Robot Operating System 2
(ROS 2)

Why ROS

Robots are becoming more affordable, more capable, and more useful in
many real life scenarios — need to share spaces and work together

Robot Operating System 2 (ROS 2) and Robot Middleware Framework
(RMF) tries to simplify the creation and operation of complex multi-robot
systems

From ROS 1 to ROS 2

The Robot Operating System (ROS) is a set of software libraries and tools
for building robot applications.

ROS 1 — robots, wheeled robots of all sizes, legged humanoids, industrial
arms, outdoor ground vehicles

ROS 2 — “simply” supports new cases but in an interoperable way

ROS Architecture

ROS 2.0 Architecture Overview

U

A:gicalions [User Code)
[rclpy) (rclcpp) (Third Party)

Client

Wrapper (ROS Client Lib)

o - - -

DDS ; 2L

Source: https://mab-robotics.medium.com/legged-robots-ros2-6051f9c907cd

DDS
agnostic

ROS
agnostic

https://mab-robotics.medium.com/legged-robots-ros2-6051f9c907cd

ROS Architecture

ROS client layer (RCL):
user-facing interface that
provides high-level
functionalities

ROS middleware layer
(RMW): provides real-time
publish/subscribe protocol

ROS 2.0 Architecture Overview

U
A:e;;lzcalions [User Code)

[rclpy) (rclcpp) (Third Party)
Client
Wrapper [ROS Client Lib) DDS
Middieware

ROS

DDS agnostic

82

Robotics Middleware Framework (RMF)

Robots start to perform those tasks lack of abstract planning, reasoning
and informal communication

Also, multi-robot systems from multi-vendors remain a challenge

RMF — provides a set of conventions, tools, and software
implementations to allow multiple robots to interoperate with each other
and with shared information

Universita di Camerino

1336

RMF is a collection of reusable, scalable libraries and tools building on top
of ROS 2

— interoperability of heterogeneous robotic systems

It adds intelligence to the system through resource allocation and by
preventing conflicts over shared resources

RMF Overview

RMF operates

communications layer and integrates with

over virtually any

any number of devices

RMF architecture allows for scalability as

the level of automation in an environment
increases

RMF also saves costs by sharing resources
and integrations to be minimized

‘external
enterprise
extornal
Sack entorprise
stack

[Enterprise Systems ll User Interfaces

(=

The Core Systems

gl

Traffic Monitor J [Schedule]

l Infrastructure

Adapters

ll Workcell Adapters

Infrastructure Managers

~
N

Doors] Lights]

- 2
Gates J Other loT]

Workcell Managers]

Workcells

e =)
Sensors } Actuators]

S

ll Physical
ices

Cam)
Adapters

l'_ |
Other Utilities 1

ll Smart Fleet Adapters

ll Vendor-Supplied

Fleet Managers

| |
ll Mobile
Robots

e 1 e v e ™

Universita di Camerino

Message Passing

1336

rmf_task_msgs/Delivery
rmf_task_

Task input adap
(Ul portals, etc.)

Another RMF goal is to simplify and

standardize messaging as much as

alarm system adapters
(fire, etc.)

std_msgs/Bool

Y

possible

Y

rmf_core

rmf_dispenser_msgs/DispenserRequest

Integration Layer for
API normalization

Application-specific
hardware, firmware, or
software

fleet
adapters

(tightly integrated
with rmf_core)

P disp workcell dispenser workcells
< (fixed
% rmf_dispenser_msgs/DispenserState il equipment, etc.)
rmf_dispenser_msgs/Di
rmf_lift_msgs/LiftRequest o
P> lift adapters lifts.
= (aka "elevators") (aka "elevators")
rmf_lift_msgs/LiftState
rmf_door_msgs/DoorRequest
»
< ™| door adap doors
"V rmf_door_msgs/DoorState
rmf_fleet_msgs/ModeRequest robot fleet managers
rmf_fleet_msg:
rmf_fleet_msgs/PathRequest = (AMRs, AGVs, etc.)
P mobile fleet drivers

A

m_fleet_msgs/FleetState

(robots, carts, etc.)

carts and other things
that move and can be
tracked / predicted

ROS Concepts and Design Patterns

A robot can be seen as a distributed system: each part plays a well-defined
role, communicating as needed with other parts

ROS separates the functions of a complex system into individual parts that
interact with each other to produce the desired behavior of that system.

Parts — nodes Interactions — topics

ROS Topic ROS
Node Node

ROS Communication Graph

Wheeled robot that chases a red ball with a camera to see the ball, a vision
system to process the camera images, a control system to decide what
direction to move, and some motors to move the wheels to allow it to
move

ROS
topics

”T\\

\
!

A
steering
direction

ball
location

device-s
pecific
data

device-s
pecific
data

Publish-Subscribe Messaging: Topics and Types

ROS uses publish-subscribe messaging where data is sent as messages
from publishers to subscribers

A publisher may have zero, one, or multiple subscribers listening to its
published messages

Messages may be published at any time, making the system asynchronous

ROS2 Messages

.msg files are used in ROS2 and they are converted into .idl files so that they could be
used with the DDS transport

The ROS 2 APl would work exclusively with the .msg style message objects in memory
and would convert them to .idl objects before publishing

ROS .msg files | DDS IDL files

" \ l
ROS message ROS<=>DDS DDS message
classes conversion funcs classes
e

N,

Can be used
without a ROS
client library

used with a ROS client library

Universita di Camerino

1336

Topics don’t have to only be point-to-point communication; it
can be one-to-many, many-to-one, or many-to-many.
NODE

Message

Publisher

Source: https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

Pub-Sub ROS benefits

Substitution: upgrade a component only requires to modify the ROS node
Reuse: a node can be used in many different components
Collaboration: separating functionalities on different nodes that work together

Introspection: nodes are explicitly communicating with each other via topics, so it
is possible to visualize, log, and play back node's inputs and outputs

Fault tolerance: run nodes in separate processes allows for fault tolerance, or run
them together in a single process, which can provide higher performance

Language independence: running those nodes in separate processes permits to
use different technologies

ROS Built on DDS

DDS is an implementation detail of ROS2 — DDS APIs and message definitions
are hidden

ROS2 provides an interface on top of DDS which hides much of the complexity
of DDS for the majority of ROS users.

It also separately provides access to the underlying DDS implementation for
users that have extreme use cases or need to integrate with other, existing DDS
systems

ROS Built on DDS

Userland Code

ROS client library API

Abstract DDS API

optional
access

to DDS
specific API

PrismTech

RTI Connext Gpentplice

Twin Oaks
Software CoreDX

Source: https://design.ros2.org/articles/ros_on_dds.html

https://design.ros2.org/articles/ros_on_dds.html

Middleware Interface

ROS2 relies on DDS communication protocol

how to deal with the different implementations? — a middleware abstract
interface is introduced and it can be implemented for different DDS
implementations

This middleware interface defines the APl between the ROS client library
and any specific implementation

© ROS2 toMItoDDS

1. ROS data objects — 2. Middleware data format — 3. DDS

implementation

1. DDS implementation — 2. Middleware data format — 3. ROS data
objects

A defined mapping defines how to convert the primitive data types of ROS
to middleware specific ones

Mapping of primitive types Mapping of arrays and bounded strings

ROS type DDS type
static array T[N]
unbounded dynamic array | sequence

bounded dynamic array

sequence<T, N>

ROS type | DDS type

bool boolean

byte octet

char char

float32 float

float64 double

int8 octet

uint8 octet

int16 short

uint16 unsigned short
int32 long

uint32 unsigned long
int64 long long
uint64 unsigned long long

string

string

bounded string

string

ROS Node to DDS Participant

ROS Node (Publishers, Subscriptions, Servers, Clients) participates in a
Context (encapsulating sharing states)

DDS Participant (Publishers, Subscribers, Data Writters, Data Readers)
discovery, tracking, thread creation makes it a heavyweight entity

one-to-one mapping associates a node to a participant — overhead with
multiple participants, extra information needed to discover them

An alternative pattern request-reply: a ROS service is a form of remote
procedure call (RPC), the call may be dispatched to another process or
even another machine on the network

Request and a reply

Node calling the service populates the request message and sends it to the
node implementing the service, where the request is processed, resulting in
a reply message that is sent back

Those two entities are called Service client and Service server

Universita di Camerino

1336

There can be many service clients using the same service. But
there can only be one service server for a service.

Service

Request

[

Response

Actions

latency — goal-oriented,

Interactions request-reply but with high
time-extended tasks, cancelable

Action composed of 3 messages:

1. Goal: sent once and indicates what action is trying to achieve

2. Result: sent once indicates what happened
3. Feedback: sent periodically updates the caller on how things are going

We can distinguish between Action client and Action server

Action Server

An action server provides an action having a name and a type and It is
responsible for:

advertising the action to other ROS entities

accepting or rejecting goals from one or more action clients

executing the action when a goal is received and accepted

optionally providing feedback about the progress of all executing actions
optionally handling requests to cancel one or more actions

sending the result of a completed action, including whether it succeeded,
failed, or was canceled, to a client that makes a result request.

SR WN -

Action Client

An action client sends one or more goals (an action to be performed) and
monitors their progress. It is responsible for:

1. sending goals to the action server

2. optionally monitoring the user-defined feedback for goals from the
action server

3. optionally monitoring the current state of accepted goals from the

action server

optionally requesting that the action server cancel an active goal

optionally checking the result for a goal received from the action serve

o &

Universita di Camerino

1336

Action Client

Goal Service Client

Feedback Subscriber

Result Service Client

\\[e]n]3

Goal
Service

Request

Response

Feedback
Topic

Resuit
Service

Request

Response

NODE
Action Sever
Goal Service Server

Feedback Publisher

Result Service Server

Parameters

How to specify information when starting robot nodes?

ROS parameter is what you might expect: a named, typed, place to store a

piece of data

When it starts up, the node would use the value of that parameter to know
which device to open to get to the motor system

Parameters

Ros parameters can be set as follows:

1.

Defaults: A ROS node that uses a parameter must embed in its code
some default value for that parameter

Command-line: There is standard syntax for setting parameter values
on the command-line when launching a node

Launch files: When launching nodes via the launch tool instead of
manually via the command-line, you can set parameter values in the
launch file

Service calls: ROS parameters are dynamically reconfigurable via a
standard ROS service interface, allowing them to be changed on the
fly, if the node hosting the parameters allows it

When subscribing to a topic, you supply a callback —

function that will be invoked each time your node receives a message on

that topic

Similar also in services, actions and parameters

Why? ROS is an event-based pattern

ROS node structure

Get parameter values: Retrieve the node's configuration, considering
defaults and what may have been passed in from outside.

Configure: Do whatever is necessary to configure the node, like
establish connections to hardware devices.

Set up ROS interfaces: Advertise topics, services, and/or actions, and
subscribe to services. Each of these steps supplies a callback function
that is registered by ROS for later invocation.

Spin: Now that everything is configured and ready to go, hand control
over to ROS. As messages flow in and out, ROS will invoke the
callbacks you registered

ROS Nodes

A node is a participant using a client library to communicate with other
nodes. Nodes can communicate with other nodes within the same process,
in a different process, or on a different machine

Nodes are often a complex combination of publishers, subscribers, service
servers, service clients, action servers, and action clients, all at the same
time.

Connections between nodes are established through a distributed
discovery process

i

Universita di Camerino

1336

Service

Request Message

Publisher

Response

Source:
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Un
derstanding-ROS2-Nodes.html

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

ROS Discovery

ROS discovery can be summarized as follows:

1. When a node is started, it advertises its presence to other nodes on the network
with the same ROS domain (ROS_DOMAIN_ID environment variable). Nodes
respond to this advertisement with information about themselves

2. Nodes periodically advertise their presence so that connections can be made with
new-found entities, even after the initial discovery period.

3. Nodes advertise to other nodes when they go offline

Nodes will only establish connections with other nodes if they have compatible Quality
of Service settings

ROS provides native support for few DDS QoS via a configuration struct
when creating Publishers, Subscribers, etc.

1.
2.
3.
4.

History
Depth
Reliability
Durability

ROS QoS policies

The base QoS profile currently includes settings for the following policies:

1. History
a. Keep last: only store up to N samples, configurable via the queue depth
option
b. Keep all: store all samples, subject to the configured resource limits of the
underlying middleware

2. Depth
a. Queue size: only honored if the “history” policy was set to “keep last”
3. Reliability

a. Best effort: attempt to deliver samples, but may lose them if the network is
not robust
b. Reliable: guarantee that samples are delivered, may retry multiple times

ROS QoS policies

Durability
a. Transient local: the publisher becomes responsible for persisting samples for “late-joining” subscriptions
b. Volatile: no attempt is made to persist samples
Deadline
a. Duration: the expected maximum amount of time between subsequent messages being published to a
topic
Lifespan
a. Duration: the maximum amount of time between the publishing and the reception of a message without
the message being considered stale or expired (expired messages are silently dropped and are effectively
never received)
Liveliness
a. Automatic: the system will consider all of the node’s publishers to be alive for another “lease duration”
when any one of its publishers has published a message
b. Manual by topic: the system will consider the publisher to be alive for another “lease duration” if it
manually asserts that it is still alive (via a call to the publisher API)
Lease Duration
a. Duration: the maximum period of time a publisher has to indicate that it is alive before the system
considers it to have lost liveliness (losing liveliness could be an indication of a failure)

QoS Profiles

QoS profile defines a set of policies that are expected to go well together for a particular use case — no
worries about possible settings

1.

Default QoS settings for publishers and subscriptions: by default, pubs and subs have “keep last” for
history with a queue size of 10, “reliable” for reliability, “volatile” for durability, and “system default”
for liveliness. Deadline, lifespan, and lease durations are also all set to “default”

Services: volatile durability, as otherwise service servers that re-start may receive outdated requests.
The server is not protected from side-effects of receiving the outdated requests.

Sensor data: latest samples as soon as they are captured, at the expense of maybe losing some.
Sensor data profile uses best effort reliability and a smaller queue size

Parameters: use a larger queue depth so that requests do not get lost when, for example, the
parameter client is unable to reach the parameter service server

System default: RMW implementation’s default values for all of the policies. Different RMW
implementations may have different defaults

ROS Architecture

ROS 2.0 Architecture Overview

ggglricalions [User Code)
[rclpy) (rclcpp J [Third Party J

Client

Wrapper [ROS Client Lib J

Middieware

DDS

DDS
agnostic

ROS
agnostic

Exercise

Design an architecture for a self-driving car

1. requirements
2. components
3. missions

Universita di Camerino

1336

An example

Requirements:

1.

oukswWwN

Real-time performance
Reliability

Adaptability and Interoperability
Flexibility and Variability
Re-Usability and Extensibility
Open community

Some missions:

1.
2,
3.

Image from: Reke, Michael, et al. "A self-driving car architecture in ROS2." 2020 International SAUPEC/RobMech/PRASA Conference. IEEE, 2020.

looking for parking space
drive vehicle in the parking space
secure vehicle

Target per GUI
Route &
Planning k] Traffic
%8 § &
Traffic Global SE =3
Ruses Map 2 z § o
LL L% i]
z
Mission & Maneuver | =~ Path |=| Path 3| Vehicle |#| Vehicle |3 .
Planning Planning Control [~] Control Interface [] Vehicle
" % I Pose IAckefmann I Qdometry
g ; GNSS
3l |se HOMep — Localization
8l |z b
© o=
) Objects (lanes, vehicles, lights, signs, ...} I il
'§ | Camera [
g Objects (vehicles, pedestrians, infrastructure.. .} | |
|| Sensor |_Radar |
§ Fusion Objects (free space, lanes, objects,...) | Lidar |
g | O |
‘E Objects (active vehicles, aclive infrastructure, .,)
= V2Xx

@y Anexample

1336

[Camerat I
NVIDIA
Drive

I Camera 6 }—

MobilEye

GUI Touch Zotac

/ —

Ethernet Switch

| Nuc

Fig. 2. One of the KIA Niros, which has been automated at FH Aachen. 7

Image from: Reke, Michael, et al. "A self-driving car architecture in ROS2." 2020 International SAUPEC/RobMech/PRASA Conference. IEEE, 2020.

ZBox [

Intel

i7

CAN Bus Routing

Vehicle

