
Robot Operating System 2
(ROS 2)

Robots are becoming more affordable, more capable, and more useful in

many real life scenarios → need to share spaces and work together

Robot Operating System 2 (ROS 2) and Robot Middleware Framework

(RMF) tries to simplify the creation and operation of complex multi-robot

systems

Why ROS

From ROS 1 to ROS 2

The Robot Operating System (ROS) is a set of software libraries and tools

for building robot applications.

ROS 1 → robots, wheeled robots of all sizes, legged humanoids, industrial

arms, outdoor ground vehicles

ROS 2 → “simply” supports new cases but in an interoperable way

ROS Architecture

Source: https://mab-robotics.medium.com/legged-robots-ros2-6051f9c907cd

https://mab-robotics.medium.com/legged-robots-ros2-6051f9c907cd

ROS Architecture

ROS client layer (RCL):
user-facing interface that
provides high-level
functionalities

ROS middleware layer
(RMW): provides real-time
publish/subscribe protocol

Robotics Middleware Framework (RMF)

Robots start to perform those tasks lack of abstract planning, reasoning

and informal communication

Also, multi-robot systems from multi-vendors remain a challenge

RMF → provides a set of conventions, tools, and software

implementations to allow multiple robots to interoperate with each other

and with shared information

RMF in Practice

RMF is a collection of reusable, scalable libraries and tools building on top

of ROS 2

→ interoperability of heterogeneous robotic systems

It adds intelligence to the system through resource allocation and by

preventing conflicts over shared resources

RMF Overview

RMF operates over virtually any

communications layer and integrates with

any number of devices

RMF architecture allows for scalability as

the level of automation in an environment

increases

RMF also saves costs by sharing resources

and integrations to be minimized

Message Passing

Another RMF goal is to simplify and

standardize messaging as much as

possible

A robot can be seen as a distributed system: each part plays a well-defined

role, communicating as needed with other parts

ROS separates the functions of a complex system into individual parts that

interact with each other to produce the desired behavior of that system.

Parts → nodes Interactions → topics

ROS Concepts and Design Patterns

ROS
Node

ROS
Node

Topic

ROS Communication Graph

Wheeled robot that chases a red ball with a camera to see the ball, a vision

system to process the camera images, a control system to decide what

direction to move, and some motors to move the wheels to allow it to

move

Publish-Subscribe Messaging: Topics and Types

ROS uses publish-subscribe messaging where data is sent as messages

from publishers to subscribers

A publisher may have zero, one, or multiple subscribers listening to its

published messages

Messages may be published at any time, making the system asynchronous

ROS2 Messages

.msg files are used in ROS2 and they are converted into .idl files so that they could be
used with the DDS transport

The ROS 2 API would work exclusively with the .msg style message objects in memory
and would convert them to .idl objects before publishing

Source: https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

Pub-Sub ROS benefits

• Substitution: upgrade a component only requires to modify the ROS node

• Reuse: a node can be used in many different components

• Collaboration: separating functionalities on different nodes that work together

• Introspection: nodes are explicitly communicating with each other via topics, so it

is possible to visualize, log, and play back node's inputs and outputs

• Fault tolerance: run nodes in separate processes allows for fault tolerance, or run

them together in a single process, which can provide higher performance

• Language independence: running those nodes in separate processes permits to

use different technologies

ROS Built on DDS

DDS is an implementation detail of ROS2 → DDS APIs and message definitions
are hidden

ROS2 provides an interface on top of DDS which hides much of the complexity
of DDS for the majority of ROS users.

It also separately provides access to the underlying DDS implementation for
users that have extreme use cases or need to integrate with other, existing DDS
systems

ROS Built on DDS

Source: https://design.ros2.org/articles/ros_on_dds.html

https://design.ros2.org/articles/ros_on_dds.html

Middleware Interface

ROS2 relies on DDS communication protocol

how to deal with the different implementations? → a middleware abstract

interface is introduced and it can be implemented for different DDS

implementations

This middleware interface defines the API between the ROS client library

and any specific implementation

1. ROS data objects → 2. Middleware data format → 3. DDS

implementation

1. DDS implementation → 2. Middleware data format → 3. ROS data

objects

A defined mapping defines how to convert the primitive data types of ROS

to middleware specific ones

ROS2 to MI to DDS

ROS Node to DDS Participant

ROS Node (Publishers, Subscriptions, Servers, Clients) participates in a

Context (encapsulating sharing states)

DDS Participant (Publishers, Subscribers, Data Writters, Data Readers)

discovery, tracking, thread creation makes it a heavyweight entity

one-to-one mapping associates a node to a participant → overhead with

multiple participants, extra information needed to discover them

Services

An alternative pattern request-reply: a ROS service is a form of remote

procedure call (RPC), the call may be dispatched to another process or

even another machine on the network

Request and a reply

Node calling the service populates the request message and sends it to the

node implementing the service, where the request is processed, resulting in

a reply message that is sent back

Those two entities are called Service client and Service server

Actions

Interactions request-reply but with high latency → goal-oriented,

time-extended tasks, cancelable

Action composed of 3 messages:

1. Goal: sent once and indicates what action is trying to achieve

2. Result: sent once indicates what happened

3. Feedback: sent periodically updates the caller on how things are going

We can distinguish between Action client and Action server

Action Server

An action server provides an action having a name and a type and It is
responsible for:

1. advertising the action to other ROS entities
2. accepting or rejecting goals from one or more action clients
3. executing the action when a goal is received and accepted
4. optionally providing feedback about the progress of all executing actions
5. optionally handling requests to cancel one or more actions
6. sending the result of a completed action, including whether it succeeded,

failed, or was canceled, to a client that makes a result request.

Action Client

An action client sends one or more goals (an action to be performed) and
monitors their progress. It is responsible for:

1. sending goals to the action server
2. optionally monitoring the user-defined feedback for goals from the

action server
3. optionally monitoring the current state of accepted goals from the

action server
4. optionally requesting that the action server cancel an active goal
5. optionally checking the result for a goal received from the action serve

Parameters

How to specify information when starting robot nodes?

ROS parameter is what you might expect: a named, typed, place to store a

piece of data

When it starts up, the node would use the value of that parameter to know

which device to open to get to the motor system

Parameters

Ros parameters can be set as follows:

1. Defaults: A ROS node that uses a parameter must embed in its code
some default value for that parameter

2. Command-line: There is standard syntax for setting parameter values
on the command-line when launching a node

3. Launch files: When launching nodes via the launch tool instead of
manually via the command-line, you can set parameter values in the
launch file

4. Service calls: ROS parameters are dynamically reconfigurable via a
standard ROS service interface, allowing them to be changed on the
fly, if the node hosting the parameters allows it

Callbacks

When subscribing to a topic, you supply a callback →

function that will be invoked each time your node receives a message on

that topic

Similar also in services, actions and parameters

Why? ROS is an event-based pattern

ROS node structure

• Get parameter values: Retrieve the node's configuration, considering
defaults and what may have been passed in from outside.

• Configure: Do whatever is necessary to configure the node, like
establish connections to hardware devices.

• Set up ROS interfaces: Advertise topics, services, and/or actions, and
subscribe to services. Each of these steps supplies a callback function
that is registered by ROS for later invocation.

• Spin: Now that everything is configured and ready to go, hand control
over to ROS. As messages flow in and out, ROS will invoke the
callbacks you registered

A node is a participant using a client library to communicate with other
nodes. Nodes can communicate with other nodes within the same process,
in a different process, or on a different machine

Nodes are often a complex combination of publishers, subscribers, service
servers, service clients, action servers, and action clients, all at the same
time.

Connections between nodes are established through a distributed
discovery process

ROS Nodes

Source:
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Un
derstanding-ROS2-Nodes.html

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

ROS Discovery

ROS discovery can be summarized as follows:

1. When a node is started, it advertises its presence to other nodes on the network
with the same ROS domain (ROS_DOMAIN_ID environment variable). Nodes
respond to this advertisement with information about themselves

2. Nodes periodically advertise their presence so that connections can be made with
new-found entities, even after the initial discovery period.

3. Nodes advertise to other nodes when they go offline

Nodes will only establish connections with other nodes if they have compatible Quality
of Service settings

ROS QoS

ROS provides native support for few DDS QoS via a configuration struct

when creating Publishers, Subscribers, etc.

1. History

2. Depth

3. Reliability

4. Durability

ROS QoS policies

The base QoS profile currently includes settings for the following policies:

1. History
a. Keep last: only store up to N samples, configurable via the queue depth

option

b. Keep all: store all samples, subject to the configured resource limits of the

underlying middleware

2. Depth
a. Queue size: only honored if the “history” policy was set to “keep last”

3. Reliability
a. Best effort: attempt to deliver samples, but may lose them if the network is

not robust

b. Reliable: guarantee that samples are delivered, may retry multiple times

ROS QoS policies

1. Durability
a. Transient local: the publisher becomes responsible for persisting samples for “late-joining” subscriptions
b. Volatile: no attempt is made to persist samples

2. Deadline
a. Duration: the expected maximum amount of time between subsequent messages being published to a

topic
3. Lifespan

a. Duration: the maximum amount of time between the publishing and the reception of a message without
the message being considered stale or expired (expired messages are silently dropped and are effectively
never received)

4. Liveliness
a. Automatic: the system will consider all of the node’s publishers to be alive for another “lease duration”

when any one of its publishers has published a message
b. Manual by topic: the system will consider the publisher to be alive for another “lease duration” if it

manually asserts that it is still alive (via a call to the publisher API)
5. Lease Duration

a. Duration: the maximum period of time a publisher has to indicate that it is alive before the system
considers it to have lost liveliness (losing liveliness could be an indication of a failure)

QoS Profiles

QoS profile defines a set of policies that are expected to go well together for a particular use case → no
worries about possible settings

1. Default QoS settings for publishers and subscriptions: by default, pubs and subs have “keep last” for
history with a queue size of 10, “reliable” for reliability, “volatile” for durability, and “system default”
for liveliness. Deadline, lifespan, and lease durations are also all set to “default”

2. Services: volatile durability, as otherwise service servers that re-start may receive outdated requests.
The server is not protected from side-effects of receiving the outdated requests.

3. Sensor data: latest samples as soon as they are captured, at the expense of maybe losing some.
Sensor data profile uses best effort reliability and a smaller queue size

4. Parameters: use a larger queue depth so that requests do not get lost when, for example, the
parameter client is unable to reach the parameter service server

5. System default: RMW implementation’s default values for all of the policies. Different RMW
implementations may have different defaults

ROS Architecture

Exercise

Design an architecture for a self-driving car

1. requirements

2. components

3. missions

An example

Image from: Reke, Michael, et al. "A self-driving car architecture in ROS2." 2020 International SAUPEC/RobMech/PRASA Conference. IEEE, 2020.

Requirements:
1. Real-time performance
2. Reliability
3. Adaptability and Interoperability
4. Flexibility and Variability
5. Re-Usability and Extensibility
6. Open community

Some missions:
1. looking for parking space
2. drive vehicle in the parking space
3. secure vehicle

An example

Image from: Reke, Michael, et al. "A self-driving car architecture in ROS2." 2020 International SAUPEC/RobMech/PRASA Conference. IEEE, 2020.

