elements of a <type> is identified by <type> []

<class name>

attributes

<attribute name> | <attribute type>

operations

<operation name> <return type>

<parameters> <parameter type>

An Example of PIM

Myclass
attributes
my_attribute | long
operations
my operation long
out: paraml long
inout: param2 long
param3 long
in: param4 long

Universita di Camerino

1336

M Return Codes

Return codes

OK | Successful return.
ERROR | Generic, unspecified error.
BAD PARAMETER | Illegal parameter value.
UNSUPPORTED | Unsupported operation. Can only be returned by operations

that are optional.

ALREADY DELETED

The object target of this operation has already been
deleted.

OUT_OF_RESOURCES

Service ran out of the resources needed to complete the
operation.

NOT_ENABLED

Operation invoked on an Entity that is not yet enabled.

IMMUTABLE POLICY

Application attempted to modify an immutable QosPolicy.

INCONSISTENT POLICY

Application specified a set of policies that are not
consistent with each other.

PRECONDITION NOT MET

A pre-condition for the operation was not met.

TIMEOUT

The operation timed out.

ILLEGAL_ OPERATION

An operation was invoked on an inappropriate object or at
an inappropriate time (as determined by policies set by the
specification or the Service implementation). There is no
precondition that could be changed to make the operation
succeed.

NO_DATA

Indicates a transient situation where the operation did not
return any data but there is no inherent error.

DDS Information Flow

Identified by means
of the Topic

Sending: Publisher and DataWriter

Receiving: Subscriber and Publisher!]

DataReader Gata values
DataWriter

=]
JRSEE ERSSAR SEEEERT)

of the

Identified by means

Topic

-

Subscrib

er

data val

ues
DataReader

-

Subscrib

er

data val

ues
DataReader

Publisher

A Publisher is an object responsible for data distribution (according to QoS)

A DataWriter acts as a typed accessor to a publisher and it is the object the
application must use to communicate to a publisher the existence and value of
data-objects of a given type

A publication is defined by the association of a data-writer to a publisher. This
association expresses the intent of the application to publish the data
described by the data-writer in the context provided by the publisher

Subscriber

A Subscriber is an object responsible for receiving published data and making
it available (according to QoS) to the receiving application.

The application must use a typed DataReader attached to the subscriber.

A subscription is defined by the association of a data-reader with a subscriber
expressing the intent of the application to subscribe to the data described by
the data-reader in the context provided by the subscriber

Topics and QoS

Topic objects conceptually fit between publications and subscriptions and

represents the unit for information that can produced or consumed by a DDS
application

A Topic associates a name, a data-type, and QoS related to the data itself.

Topics and QoS of the DataWriter/DataReader associated with
Publisher/Subscriber control the behavior on the different sides

Topic types

Independence from a specific programming language and OS, portability and
interoperability — subset of IDL as the formalism for describing topic types

A topic is made by struct plus a key

Struct can contain as many fields as you want and each field can be:

1. a primitive type
2. atemplate type
3. aconstructed type

«» |DL Types

Constructed Types Example
Primitive Types Template Type Example enum enum Dimension { 1D, 2D, 3D, 4D };
boolean long - -
string<length = UNBOUNDED> string sl;
string<32> s2; struct CoordlD { long x;};
octet unsigned long - . struct Coord2D { long x; long y; };
Ehar long long wstring<length = UNBOUNDED> a:::i:g<64> x:%i struct struct Coord3D { long x; long y; long z; };
h - IR} J ! struct Coord4D { long x; long y; long z,
wchar unsigned lon igned long 1 ik
glong 9 sequence<T, length = UNBOUNDED> | sequence<octet> 0seq; Uroamned on ot &b
sequence<octet, 1024> oseqlk;
short float union Coord switch (Dimension) {
1D:
sequence<MyType> mtseq; CasgoordlD cld;
sequence<MyType, 10> mtseql0; case 2D:
unsigned short double 4 i i — Coord2D c2d;
Yot doubTE fixed<digits,scale> fixed<5,2> fp; //d1d2d3.d4d5 s 1 —
case 4D:
Coordd4D c4d;

Source: https://www.laas.fr/files/SLides-A_Corsaro.pdf

https://www.laas.fr/files/SLides-A_Corsaro.pdf

Filtering and Conditions

DDS data management also supports two ways of capturing specific data

Content-Filtered Topics:

subscribe to filtered topics and receiving

only values matching it

permit to

Query Conditions: simply queries data
received and available on the existing

reader cache

Operator

Description

Equal

<>

Not Equal

>

Greater Than

Less Than

>=

Greater then equal

<=

Less than equal

BETWEEN

Between and inclusive
range

LIKE

Search for a pattern

QoS

DATA
WRITER
DATA oaa \og
READER
WRITER \ o QoS /

QoS

DA

READER

Topic B

TOplCA / \ —-/ \ DATA QoS
DATA READER
005 DOV
DATA ‘ot
— sl READER
DATA L Topic €t
WRITER ' ‘

QoS

DATA Qi
Top|cD / READER
DATA
WRITER DATA ‘&
READER

Source: https://www.dds-foundation.org/what-is-dds-3/

https://www.dds-foundation.org/what-is-dds-3/

Domain

A Domain is a communication context, which provides a virtual environment,
encapsulating different concerns and thereby optimizing communications.

DDS applications send and receive data within a domain which also isolates
participants associated with different domains

Scoping Information

DDS provides two mechanism for scoping information:

1. Domains: A domain establishes a virtual network linking all the DDS
applications that have joined it. No communication can ever happen
across domains unless explicitly mediated by the user application

2. Partitions: Domains can be further organized into partitions, where each
partition represent a logical grouping of topics

& DDS Conceptual Model

2 0.1 <<interface>>
QosPolicy a0 o hd g
Entity ; Listener
* listener
1 WaitSet Condition
* *
0.1
StatusCondition
statuscondition
® 1 <<summary >>
DomainEntity (&——————>¢p{ DomainParticipant [~~~ A DomainParticipant is the entry-point
for the service and isolates a set on
A applications that share a physical
network.
Publisher : Subscriber
Topic
t * i
1 <<implicit>>
* 1 *
* *
DataWriter <<interface>> DataReader
TypeSupport

Data

DDS Conceptual Model

Communication objects patterns:
1. each entity supports specialized QoS policies
2. each entity accepts a specialized Listener as mechanism to notify the application of events such as the
arrival of data corresponding to a subscription, violation of QoS
3. each entity accepts a StatusCondition providing an alternative communication style between the
middleware and the application

All the entities are attached to a DomainParticipant which represents the local membership of an application
in a domain

d

A Domain links all the applications and represents a communication plane, only pubs/subs attached to the
same domain can interact

Status condition

Status conditions are mechanisms that allow applications to monitor the state
of DDS entities (such as Data Writers, Data Readers, Publishers, and
Subscribers) by setting specific triggers or callbacks for key events.

Status conditions help in managing and responding to changes or updates in
the system, such as new data availability, connection status, or errors.

Universita di Camerino

1336

DDS PIM

1

[]

Domain M odule

Publication M odule

Topic Module

Subscription M odule

Infrastructure M odule

@ DCPS Modules

The DCPS is comprised of five modules:

1. Infrastructure Module: defines the abstract classes and the interfaces that are refined by the other modules. It also provides

support for the interaction with the middleware

2. Domain Module: contains the DomainParticipant class that acts as an entry-point of the Service and acts as a factory for many of

the classes. The DomainParticipant also acts as a container for the other objects that make up the Service

3. Topic-Definition Module: contains the Topic, ContentFilteredTopic, and MultiTopic classes, the TopicListener interface, and more

generally, all that is needed by the application to define Topic objects and attach QoS policies to them

4, Publication Module: contains the Publisher and DataWriter classes as well as the PublisherListener and DataWriterListener

interfaces, and more generally, all that is needed on the publication side

5. Subscription Module: contains the Subscriber, DataReader, ReadCondition, and QueryCondition classes, as well as the

SubscriberListener and DataReaderListener interfaces, and more generally, all that is needed on the subscription side

Entity Class

Entity is the abstract base class for all the DCPS objects that support QoS

policies, a listener and a status condition

ONOUHAEWN R

set_qgos

get_qos

set_listener
get_listener

get statuscondition
get status_change
enable
get_instance_handle

Entity
no attributes
operations
abstract set_gos ReturnCode_t
gos_list QosPolicy []

abstract get_qos

ReturnCode_t

out: gos_list

QosPolicy []

abstract set_listener

ReturnCode_t

a_listener Listener
mask StatusKind []
abstract get_listener Listener
get_statuscondition StatusCondition
get_status_changes StatusKind []

enable

ReturnCode_t

get_instance_handle

InstanceHandle_t

WaitSet Class

A WaitSet object allows an application to wait until one or more of the attached
Condition objects has a trigger_value of TRUE or else until the timeout expires

attach_condition

L o WaitSet
2. detach_condition :
. - no attributes
3. wait operations
4. get_ConditionS attach_condition ReturnCode_t
a_condition Condition
detach_condition ReturnCode_t
a_condition Condition
wait ReturnCode_t
inout: active_conditions | Condition []
timeout Duration_t
get_conditions ReturnCode_t
inout: Condition []
attached_conditions

Supported QoS

DDS relies on Quality of Service which is a set of characteristics that controls
some aspect of the behavior of the DDS Service.

QoS is comprised of individual QoS policies

https://community.rti.com/static/documentation/connext-dds/5.3.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/QosPolicies.htm

Universita di Camerino

1336

HistoryQosPolicy

kind : History QosKind
depth : long

Life QosPolicy

duration : Duration_t

OwnershipQosPolicy

kind : OwnershipQosKind

I

O hipS trengthQosPolicy

value : long

WriterDatalifecycleQosPolicy

QosPolicy

name : string

PartitionQosPolicy

name [*] : string

UserDataQosPolicy

value [*] : char

ReliabilityQosPolicy

kind : Rehability QosKind
max_blocking_time : Duration_t

TopicDataQosPolicy

value [*] : char

G DataQosPolicy

Liveli Policy

lease_duration : Duration_t
kind : LivelinessQosKmnd

P

datavalue [*] : char

DurabilityQosPolicy

kind : Durability QosK ind

LatencyBudgetQosPolicy

duration : Duration_t

autodispose_unregstered_instances : b

|

ReaderDatalifecycleQosPolicy

DeadlineQosPolicy

Resource LimitsQosPolicy

max_samples : long
max_mnstances : long
max_samples_per_instance : long|

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

penod : Duration_t

i

DurabilityS ervice QosPolicy

PresentationQosPolicy

Time BasedFilterQosPolicy

access_scope : PresentationQos Access ScopeKind|
coherent_access : boolean
ordered_access : boolean

minimum_separation : Duration_t

service_cleanup_delay : Duration_t
history_kind : History QosKind
history_depth : long

max_samples : long

max_mstances : long
max_samples_per_instance : long

TransportPriorityQosPolicy

value : long

EntityFactoryQosPolicy

DestinationOrderQosPolicy

autoenable_created_entities : boolean|

kind : DestinationOrderQosKind

Universita di Camerino

Reliability indicates the level of
guarantee provided to the subscribers

in the data exchange phase

1. Reliable: middleware guarantees
that all the samples in the DataWriter
will be delivered to all the DataReader

2. Best Effort: it is acceptable to not
retry the samples propagation

s Some Significant QoS

QosPolicy Value Meaning Concerns RxO Changeable
RELIABILITY A “kind”: Indicates the level of reliability offered/ Topic, Yes No
RELIABLE, requested by the Service. DataReader,
BEST_EFFORT DataWriter

and a duration
“max_blocking_
time”

RELIABLE

Specifies the Service will attempt to deliver
all samples in its history. Missed samples
may be retried. In steady-state (no
modifications communicated via the
DataWriter) the middleware guarantees
that all samples in the DataWriter history
will eventually be delivered to all the
DataReader! objects. Outside steady state
the HISTORY and RESOURCE_LIMITS
policies will determine how samples
become part of the history and whether
samples can be discarded from it. This 1s the
default value for DataWriters.

BEST_EFFORT

Indicates that it is acceptable to not retry
propagation of any samples. Presumably
new values for the samples are generated
often enough that it is not necessary to re-
send or acknowledge any samples. This is
the default value for DaraReaders and
Topics.

max_blocking_
time

The value of the max_blocking_time
indicates the maximum time the operation
DataWriter::write is allowed to block if the
DataWriter does not have space to store the
value written. The default
max_blocking_time=100ms.

©y Some Significant QoS

History controls which value should
be delivered in terms of time

1. Keep Last: DDS keeps only the most
recent sample

2. Keep All: DDS keeps all the samples

HISTORY

A “kind™:
KEEP_LAST,
KEEP_ALL
And an optional
integer “depth™

Specifies the behavior of the Service in the
case where the value of a sample changes
(one or more times) before it can be
successfully communicated to one or more
existing subscribers. This QoS policy
controls whether the Service should deliver
only the most recent value, attempt to
deliver all intermediate values, or do
something in between. On the publishing
side this policy controls the samples that
should be maintained by the DaraWriter on
behalf of existing DataReader entities. The
behavior with regards to a DaraReader
entities discovered after a sample is written
is controlled by the DURABILITY QoS
policy. On the subscribing side it controls
the samples that should be maintained until
the application “takes™ them from the
Service.

Topic,
DataReader,
DataWriter

No

No

KEEP_LAST
and optional
integer “depth”

On the publishing side, the Service will
only attempt to keep the most recent
“depth” samples of each instance of data
(identified by its key) managed by the
DataWriter. On the subscribing side, the
DataReader will only attempt to keep the
most recent “depth” samples received for
each instance (identified by its key) until the
application “takes™ them via the
DataReader’s take operation.
KEEP_LAST is the default kind.

The default value of depti is 1.

If a value other than 1 is specified, it should
be consistent with the settings of the
RESOURCE_LIMITS QoS policy.

KEEP_ALL

On the publishing side, the Service will
attempt to keep all samples (representing
each value written) of each instance of data
(identified by its key) managed by the
DataWriter until they can be delivered to
all subscribers. On the subscribing side, the
Service will attempt to keep all samples of
each instance of data (identified by its key)
managed by the DataReader. These
samples are kept until the application
takes” them from the Service via the take
operation. The setting of deptt has no
effect. Its implied value is
LENGTH_UNLIMITED".

Universita di Camerino

Durability controls data variability

1. Volatile: no need to keep data for late
joinings
2. Transient Local: data availability for

late joinings is tied to data writer
availability

3. Transient: data availability outlives the
data writer

4. Persistent: data availability otulives
system restart

s Some Significant QoS

DURABILITY A “kind™: This policy expresses if the data should Topic, Yes No
VOLATILE, ‘outlive’ their writing time. DataReader,
TRANSIENT _ DataWriter
LOCAL,

TRANSIENT,

or PERSISTENT

VOLATILE The Service does not need to keep any
samples of data-instances on behalf of any
DataReader that is not known by the
DataWriter at the time the instance 1s
written. In other words the Service will only
attempt to provide the data to existing
subscribers.
Ths 15 the default kind.

TRANSIENT _ The Service will attempt to keep some

LOCAL, samples so that they can be delivered to any
potential late-joining DataReader. Which

TRANSIENT particular samples are kept depends on

other QoS such as HISTORY and
RESOURCE_LIMITS.

For TRANSIENT_LOCAL, the service is
only required to keep the data in the
memory of the DataWriter that wrote the
data and the data is not required to survive
the DataWriter.

For TRANSIENT, the service is only
required to keep the data in memory and not
in permanent storage; but the data is not tied
to the lifecycle of the DataWriter and will,
in general, survive it.

Support for TRANSIENT kind 1s optional.

QoS Inconsistency

QoS Policies may not be consistent with others!

Policies are added to verified ones to catch inconsistent states, how to manage
this?

Create Policies compatible on Publisher and Subscriber side following the
subscriber-requested, publisher-offered pattern

Subscriber-requested, publisher-offered pattern

Subscriber specifies a requested value for a QoS Policy

Publisher specifies an offered value for that QoS Policy

If the two policies are compatible then the connection is established

RxO property indicates compatibility need:

Yes: policy can be set at both sides and they are dependent
No: policy can be set at both sides but they are independent
N/A: policy can be set only at one side

Listeners, Conditions, and Wait-sets

Listeners and conditions (in conjunction with wait-sets) are two alternative
mechanisms that allow the application to be aware of changes in the DCPS
communication status

ey Communication Status

The communication statuses whose changes can be communicated to the
application depend on the Entity

Entity Status Name Meaning
Topic INCONSISTENT_TOPIC Another topic exists with the same name but different characteristics.
Subscriber DATA_ON_READERS New information is available.
DataReader SAMPLE_REJECTED A (received) sample has been rejected.
LiVELINESS_CHANGED The liveliness of one or more DataWriter that were writing instances read

through the DaraReader has changed. Some DataWriter have become
“active” or “mactive.”

REQUESTED_DEADLINE _MISSED The deadline that the DataReader was expecting through its QosPolicy
DEADLINE was not respected for a specific instance.

REQUESTED_INCOMPATIBLE_QOS A QosPolicy value was incompatible with what 1s offered.

DATA_AVAILABLE New information is available.
SAMPLE_LOST A sample has been lost (never received).
SUBSCRIPTION_MATCHED The DataReader has found a DataWriter that matches the Topic and has

compatible QoS, or has ceased to be matched with a DaraWriter that was
previously considered to be matched.

DataWriter LIVELINESS_LOST The liveliness that the DataWriter has committed through its QosPolicy

LIVELINESS was not respected; thus DaraReader entities will consider
the DataWriter as no longer “active.”

OFFERED_DEADLINE MISSED The deadline that the DataWriter has committed through its QosPolicy
DEADLINE was not respected for a specific instance.

OFFERED_INCOMPATIBLE_QOS A QosPolicy value was incompatible with what was requested.

PUBLICATION_MATCHED The DataWriter has found DataReader that matches the Topic and has

compatible QoS, or has ceased to be matched with a DataReader that was
previously considered to be matched.

Catch Status Change

Associated with each one of an Entity’s communication status is a logical flag.
This flag indicates whether that particular communication status has changed
since the last time the status was ‘read’ by the application

Access through Listeners

Listeners provide a mechanism for the middleware to asynchronously alert the
application of the occurrence of relevant status changes

All Entity support a listener, which type of which is specialized to the specific
type of the related Entity

Each dedicated listener presents a list of operations that correspond to the
relevant communication status changes

Conditions and Wait-sets

conditions (in conjunction with wait-sets) provide an alternative mechanism to
allow the middleware to communicate communication status changes to the
application

1. The application indicates which relevant information it wants to get, by
creating Condition objects and attaching them to a WaitSet

2. It then waits on that WaitSet until the trigger_value of one or several
Condition objects become TRUE

3. It then uses the result of the wait to actually get the information by calling

Conditions and Wait-sets

[At least one attached condition has trigger_value == TRUE]/wakeup waiting threads

s) =
Blocked
—
% J .

[All attached conditions have trigger_value == FALSE]

l

Unblocked

A

L

Wait Set:-wait/ BLOCK calling thread

WaitSet:-wait/do not block. Retum

Built-in Topics

The middleware must discover and possibly keep track of the presence of
remote entities such as a new participant in the domain

— Built-in topics and corresponding DataReader objects that can then be used
by the application

— No need to introduce a new API to access information

A Real Example

Who: V-Charge Research program with industrial (Bosch and Volkswagen AG) and academic (ETH Zurich and the
universities of Braunschweig, Oxford and Parma) partners

Goal: automatically park an electric car in a large parking garage with centimeter accuracy at an induction-based
charging station.

Setup: Automated and driverless parking in a multi-story car park cannot rely on GPS to facilitate navigational
guidance. Instead, a suite of 2 stereo cameras, 4 mono-cameras and 12 or more sensors in the car compare their
information against a pre-mapped car park layout to determine location. For safety, the system must recognize
other static and moving objects, and adjust automated drive control appropriately

Source: https://info.rti.com/hubfs/Collateral_2017/Customer_Snapshots/RTI_Customer-Snapshot_ 60016 Volkswagen V6_0718.pdf

https://info.rti.com/hubfs/Collateral_2017/Customer_Snapshots/RTI_Customer-Snapshot_60016_Volkswagen_V6_0718.pdf

A Real Example

Challenge: researchers can stay focused on application level issues rather than dealing with system architecture
problems created by changes in systems integration. To enable the compute intensive sensor integration across
the distributed environment, the team needed a common way to deliver data between modules and sub-systems
that integrated with existing software toolchains.

Solution: RTI Connext DDS as the integration middleware. DDS enables the decoupling of the applications from
the underlying communication infrastructure. This means that any process or module can be moved around the
network completely unchanged. DDS discovers the modules new location at boot time and routes
communication as needed. No IP reconfiguration or network interface changes are required by the application.
DDS includes a Quality of Service (QoS) capability that ensures that the data needs of each and every
communicating process and module are being met. If they are not, the discrepancy between publisher and
subscriber is noted and both applications are informed. No application module needs to know about any other —

it just needs to know it requires specific data within certain timing and delivery constraints and to know when
those constraints are not being met.

