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Key Historical Context
From the earliest days of computing, theorists recognized the potential for computation 

to change itself (self-modification)

“Traditional” software engineering focuses on getting things right before a system is 

deployed, known environment, components under the control of the developers

Today systems work in much more uncertain contexts

The software engineering discipline of Self-Adaptive Systems (SAS) attempts to solve 

this, providing principles and tools to harness the vast potential of adaptation
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SAS: A Convergence of Disciplines

SAS draws heavily on knowledge from other fields:

• Control Theory: Techniques for maintaining a system’s envelope of behavior within 
desired ranges

• Biology & Ecology: Ability of organisms/populations to respond to environmental 
changes

• Immunology: Organic mechanisms of self-healing

• Software Architecture: Patterns for structuring systems to enable predictable 
construction

• Artificial Intelligence: Mechanisms supporting autonomy
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External Principle (opaque system)

A self-adaptive system is a system that can handle 

changes and uncertainties in its environment, the 

system itself, and its goals autonomously (i.e., without 

or with minimal required human intervention)

Defining a SAS
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Internal Principle (engineer’s view)

A self-adaptive system comprises two distinct parts:

1. Domain Concerns: Interacts with the environment, 

responsible for user goals

2. Adaptation Concerns: Consists of a feedback loop 

that monitors the first part (and its environment) and 

is responsible for managing the system under changing 

conditions

There are two generally acknowledged principles that determine what constitutes a self-adaptive system



SAS: an example
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Sources of Uncertainty
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Patient-related variability: 
differences in health conditions, 
behaviors, and response times

Workflow dynamics: 
unpredictable frequency and 
sequence of service invocations 
depending on patient states

Service availability: changes in 
the number or status of 
third-party service instances 
over time



SAS Conceptual Model
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SAS Conceptual Model: Environment

The environment refers to the part of the external world with which a self-adaptive 

system interacts and in which the effects of the system will be observed and evaluated 
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Uncertainty in terms of what is sensed by the sensors and actuators outcomes 

The environment can be sensed and effected through sensors and actuators



Environment includes:

1) the patients that make use of the system

2) the application devices with the sensors that 
measure vital parameters of patients

3) the service providers with the
services instances they offer

4) the network connections used in the system

Environment Example

9



SAS Conceptual Model: Managed System

Managed System: application software that realizes the functions of  the system and 

senses/effects the environment 
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To support adaptations, the managed system needs to be equipped with 

sensors and actuators 

Enable monitoring  Execute adaptation actions



SAS Conceptual Model
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Managed System includes:

1) receives messages from patients with values of 
their vital parameters 

2) invokes a drug service to notify a local 
pharmacy to deliver new medication

3) invokes an alarm service in case of an 
emergency to notify medical staff to visit the 
patient

4) the network connections used in the system

Managed System Example (1)
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Adaptation:

1) allows the selection and use of concrete 
instances of the different types of services

2) provide support to change service instances in 
a consistent manner by ensuring that a service is 
only removed and replaced when it is no longer
involved in any ongoing service invocation of the 
health assistance system

Managed System Example (1)
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SAS Conceptual Model: Adaptation Goals

Represent concerns regarding the managed system adaptation goals: relate to quality 

properties of the managed system
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Principal High-Level Types:
    ◦ Self-configuration: Systems automatically configuring themselves

    ◦ Self-optimization: Continually seeking ways to improve performance or reduce cost

    ◦ Self-healing: Detecting, diagnosing, and repairing problems

    ◦ Self-protection: Defending against attacks or cascading failures

Adaptation goals can be subject to change, adding new goals or removing goals will 

require updates, and often also require updates of probes and effectors



Adaptation Goals Example
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Adaptation goals:

1) the system dynamically selects service 
instances under changing conditions to keep the 
failure rate over a given period below a required
threshold (self-healing goal), while the cost is 
minimized (optimization goal)

2) On the other hand, adding a new adaptation 
goal, for instance to keep the average response 
time of invocations of the assistance service 
below a required threshold, would be more 
invasive and would require an evolution of the 
adaptation goals and the managing system



SAS Conceptual Model: Feedback Loop (1)

Comprises the adaptation logic that deals with one or more adaptation goals
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Feedback loop monitors the environment and the managed system and adapts the

latter when necessary to realize the adaptation goals

Proactive policy
The feedback loop tracks the behavior of the 
managed system and adapts the system to 

anticipate a possible violation of the 
adaptation goals

Reactive policy
The feedback loop responds to a violation of 

the adaptation goals by adapting the 
managed system to a new configuration that 

complies with the adaptation goals



SAS Conceptual Model

17



SAS Conceptual Model: Feedback Loop (2)

The managing system can be subject to change itself
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To support changing adaptation goals, i.e. 
change or remove an existing goal or add a new 

goal

Update a feedback loop to resolve a problem 
or a bug (e.g. add or replace some 

functionality)

In both cases the need for evolving the feedback loop model is triggered by users 

based on observations



Feedback Loop:

Ensures that  the adaptation goals are realized  
monitoring the system behavior

1) reactive policy: the feedback loop will select 
alternative service instances 

2) proactive policy: the managing system may 
involve a stakeholder to decide on the adaptation 
action to take

Feedback Loop Example
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Conceptual model applied to a self-adaptive 
service-based health assistance system
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Engineering Self-Adaptive 
Systems

The seven waves
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The Seven Waves
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First Wave: Automating Tasks

23

Focuses on delegating complex and error-prone 
management tasks from humans to the system

A managing system (external manager) monitors 
and adapts the system automatically based on 
high-level objectives

The main goal is to automate management 
through decomposition of essential 
management functions



Second Wave: Architecture-based 
Adaptation
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Introduces a systematic, engineering-oriented 
approach to self-adaptive systems using 
software architecture principles

Emphasizes abstraction and separation of 
concerns between change management 
(handling environmental changes) and goal 
management (handling changing objectives)

Uses architectural models to reason about 
system and environment changes effectively



Third Wave: Runtime Models
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Addresses the complexity of implementing 
self-adaptive systems by introducing runtime 
models (models that exist and evolve while the 
system operates)

Extends model-driven development to the 
runtime, allowing systems to analyze and make 
adaptation decisions during operation using 
these live models



Fourth Wave: Requirements-driven Adaptation
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Emphasizes requirements as central elements 
of self-adaptive systems, linking them to 
feedback loop design

Distinguishes between requirements that define 
adaptation goals and those ensuring the correct 
functioning of the managing system itself.



Fifth Wave: Guarantees Under Uncertainty
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Focuses on managing uncertainty in 
self-adaptive systems and ensuring that 
adaptation goals are still met

Aims to provide trustworthiness through the 
collection of evidence, both offline 
(pre-runtime) and online (during execution), 
demonstrating that goals are achieved despite 
uncertainty



Sixth Wave: Control-based Software Adaptation
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Uses control theory to establish a formal, 
mathematical foundation for self-adaptive 
systems

Involves defining adaptation goals, selecting 
controllers, and modeling the managed system 
to analyze and guarantee stability, performance, 
and other key properties



Seventh Wave: Learning from Experience
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Leverages machine learning to enhance 
adaptation in large-scale and highly uncertain 
systems

Learning techniques support updating runtime 
models, reducing adaptation search spaces, 
predicting adaptation outcomes, and improving 
decision-making efficiency



Wave I
Automating Tasks
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Motivation

At the core is a feedback loop that collects data and acts automatically to maintain 

objectives, reducing manual effort and improving system efficiency and responsiveness
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In the late 1990s–2000s, installing and maintaining software systems required 

extensive manual work, leading to serious management challenges

IBM introduced the concept of autonomic computing, aiming to create systems that 

manage and adapt themselves based on high-level goals set by administrators



Self-optimization is the capability of a system to continuously improve the use of its 

limited resources such as memory, computational power, bandwidth, or energy while 

maintaining the required quality levels. This property ensures system sustainability and 

business profitability by avoiding resource waste.

Maintenance Task: Self-Optimization
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Maintenance Task: Self-Healing

A self-healing system continuously monitors itself to detect anomalies, localizes the 

source of the problem, and takes corrective actions to restore normal operation
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Refers to a system’s ability to detect, diagnose, and recover from failures 

automatically, ensuring continuous and reliable operation

Complex systems often face software bugs or hardware faults that can disrupt normal 

functioning. Manually identifying and fixing such issues is time-consuming and costly



Maintenance Task: Self Protection

A self-protecting system can detect suspicious behavior, take preventive or corrective 

actions, and contain cascading effects caused by security breaches
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Capability of a system to defend itself against malicious attacks and to anticipate 

potential threats that could compromise its operation

While tools like firewalls and intrusion detection systems provide basic defense, 

complex systems often remain vulnerable and difficult for humans to monitor 

effectively



Maintenance Task: Self-Configuration

Self-configuration ensures that new elements are seamlessly added, enabling the 

system to adapt and scale efficiently while maintaining continuous operation
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Capability of a system to automatically integrate new components or elements 

according to high-level objectives, without disrupting normal operation

In large-scale systems, manual installation and configuration of new elements is 

complex, time-consuming, and error-prone



Key Characteristics:

1) Functional decomposition: Breaks down 

self-adaptation into core functions

2) Cooperation: Defines how elements 

interact and share information

3) Experience-based: Consolidates domain 

knowledge and maturity of self-adaptive 

systems

4) Independent of implementation: Focuses 

on what needs to be done, not how it is 

mapped to software

Reference Model
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MAPE-K
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Realize the four basic functions of any self-adaptive system sharing common Knowledge

Hence the reference model of a managing system is often referred to as the MAPE-K model



Monitor:

• Collects data from the system and environment via probes
• Updates the Knowledge base with processed data

Analyzer:

• Uses up-to-date knowledge to detect the need for adaptation
• Analyzes possible adaptation options

Planner:

• Selects the best adaptation option
• Creates a plan with one or more actions to move the system from its current to desired 

configuration

Executor:

Implements the plan via effectors, adapting the system as required

MAPE-K Elements
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Provides the shared knowledge and mechanisms for MAPE elements to work together 

through reading, writing, notification and updating functionalities 

Ensures consistency when multiple clients access knowledge simultaneously (avoiding 

race conditions)

Knowledge Element
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Four types of 

knowledge



A managed system model represents the system that is managed by the managing 

system

● Focuses on parts relevant to self-adaptation

● Enables self-awareness

The environment model represents elements or properties of the environment in which 

the managed system operates

● Represents relevant aspects of the system’s environment

● Enables context-awareness

Managed System Model
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Adaptation Goals Model

The model of the adaptation goals maintains a representation of the objectives of the 

managing system

Can be expressed as:

● Rules with constraints and priorities
● Fuzzy goals with intermediate truth values (0–1)
● Utility functions representing preferences

Enables goal-awareness
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MAPE Working Models

A MAPEworking model represents knowledge that is shared between two or more 

MAPE elements

Often domain-specific, e.g., quality prediction or adaptation plans.

Parameterized models allow predictions for different system configurations.
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Monitor Function
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Monitor Function has a dual role

Keeps track of changes of the managed system 
and updates the managed system model 

accordingly

Keeps track of the environment in
which the managed system operates and 

reflects the relevant changes in the 
environment model



Monitor Workflow
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Monitor Workflow: Activation
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External trigger: e.g., probe 
finishes a sensing cycle.

Periodic trigger: based on 
predefined time windows.

Continuous cycle: automatically 
restarts after each monitoring 
cycle.



Monitor Workflow: Data Collection
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After activation, the monitor collects 

data taken from sensors

Data may require some form of 

pre-processing before it can be used 

to update the knowledge models

● Simple: filtering, aggregation 

● Advanced: Bayesian estimation, 

deep neural networks



Monitor Workflow: Updating Knowledge
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The monitor uses the current knowledge 

and the pre-processed data to update the 

knowledge models

The monitor may perform a check to 

identify whether an analysis step is 

required or not

Simple check: values exceed thresholds

Advanced check: detect trends or patterns



Analyzer Function

The role of the analyzer function is to (1) assess the up-to-date knowledge and (2) 

determine whether the system satisfies the adaptation goals or not, and if not, to (3) 

analyze possible configurations for adaptation
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Analyzer Workflow
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Analyzer Workflow: Activation
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Externally triggered: e.g., by 
Monitor.

Periodic trigger: fixed time 
intervals.

Continuous cycles: restarts 
after previous cycle.



Analyzer Workflow: Assessment
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Assesses the actual conditions 
based on the knowledge 
(adaptation goals) to determine 
whether adaptation needs or not

Simple: Check if any adaptation 
goal is violated → initiate 
adaptation

Advanced: Compute utility 
combining weighted quality 
properties



Adaptation options are 
composed

Set of configurations reachable 
from the current configuration 
by adapting the managed
system

Exhaustive, Distance-based, 
Advanced

Analyzer Workflow: Adaptation (1)
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Defines how well each option 
meets adaptation goals

Mechanism types

● Reactive: uses past 

knowledge

● Active: uses current system 

state

● Proactive: predicts future 

outcomes

Analyzer Workflow: Adaptation (2)
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Analyzer Workflow: Fail-Safe Strategies
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When preparing the adaptation 

plan, analysis may fail

Alternative choices:

1) Do not adapt the system

2) Apply predefined safe 

configuration 

3) Bring system to safe stop



Planner Function

The role of the planner function is to select the best adaptation option and generate a 

plan for adapting the managed system from its current configuration to the new 

configuration defined by the best adaptation option

In the event that a fail-safe strategy needs to be applied, the planner only needs to 

generate an adaptation plan to bring the system to a safe state
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Planner Workflow

56



Planner Workflow: Activation 

the planner determines the best 

adaptation option based on the 

adaptation goals

Two mechanisms for selecting:

1. Rule-based goals

2. Utility-based goals
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Planner Workflow: Activation 

the planner determines the best adaptation option based on the adaptation goals

Two mechanisms for selecting:

1. Rule-based goals 

a. Divide options into compliant vs. non-compliant with threshold rules

b. Rank compliant options based on minimizing or maximizing quality properties

2. Utility-based goals

a. Rank options based on expected accumulated utility
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The Planner creates a plan (sequence of 

actions) detailing the actions (executable 

units) needed to adapt the system

Planning criteria:

● Quality: likelihood of achieving 

adaptation goals

● Timeliness: speed of generating the 

plan

● Tradeoff

Planner Workflow: Planning and Adaptation Actions
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Several planning mechanisms exist. The choice depends on system complexity and 

required performance

Reactive planners:

● Fast, use condition-action rules or finite state machines

● Parameterized for the current context

State-variable planners:

● Represent system states and actions

● May face combinatorial explosion in large systems

After plan generation, the Planner triggers the Executor function

Planning Mechanisms
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Once the adaptation plan has been 

generated, the planner triggers the 

executor function

Planner Workflow: Planning and Adaptation Actions
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Executor Function

The Executor function is responsible for carrying out the adaptation plan generated by 

the Planner. It applies adaptation actions to the managed system, ensuring that the 

system transitions from its current configuration to the new configuration.

Key Points:

● Activated externally by the Planner

● Executes the adaptation plan step by step

● Uses effectors to enact changes on the managed system

● Waits for confirmation that each action has taken effect before proceeding
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Executor Workflow
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Executor Workflow: Executing Actions
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Adaptation actions are executed 
according to the plan (ordered or 
unordered)

Ordered plans: first action executed 
first, following the sequence

Unordered plans: any action can be 
selected



Executor Workflow: Confirmation and Plan Completion
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After executing an adaptation action, 
the Executor confirms its effect 
and decides whether to continue 
with the next action or end the plan

Confirmation can be obtained via:

● Direct notification from the 

managed system

● Delegation to the Monitor function

● Waiting for predefined time 

windows



Software Evolution Overview

Software evolution is the process of repeatedly updating software after its initial 

deployment. Updates are necessary to correct faults, improve performance, adapt to 

environmental changes, or add new functionality. Modern systems demand updates 

with minimal or no service interruption.
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Evolution Management Artifacts and Activities
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Development 
models can be very 
diverse, including 
specifications of 
requirements, 
design, 
deployment, 
processes, etc

The system 
implementation 
includes the actual 
code, supporting 
infrastructure, 
deployment
scripts, and other 
related artifacts



Triggers for Software Evolution

Software evolution can be triggered externally, based on planned changes, or 

internally, in response to system observations

• External triggers: requests for new functionality, strategic release plans

• Internal triggers: detection of bugs, failure to meet performance or quality 

objectives

Enables proactive and reactive evolution
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Self-Adaptation Management Overview

Self-adaptation management is the process through which a software system 

automatically adjusts its behavior or structure in response to internal or external 

changes. It ensures that the system continues to meet its goals without requiring 

constant human intervention.
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Core Artifacts and Activities
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Represent system 
state, environment, 
and goals 
(Knowledge)

The system being 
observed and 
adapted

Activities (MAPE loop)

Adaptation can be 

reactive or proactive



Integrating Software Evolution and 
Self-Adaptation (1)
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Evolution management and self-adaptation management are complementary activities 

that deal with different types of change

Handles anticipated change; may operate 
automatically

Anticipated = the system has been built such 
that it can detect the change and handle it in 

some way

Handles unanticipated change; requires 
human involvement



Integrating Software Evolution and 
Self-Adaptation (2)
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Interacting activities
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Adaptation Triggers Evolution (1) 
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The analysis element of the feedback loop 
discovers a problem for which no 
mitigation plan is available



Adaptation Triggers Evolution (2) 
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This triggers evolution management,
which will process the request



Adaptation Triggers Evolution (3) 
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The evolved planner models and 
corresponding implementations will 
be added



Adaptation Triggers Evolution (4) 
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Finally, the running system will be 
updated, resolving the initial problem



Evolution Triggers Adaptation (1)
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An update of the running managed 
system is requested



Evolution Triggers Adaptation (2)
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This request will trigger evolution 
management, which will initiate an update 
of the system model and a corresponding 
evolution of the system implementation



Evolution Triggers Adaptation (3)
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Adaptation management will be triggered 
to update the runtime model of the system 
and the running code accordingly



Wave II
Architecture-based Adaptation
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Engineering SAS Architecture

Wave I → motivation, set of principles and concepts

Wave II → abstractions that enable designers to define self-adaptive systems

      → modeling abstractions that enable the system to reason about change
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Handling Change in Software Systems

Changes were usually managed using internal mechanisms tied directly to the system’s 

code (e.g., exceptions, protocols, etc.)

However, modern approaches like self-adaptation use external mechanisms 
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Tightly coupled with 

code → difficult to 

modify and reuse

Enable modularity, 

reusability, and 

easier updates



Why a Software Architecture Perspective?

A software architecture perspective offers a structured way to manage runtime 

adaptation using external feedback loops ensuring maintainability and scalability

1. Separation of concerns

2. Integrated approach

3. Leveraging consolidated efforts

4. Abstraction to manage system change

5. Dealing with system-wide concerns

6. Facilitating scalability
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Why a Software Architecture Perspective?
Separation of concerns: divide a software system into parts that address specific goals. Separating domain 

functionality, handled by the managed system, from adaptation logic, handled by the managing system

Integrated approach: connects all stages of system engineering, from configuration and deployment to runtime 

adaptation and maintenance

Leveraging consolidated efforts: By relying on proven specification languages, design patterns, and tactics, 

engineers can reuse consolidated knowledge and methods

Abstraction to manage system change: Modeling a system as components and their connections allows 

engineers to reason about adaptation at a higher level, focusing only on what matters for change while hiding 

unnecessary detail

Dealing with system-wide concerns: An architectural view enables a global understanding of the system. It allows 

monitoring and reasoning about system-wide properties such as performance, reliability, and security

Facilitating scalability: support composition and hierarchy, making it possible to manage systems at multiple 

levels of granularity. This property is essential for the self-adaptation of large-scale and complex applications
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The three-layer model provides an architectural view of self-adaptive systems, 

organizing adaptation activities into distinct layers of increasing complexity

Three-Layer Model for Self-Adaptive Systems
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Reactive Planning Strategy

Inspired by robotic architectures



Three-Layer Model
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realizes a 
MAPE-based 
workflow



Component Control Layer (1)
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Components sense and effect the environment in order to realize the 
goals for the users of the system

Handles runtime events using built-in techniques such as exceptions to maintain normal execution



Component Control Layer (2)

89

Equipped with instrumentation to 

report the system’s current status to 

higher layers

Enable runtime modifications (adding, 

removing, reconnecting, or 

reconfiguring components).



Change Management Layer (1)
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Change management reacts in 

response to status changes of the 

bottom layer by analyzing the changes

Reactive 
Approach



Change Management Layer (2)
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Centered on a set of plans, which are typically predefined. Each plan defines a strategy for adapting the 

system (e.g., adjust parameters, replace components)



Change Management Layer (3)
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Executes plans through change actions that adapt the configuration of the bottom layer. These actions 

perform the concrete adaptation: tuning parameters, adding/removing components, changing links



Change Management Layer (4)
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If a condition is reported that cannot be handled by the available plans, the change management layer 

invokes the services of the goal management layer



Change Management Layer (5)
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The upper layer provides new or updated plans in response to the request



Goal Management (1)
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Goal management can also be triggered by 

stakeholders that want to change goals or 

introduce new goals

Deliberative 
Approach



Goal Management (2)

A request from change management will trigger goal management to 

analyze the situation 96



Goal Management (3)
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Select alternative goals based on the current status of the system. Instantiated 

goals or alternative goal sets generated by the reasoning in Goal Management



Goal Management (4)

Generate plans to achieve these alternative goals. The new plans are 

then delegated to the change management layer 98



Mapping Between the Three-Layer Model and the Conceptual Model for Self-Adaptation
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Mapping Between the Three-Layer Model and the Conceptual Model for Self-Adaptation
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Makes an explicit 
distinction between 
the functionality of 
the managing system

Realizing the adaptation goals 
given the current conditions

Reasoning about and selecting 
the adaptation goals



Runtime Architecture of Architecture-based Adaptation (1)
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Architectural model 
to realize 
self-adaptation



Runtime Architecture of Architecture-based Adaptation (2)

102Provides domain functionalities to the users

Observing the 
system

Applying changes to 
the system



Runtime Architecture of Architecture-based Adaptation (3)

103

Components forming a feedback loop

Implement the basic functions 
of a managing system

Encodes domain-specific 
knowledge of the system



Architecture-based Adaptation of the Web-based Client-Server System (1)

Web-based client-server system with multiple server groups. Clients send stateless requests to 

servers via network links. Each server group manages incoming requests through a request queue.
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Adaptation Focus:

● Goal: Optimize performance, 
specifically client response time

● Key influencing factors: Server 
load, Network bandwidth, 
Number of incoming requests 
(dynamic & unpredictable)

Monitor & Control:

● ClientType.responseTime
● ServerType.load
● LinkType.bandwidth

Adaptation goal (constraint for each client):



Architecture-based Adaptation of the Web-based Client-Server System (2)
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Architecture-based Adaptation of the Web-based Client-Server System (2)
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Keeps track of the 
response time of 
clients, the server 
load, and the
bandwidth of links



Architecture-based Adaptation of the Web-based Client-Server System (2)
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Periodically checks 
whether the 
measured response 
time of clients is 
below a required 
threshold 
bandwidth of links



Architecture-based Adaptation of the Web-based Client-Server System (2)
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Executes the 
response time 
strategy adding a 
server to the 
group, decreasing 
the load and 
consequently also 
the response time



Applies the 
required operators 
to adapt the 
system, i.e. adding 
a server to the 
group if the load of 
the current server 
group is too high

Architecture-based Adaptation of the Web-based Client-Server System (2)
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Comprehensive Reference Model for Self-Adaptation
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Perceivable 
characteristic of 
the environment

Activity that can 
change the 
environment 
attributes
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Wave III
Architecture-based Adaptation
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The Third Wave of Self-Adaptation

The third wave centers on runtime models, models used by the system during operation 

to reason, decide, and adapt

Purpose:

1. Manage the complexity of concrete designs

2. Support autonomous decision-making

3. Keep system understanding up to date during runtime
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Runtime Models – From Design to Operation

Benefits:

1. Enable systems to reason about themselves and their context

2. Allow continuous adaptation to changing conditions

3. Bridge the gap between design-time abstraction and runtime reality
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Offline

Model-driven engineering

Engineers refine models before 

deployment

Online

Runtime models

systems refine and update models during 

execution



What is a Runtime Model?

Managed System Model

Environment Model

Adaptation Goals Model

MAPE Working Model
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A runtime model is a first-class runtime abstraction of a system, or any aspect related 

to it, used to realize self-adaptation

Used both as shared 
knowledge among MAPE 
components and as active 
elements in executing the 
adaptation loop



Runtime models must stay consistent with the system or aspects they represent,  

especially as the system changes dynamically

Outdated models can lead to poor or inaccurate adaptation decisions

Casual connection → ensures that if the system changes, the representation of the 

system also changes, but also if the representation changes, the system changes 

accordingly

Causality in Runtime Models
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Real-time synchronization Full controllability



Issues of “strong” causality

1. Delay in the update of model or system

2. Runtime models may not represent the ground truth when dealing with 

uncertainty

Weak causality Links the state of a runtime model and the system, allowing an 

acceptable discrepancy (temporal, quantitative, etc.)

Weak Causality
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Motivations for Runtime Models (1)

Representing Dynamic Change:

1. Capture system evolution at an abstract, system-wide level

2. Focus on relevant runtime aspects, omitting low-level details

Separation of Concerns:

1. Different models for different system aspects

2. Enable tracking, understanding, prediction, and planning

Runtime Reasoning:

1. Support monitoring, constraint checking, simulation, and “what-if” analysis

2. Enable formal reasoning for reliable adaptation decisions
119

Enable systems to adapt intelligently at runtime through model-based reasoning and abstraction



Leveraging Humans in the Loop:

1. Models designed for human readability (e.g., domain-specific languages)

2. Support human participation in:

a. Data enrichment

b. Evaluation and decision-making

c. Guiding large-scale adaptation

Facilitating On-the-Fly Evolution:

1. Runtime models act as living design artifacts

2. Enable detection of issues and live updates during operation

3. Models can evolve and be redeployed dynamically

Motivations for Runtime Models (2)
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Dimensions of Runtime Models

Runtime models can be classified according to different dimensions

Dimension → describes a particular characteristic of the representation of a 

self-adaptive system or aspects related to the system

Options → represent the extremes of the domain 
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Structural Models

● Focus on system composition (elements and 

their relationships)

● Represent types or instances at varying 

abstraction levels

● Capture what the system is (its architecture and 

configuration

● Useful for reasoning about system organization 

and structure changes

Structural vs. Behavioral Runtime Models
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Behavioral Models

● Focus on dynamic behavior and changes over 

time

● Describe Activities (event sequences, 

control/data flows)

● Describe State changes (transitions, protocols, 

interactions)

● Capture how the system behaves and evolves

● Useful for analyzing runtime processes and 

interaction dynamics
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Declarative Models

● Describe what needs to be achieved or what is 

true

● Capture goals, constraints, or desired states

● Focus on purpose and outcomes, not steps

Example: an adaptation goal defining system 

performance targets

Declarative vs. Procedural Runtime Models
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Procedural Models

● Describe how something is or should be done

● Capture processes, plans, and actions for 

adaptation

● Focus on execution and method

Example: a plan specifying steps to adapt the system
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Procedural model

Declarative model



Functional Models

● Represent the functionality of the system or its 

components

● Describe elements, their functions, and 

interrelations

● Capture inputs, outputs, and data flows

● Support functional analysis  e.g., checking 

validity of system reconfigurations

● Ensure the system continues to provide required 

services after adaptation

Verify what the system does and how its functions 

interact

Functional vs. Qualitative Runtime Models
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Qualitative Models



127



Defined by ISO 9126/25010: 

“the set of characteristics, and the relationships between them, that provides the basis for specifying quality 

requirements and evaluation.”

Key Properties:

• Discretization: represent continuous aspects via discrete values for reasoning

• Relevance: focus on properties meaningful for decision-making

• Accuracy: maintain precision despite uncertainty

Examples:

• Markov Models: stochastic state–transition models for reliability prediction

• Queuing Models: analyze performance based on workload and response time

Qualitative Runtime Models
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Formal vs. Informal Runtime Models
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Formal Models

● Based on mathematical foundations (discrete 

math, logic, automata)

● Have well-defined syntax and semantics 

● Enable automated reasoning and guarantees for 

strict adaptation goals

● Produce replicable analytical results

● Limitations: hard to capture all real-world 

aspects; modeling can be complex

Informal Models

● Use domain abstractions or programming-oriented 

notations without full formal basis

● Easier and faster to apply; suitable when 

formalization is impractical or too costly

● May include stakeholder input or heuristic 

reasoning

● Less precise → may involve interpretation or 

ambiguity

● Practical for real-world adaptation when full rigor 

isn’t required
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Principal Strategies for Using Runtime Models

How a runtime model can be used? 3 strategies
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Exchanged Model StrategyShared Model Strategy Shared MAPE Model Strategy

All MAPE components access a 

common set of runtime 

models. Most frequently used 

in self-adaptive systems. 

Promotes consistency and 

centralized knowledge

MAPE components exchange only 

the models they need. Reduces 

data sharing overhead. Less 

commonly used

MAPE models themselves share a 

common runtime model set. 

Supports modular design of MAPE 

components. Less frequently 

applied
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MAPE Components Share Models

All MAPE components access a common knowledge repository. Centralizes runtime models for 

the managed system and environment

Workflow: 

1. Monitor → updates runtime models with probe data (system + environment)

2. Analyzer → queries models via runtime simulation; evaluates adaptation options. Configures 

parameterized quality models

3. Planner → reads analysis results from models to select adaptation option. Generates adaptation plan and 

writes it to models

4. Executor → reads plan from models and applies it to the system
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MAPE Components Exchange Models

MAPE components exchange runtime models instead of using a single shared repository. 

Components reason on and manipulate models relevant to their function. Adaptation emerges as a 

result of model exchanges and updates
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System Architecture (Three Layers):

1. Business Application (Bottom Layer)

○ Managed system with application components

○ Equipped with sensors and factories for runtime monitoring and instantiation

2. Causal Connection (Middle Layer)

○ Implements weak causal connection between runtime models and managed system

3. Online Model Space (Top Layer)

○ MAPE components manipulate runtime models

○ Five adaptation components exchange four types of runtime models
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System Architecture (Three Layers)
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1. Business Application (Bottom Layer)

○ Managed system with application 

components

○ Equipped with sensors and factories for 

runtime monitoring and instantiation

2. Causal Connection (Middle Layer)

○ Implements weak causal connection 

between runtime models and managed 

system

3. Online Model Space (Top Layer)

○ MAPE components manipulate runtime 

models

○ Five adaptation components exchange four 

types of runtime models



System Architecture Runtime Models
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Specifies the system’s variability, including 

mandatory, optional, and alternative features, along 

with constraints among them, linking features to 

architectural fragments

Associates sets of features with contexts, often as 

event-condition-action rules, to trigger adaptation 

actions based on system events and condition

Captures relevant environmental attributes and 

processes, kept up-to-date at runtime using sensor 

data to inform adaptations

Defines the component composition of the business 

application, supporting dynamic reconfigurations and 

refining feature model leaves into concrete 

architectural fragments



MAPE Models Share Models

Runtime models are shared by MAPE functions themselves. MAPE functions are specified and executed as 

runtime models, making the adaptation logic fully model-centric
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MAPE Models Share Models
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 Represent architectural aspects of the managed 

system and environment

Define allowed configurations and thresholds on 

quality properties

Define the space of allowed system variability for 

planning

Map plan-level steps to concrete system-level adaptation 

actions

Map system observations to the abstraction used in 

reflection models
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Wave IV
Requirements-driven Adaptation
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Requirements-driven Adaptation

Focuses on requirements understanding stakeholder needs and linking them to 

adaptive behavior. Self-adaptive systems must be built on a clear understanding of 

requirements, not ad-hoc feedback loops

Adaptation goals express stakeholder concerns in a machine-readable, operational form 

to guide system adaptation
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Requirements Engineering Focus

Key activities:

1. Elicitation → Identify stakeholders’ needs, system goals, and adaptation conditions

2. Analysis → Examine and prioritize requirements; resolve conflicts and trade-offs

3. Specification → Clearly define requirements (often as adaptation goals or rules)

4. Operationalization → Link requirements to system elements and feedback loops 

for execution

5. Maintenance → Update and refine requirements as the system and context evolve
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Three Main Approaches

144

1) Relaxed Requirements → Tolerate uncertainty in dynamic environments

2) Meta-Requirements→ Specify requirements about other requirements to guide 

adaptive behavior

3) Feedback Loop Requirements → Define functional behavior and adaptability of 

feedback mechanisms



Relaxing Requirements for Self-Adaptation

Traditional Requirements

● Define what a system should do (functions) and how it should perform (qualities)

● May include why the requirements exist (stakeholder rationale)

● Common notations:

○ Use cases, user stories → functional requirements

○ Structured natural language, quality scenarios, goal models → quality requirements
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Relaxing Requirements for Self-Adaptation

Challenge for Self-Adaptive Systems

● These systems face uncertainty in environment and operation

● Traditional requirement methods are often too rigid

Relaxed Requirements Approach

● Uses structured natural language to make requirements more flexible

● Allows adaptation goals to be “relaxed” to handle changing or uncertain conditions.

● Example: Instead of “Response time must always be < 2s”, use “Response time should be < 2s under normal 

conditions.”
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Relaxed Specification Approach

Introduces a structured language to mark:

● Invariants → requirements that must always hold

● Relaxable requirements → can temporarily change under certain conditions

Based on the RELAX Language

● Designed specifically for self-adaptive systems

● Provides explicit support for expressing uncertainty and flexibility in requirements
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The RELAX Language
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The RELAX Language
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Modal Operators: define obligation level 

(e.g., SHALL, MAY)



The RELAX Language
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Temporal Operators: add flexibility to 

when a requirement must hold

Relaxation:

● Strict: “The system SHALL keep packet 

loss under a threshold at all times.”

● Relaxed: “The system SHALL keep 

average packet loss under a threshold 

IN 12 hours.”



The RELAX Language
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Ordinal Operators: add flexibility to 

quantities or degrees



Semantics of Language Primitives

Every specification language needs precise semantics to ensure consistent 

interpretation. For relaxed requirements, semantics are often defined using fuzzy 

temporal logic
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Fuzzy Temporal Logic Basics

Temporal Logic: describes properties over system paths and states

Example: AG p → for all paths (A), p always (G) holds

Fuzzy Sets: extend classical logic (true = 1, false = 0) with degrees of truth ∈ [0, 1]

Enables reasoning under uncertainty
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Operationalization of Relaxed Requirements

Transform relaxed requirements into self-adaptive system behavior.

Core aspects
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Handling uncertainties Requirements reflection Mitigation mechanisms



Handling Uncertainty

1. Identify sources of uncertainty

○ Determine environmental or behavioral factors that may prevent strict satisfaction of requirements.

2. Analyze each requirement

○ Decide if it must always hold (invariant) or can be relaxed under certain conditions.

3. Document uncertainty conditions

○ Define when and why relaxation is allowed (e.g., overload, interference, data loss).

4. Monitor uncertainty

○ Use sensors to detect and quantify uncertainty sources at runtime.

5. Enable self-adaptation

○ Apply appropriate relaxation operators (e.g., IN, AS CLOSE AS POSSIBLE TO) to support adaptive responses.
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Requirements Reflection and Mitigation Mechanisms

From Specification to Operation

● The textual language defines how to express relaxed requirements,

 but not how the system implements them.

● Operationalization requires:

○ Integration of requirements, uncertainties, and adaptations into one unified framework.

Requirements Reflection

● Applies computational reflection to requirements.

● Makes requirements accessible at runtime → the system can inspect and analyze them.

● Enables runtime adaptation decisions to mitigate uncertainties.
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A Note on the Realization of Requirements Reflection

Requirements reflection ≠ adaptation goals

In self-adaptive systems, adaptation goals are runtime entities representing stakeholder 

requirements

Designers must translate stakeholder requirements into machine-readable adaptation 

goals used by the feedback loop
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Full requirements reflection: where requirements remain active and inspectable at runtime

Goal modeling provides a foundation for realizing it within a model-driven engineering approach

The process:

● Capture uncertainties and stakeholder goals 

● Progress through design, implementation, and deployment 

● Keep the goal model alive at runtime.

Realization Challenges
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Meta-Requirements for Self-Adaptation

What is the requirements problem a feedback loop for self-adaptation is intended to 

solve?

The feedback loop addresses problems related to the runtime success or failure of other 

system requirements

Thus, the requirements of the managing system are meta-requirements — i.e., 

requirements about the requirements of the managed system

These define the concerns of the managing system in the conceptual model of 

self-adaptive systems
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Modeling Approach

Awareness Requirements – specify when adaptation is needed

● Identify situations where managed system requirements are violated or at risk

Evolution Requirements – specify how the system should adapt

● Define actions or strategies to restore or improve system behavior.
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Awareness Requirements (1)

Express situations where deviations from regular system requirements are acceptable.

Define the degree of success or failure that stakeholders can tolerate.

Evaluated at runtime, enabling adaptive responses when deviations occur.
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Awareness Requirements (2)
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Awareness Requirements Examples

Regular AR1: Fail-safe Operation → NeverFail

Aggregate AR2: Packet Loss ≤ 10% → SuccessRate(100%, 12h)

Delta AR3: ComparableDelta(SetFailsafe, TransmitPackets, 1 cycle)
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Modeling Awareness Requirements

Goal-Oriented Requirements Engineering 

(GORE):

● Represents goals, softgoals, and 

quality constraints.

● Decomposes goals into tasks linked 

to responsible actors.

● Awareness requirements (AR1–AR3) 

integrated into the goal model to 

monitor runtime satisfaction.
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Evolution Requirements

Prescribe the actions or changes the system must perform when awareness 

requirements are triggered.

Define how the system should adapt or evolve in response to detected deviations.

Represented as sequences of operators that modify:

● Elements or instances of the goal model, or

● The managed system and/or managing system (feedback loop)
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Evolution Requirements Operators
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An Example

The adaptation strategy Reconfigure defines a sequence of two operations to deal with failures of the awareness 

requirement SuccessRate(100, 12) (i.e. AR2). The strategy takes  as arguments an algorithm algo to find a new 

configuration and the awareness requirement ar that triggered the strategy. The algorithm uses the current 

configuration c, the network settings NWS (i.e. the control variables) that define the adaptation options to select 

a new configuration, and the adaptation goals AG to determine the best option. The strategy, which is executed 

when the awareness requirement fails, will find a new configuration that satisfies the goals and adapt the 

managed system accordingly.
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Operationalization of Meta-Requirements

Operationalization means translating meta-requirements (awareness + evolution 

requirements) into executable self-adaptive behavior at runtime.

The system must include mechanisms that allow it to monitor, decide, and adapt 

dynamically.
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Key Components Needed
Runtime Goal Model 

 A live representation of the system’s goals, implemented (e.g., via object-oriented classes and runtime 

objects).

Monitoring Framework 

 Probes continuously track the parameters of awareness requirements (e.g., packet loss for AR2).

Mitigation Mechanisms 

 Implement adaptation strategies (from evolution requirements) to correct deviations.

System Support (Effectors) 

 Enact the required operations on the managed system (e.g., reconfiguration, enabling/disabling goals).
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Implementation Strategy

Often realized using Event-Condition-Action (ECA) rules:

Event: change in monitored parameter (e.g., packet loss increases).

Condition: requirement constraint violated (e.g., loss > 10%).

Action: execute adaptation strategy (e.g., reconfigure network).
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Functional Requirements of Feedback Loops

Focuses on requirements about the behavior of feedback loops themselves, rather than 

stakeholder requirements.

Ensures that MAPE components (Monitor, Analyze, Plan, Execute) perform their functions 

correctly.

1. Software Testing

○ Executes software against test cases to detect and correct errors.

○ Verifies correctness relative to a set of test scenarios.

2. Formal Verification

○ Uses mathematical techniques on a formal model to guarantee correctness.

○ Must be complemented by validation to ensure the system meets stakeholder needs.
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Design and Verify Feedback Loop Model
Correct-by-Construction Modeling

 Requires three main elements:

1. Formal models of MAPE-K components (Monitor, Analyzer, Planner, Executor, Knowledge).

2. Formally specified properties of functional requirements.

3. Model verifier to check that the model satisfies these properties.

Uses timed automata and Computational Tree Logic (CTL).

Examples of properties:

1. P1: Monitor.AnalysisRequired → Analyzer.CheckForAdaptationNeed

2. P2: Analyzer.AdaptationNeeded → Verifier.VerificationCompleted

3. P3: Analyzer.RuntimeVerification && Analyzer.time ≥ Analyzer.MAX_VERIF_TIME → 

Analyzer.UseFailSafeStrategy

Ensures correct behavior of functions, guards, and invariants.
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An Example

173

Monitor: updates knowledge (quality properties, uncertainties) and checks if 
analysis is needed.

Analyzer: evaluates if adaptation is required; composes and verifies options.

Planner & Executor

● Selects the best adaptation option.

● Adapts the managed system accordingly.

Fail-Safe Mechanism

● Analyzer enforces a maximum verification time.

● If exceeded → fail-safe strategy is applied.



Deployment Requirements
After verification, feedback loop models are deployed for runtime execution to realize self-adaptation.

Direct execution ensures that correctness guarantees from design and verification are preserved.

1. Model Execution Engine

○ Executes feedback loop models according to model semantics.

○ Preserves verification guarantees.

2. Integration with Probes, Effectors, and Verifier connect models to:

■ Probes → monitor system parameters

■ Effectors → enact adaptations

■ Verifier → analyze adaptation options at runtime

3. Correctness of Connectors and Engine ensured via:

■ Extensive testing, or

■ Formal proofs
174
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Wave V
Guarantees Under Uncertainties
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Guarantees Under Uncertainties

Focus shifts to guaranteeing compliance with adaptation goals despite uncertainty.

Builds on insights from:

● Third Wave (Runtime Models): uses probabilistic models to reason about uncertainties.

● Fourth Wave (Requirements-Driven Adaptation): highlights importance of uncertainty in system 

requirements.

Uncertainty becomes a central driver for self-adaptation
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Uncertainties in Self-Adaptive Systems

Uncertainty in self-adaptive systems is any deviation of deterministic knowledge that may reduce 

the confidence of adaptation decisions made based on the knowledge.

Two main types:

● Aleatoric: imprecision in knowledge (common in self-adaptation)

● Epistemic: lack of knowledge

Poorly mitigated uncertainty can lead to inaccurate or unreliable adaptation, degraded quality, or 

safety violations

Managing uncertainty increases trustworthiness of the system
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Sources of Uncertainty

System-related

● Simplifying assumptions, model drift, incompleteness, future parameter values

● Uncertain adaptation functions, decentralized decision-making, automatic learning

Goal-related

● Requirements elicitation, conflicting qualities, future goal changes

Context-related

● Inaccurate context models, noisy sensing, multiple or inconsistent data sources

Human-related

● User input variability, multiple ownership, hidden/confidential information
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Sources of Uncertainty
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Taming Uncertainty with Formal Techniques

Taming uncertainty focuses on the analysis and planning stages of the self-adaptive workflow. It relies on formal 

techniques applied at runtime to support reliable adaptation decisions

Decision-Making Process:

1. Analysis Phase:

○ The analyzer uses formal verification to evaluate possible adaptation options

○ Ensures each option meets the system’s goals and constraints

2. Planning Phase:

○ The planner compares the verified options

○ Selects the best adaptation option based on verification results and adaptation goals
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Use formal runtime verification to reduce uncertainty in decision-making 

and ensure goal compliance under changing conditions



1. Read: The analyzer reads the runtime models of the managed system, 

environment, and adaptation goals to identify possible adaptation options 

(system reconfigurations)

2. Configure: For each adaptation option, the analyzer configures the quality 

models, setting parameters that represent system configurations and 

environmental uncertainties

3. Invoke Query: The analyzer calls the model verifier to check each 

configured quality model against a property corresponding to a specific 

adaptation goal

4. Verify: The model verifier performs formal verification, producing an 

estimate (prediction) of a quality property for each adaptation option

5. Write: The verification results are written to the knowledge base, 

recording the predicted quality values for all adaptation options

Formal Analysis Workflow
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Selection of Best Adaptation Option

1. Read: The planner retrieves adaptation goals and verification results from 

the analyzer

2. Select: It applies a decision-making mechanism such as a utility function 

(weighing quality properties and their importance) or a rule-based system 

to rank and choose the best adaptation option. Options failing threshold 

criteria (e.g., too costly) are discarded

3. Read: The planner reads the current system configuration to prepare for 

adaptation

4. Generate Plan: A plan is generated to transition the system from its current 

state to the selected configuration

5. Write: The plan is stored in the knowledge base, where the executor 

retrieves it to carry out the adaptation actions

183



Exhaustive Verification to Provide Guarantees for Adaptation Goals

This approach ensures that a self-adaptive system meets its adaptation goals through runtime quantitative (exhaustive) 

verification.

Quantitative verification checks if probabilistic or quantitative properties (e.g., message loss probability, response time) 

hold for Markov-based models of systems with stochastic behavior

In the MAPE feedback loop, the analyzer applies this verification at runtime to evaluate the quality of each adaptation 

option, while the planner selects the option that best satisfies the goals

In the example system, users access composed web services provided by different providers, each offering varying quality 

attributes like reliability, response time, and cost. Verification ensures that the chosen configuration provides the best 

trade-off between these properties
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Human: Variations in how 

users use the services

Architecture of a feedback loop that uses exhaustive verification
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Context: Variations in the 

failure rates of concrete 

services

System: Variations in the 

availability of concrete 

services

R1: The probability that a failure of 

the workflow execution occurs 

must be less than 0.14

R2: The cost of executing the 

workflow should be minimized



Architecture of a feedback loop that uses exhaustive verification

The Monitor observes the live behavior of the service-based system, 

for instance, tracking how often a medical analysis service or an alarm 

service fails during operation

It updates an operational model (a probabilistic model such as a 

Discrete Time Markov Chain) with the current reliability and usage 

data of each service

Example: if the failure rate of the drug service suddenly increases, the 

Monitor updates that value in the runtime model so later analysis 

reflects the new risk
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Architecture of a feedback loop that uses exhaustive verification

When quality goals (like reliability) are not met, the Analyzer starts an 

evaluation of possible configurations. It instantiates the operational 

model for different combinations of services and uses quantitative 

verification (e.g., via the PRISM tool) to check which ones meet the 

reliability requirement

Example: it may verify if using “Drug Service 2” together with “Alarm 

Service 1” keeps the probability of workflow failure below the 

accepted threshold
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Architecture of a feedback loop that uses exhaustive verification

The Planner examines the verified configurations and selects the one 

that best satisfies the adaptation goals while optimizing other criteria 

such as cost

Example: among all service combinations that keep reliability above 

target, the Planner chooses the one that provides the same reliability 

at the lowest cost

188



Architecture of a feedback loop that uses exhaustive verification

Once a plan is ready, the Executor applies it to the running system. It 

reconfigures the workflow by deactivating the old service instances 

and activating the new selected ones

Example: it may replace the failing “Drug Service 1” with “Drug 

Service 2” and connect it to the workflow engine so requests are 

automatically redirected
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Statistical Verification to Provide Guarantees for Adaptation Goals

This approach ensures efficient runtime adaptation under uncertainty using statistical model checking (SMC), 

which estimates property satisfaction through simulation and statistical analysis rather than exhaustive 

verification

It provides results with controllable accuracy–confidence trade-offs, reducing verification time and 

computational cost
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An Example

191

Context: network interference

System: fluctuating traffic load

R1: average packet loss ≤ 10% 

over 12 hours

R2: minimize energy 

consumption

R3: use default settings if no 

feasible configuration exists



An Example
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The Monitor collects data (packet loss, 
traffic load) to update a Configuration 
model

When variations exceed thresholds, the 
Analyzer evaluates possible configurations 
using quality models that predict energy use 
and packet loss

These models are verified through UPPAAL 
SMC, which runs multiple simulations to 
estimate average energy consumption with 
defined accuracy and confidence

The Planner then selects the best adaptation 
option by applying two goals:

1. Filter configurations that meet R1 
(packet loss ≤ 10%).

2. Among those, choose the one with 
minimum energy consumption (R2).

Executor finally enacts these settings, 
completing the adaptation cycle.



Proactive Decision-Making using Probabilistic 
Model Checking

This approach enhances self-adaptation by making proactive decisions — anticipating future changes instead of 

reacting only when problems occur

It is inspired by Model Predictive Control (MPC) and applies probabilistic model checking to plan a sequence of 

adaptations that maximize long-term utility rather than short-term fixes
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 Example System: RUBiS (1)

RUBiS is a web-based auction application composed of:

● A Web tier receiving user requests

● A Server tier processing requests

● A Database tier storing data

● A load balancer distributing requests among servers
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 Example System: RUBiS (2)
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Response time of 

requests

System load and 

resource usage

The goal is to maximize overall utility, 

balancing revenue and operational cost 

over a look-ahead horizon



 Example System: RUBiS (3)

Server management

● Add server (increases capacity; slow due to startup latency)
● Remove server (frees cost instantly)

Brownout mechanism

● Dimmer control adjusts how much optional content (like 
recommendations) is included in responses.

● Lowering the dimmer reduces load but slightly lowers user 
experience (and revenue).
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 Example System: RUBiS (4)

Monitor collects data such as:

● Current number of active servers

● Current dimmer setting

● Request arrival rate

● Average response time
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 Example System: RUBiS (4)

Decision-Making (Analyze + Plan combined)

● Runs periodically (every τ minutes).

● Uses a Markov Decision Process (MDP) model to 

simulate system behavior and uncertainties (e.g., 

possible traffic patterns)

● Employs a probabilistic model checker (e.g., 

PRISM) to:

○ Explore possible future evolutions over a 

look-ahead horizon (n·τ)

○ Evaluate which tactics maximize 

accumulated utility

○ Synthesize an optimal adaptation strategy
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 Example System: RUBiS (5)

Applies only the first set of actions from the best strategy 

(e.g., “reduce dimmer and add one server”)

The strategy is recomputed at the next cycle, keeping the 

system adaptive to new conditions
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Integrated Process to Tame Uncertainty

Uncertainty prevents full assurance of requirement compliance before deployment

Self-adaptive systems address this by collecting runtime data, analyzing uncertainties, and adapting dynamically

An integrated process links offline (human) and online (machine) activities across the system life cycle
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The four stages of the integrated process to tame 
uncertainty
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Stage I – Implement and Verify the Managing System

Goal: Build and verify the feedback loop (MAPE) and runtime models

Activities:

○ Encode adaptation goals (e.g., “keep latency < 2s”) in a machine-readable form

○ Build models for the managed system, its environment, and quality parameters (e.g., response time, 

reliability)

○ Define uncertainty parameters (e.g., variable network load) and adaptation options (e.g., add server, lower 

quality)

○ Verify correctness with feedback loop requirements, such as ensuring safe fallback configurations.

○ Use stubs and model checking or testing to validate behavior

Example: For RUBiS, verify that adding a server triggers correctly and that the system can always fall back to a 

single-server configuration
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Stage II – Deploy the Managing System

Goal: Install and connect the verified managing system

Activities:

○ Deploy the MAPE loop and link it to probes and effectors in the managed system

○ Configure the runtime verifier (e.g., model checker) for evaluating adaptation options

○ Ensure reliable communication between components (tested via dedicated code)

○ Load initial parameters (e.g., starting load estimates, cost models)

Example: Deploy the RUBiS adaptation controller and connect it to the load balancer and server control API
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Stage III – Verify Adaptation Options, Decide, and 
Adapt (Runtime)

Goal: Continuously monitor, analyze, and adapt the system

Steps:

1. Compose adaptation options (e.g., add server, dim content)
2. Assign observed values to uncertainty variables (e.g., current request rate)
3. Invoke runtime verification to predict the quality for each option
4. Select and plan the best option using adaptation goals
5. If no valid option is found, use a fail-safe configuration

Example: If RUBiS detects growing load, the system evaluates whether adding a server or dimming 
optional content gives the best utility before acting
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Stage IV – Evolve Adaptation Goals and 
Managing System

Goal: Install and connect the verified managing system

Activities:

○ Deploy the MAPE loop and link it to probes and effectors in the managed system

○ Configure the runtime verifier (e.g., model checker) for evaluating adaptation options

○ Ensure reliable communication between components (tested via dedicated code)

○ Load initial parameters (e.g., starting load estimates, cost models)

Example: Deploy the RUBiS adaptation controller and connect it to the load balancer and server control API
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Wave VI
Control-based Software Adaptation
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Control Theory for Self-Adaptive 
Systems

This wave applies control theory to design and analyze self-adaptive software systems that must operate under 

uncertainty offering mathematically grounded guarantees for their behavior

Control theory provides techniques and tools to design and formally analyze feedback loop systems

A controller forms a feedback loop with a system:

1. Monitors a system variable (affected by disturbances)

2. Compares it to a reference value (goal)

3. Generates control actions to minimize deviation

Enables formal analysis of system properties such as:

● Stability (will the system converge to desired behavior?)

● Accuracy (how close to the target?)

● Settling time (how quickly?)
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Challenges for Software Systems

Applying control theory to software is harder than in mechanical or industrial systems because:

● Software behavior is often non-linear 

● Instrumenting sensors and actuators in software can be difficult

● Multiple, interdependent quality goals (performance, cost, reliability) complicate modeling

● Mathematical complexity of control design is often beyond typical software engineering expertise
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Main Control Strategies Used

Feedback Control

Adjusts system behavior based on measured output vs. 

desired output

Deals effectively with unknown disturbances.

(e.g., adjusting CPU allocation based on measured 

latency)

209

Feedforward Control

Anticipates known disturbances and acts proactively, 

without relying on feedback.

(e.g., pre-scaling servers before a predicted workload 

spike)



Three Approaches Introduced in This Wave
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Proportional-Integral (PI) Control: Handles single goals automatically (e.g., maintaining a target response time)

Multi-goal Control with Optimization: Extends PI control to handle multiple, possibly conflicting objectives

Model Predictive Control (MPC): Uses look-ahead decision-making to optimize adaptation over a future 

horizon, balancing several goals dynamically



A Brief Introduction to Control Theory

211

A control-based computing system consists of a target system that is subject to adaptation and a controller that 

implements a particular control strategy to adapt the target system

The task of the controller is to ensure that the output of the system is as close as possible to the reference input, 

while reducing the effects of uncertainty that appear as disturbances, noise, or imperfections in the models of 

the system or environment used to design the controller



Basic Elements of a Feedback Control Loop
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The external element 
added to the target 
system to dynamically 
adjust its behavior 
based on the difference 
between the measured 
system output and the 
reference input

The element that transforms the 
measured output so that it can be 
compared with the reference input

The system that is 
manipulated by a 
controller to achieve 
the desired output in 
the presence of 
disturbances

Managed 
System

Feedback 
Loop



Signals (functions of time k)
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Desired value of the 
measured output at 
time k

Adaptation 
Goals



Signals (functions of time k)

214

Difference between the reference 
input and the measured output



Signals (functions of time k)
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Parameter setting that allows the 
behavior of the target system to 
be dynamically adjusted



Signals (functions of time k)
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Any exogenous phenomena that interfere with the 
effects of the control input on the measured output



Signals (functions of time k)
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Measurable 
parameter of the 
target system



Purposes of Control

There are three main purposes for control:

1. Regulatory control: aims to keep the measured output equal to (or near) the reference input

2. Disturbance rejection: aims to suppress the effects of disturbances acting on the system

3. Optimization: aims to find the best possible value of the measured output, e.g., minimizing or maximizing 

a system quality property
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Controller Design (1)

Using control theory to build self-adaptive software requires a model of the target system in the form of a 

dynamic system

This model defines the relationship between the effector settings (input variables that can be used to control the 

system), the state variables and internal dynamics, and the control goals (output variables)

The model of the target system is analytic and described mathematically. A system model can be specified 

manually based on knowledge of the target system, identified through experiments, or using a combination of 

both
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Controller Design (2)

A variety of model types can be used to specify the target system, including Markovian models, queuing models, 

and difference equations. For example, in a system with a queue:

● The input variable could be the number of incoming requests

● The output variable could be the average service time

● The state variable could be the number of requests in the queue

To design the controller, a variety of techniques are available, depending on the information required and the 

guarantees they offer. One common approach is Proportional-Integral (PI) control, widely used in software 

systems
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Control Properties

The main properties that can be analyzed in control theory are SASO:

221

Stability Accuracy Settling time Overshoot



Control Properties: Stability

A system is stable if for any bounded input, the output is also bounded

Stability implies that the output of feedback control (controlled variable) converges to 

an equilibrium value after a change

Stability ensures the system operates in a region where it performs as required
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Accuracy refers to the convergence of the measured output to the goal or optimal 

value

Accuracy ensures control goals are met, for example achieving required throughput 

without violating response time constraints

Control Properties: Accuracy
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Settling time expresses how long it takes for the controller to reach the steady-state 

value

It accounts for the duration of the transient phase and is important when the system 

must react to sudden environmental changes or changes in goals

Fast settling time is desirable but may make the system follow noise or transient 

variations

Control Properties: Settling Time
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Overshoot is the maximum difference between the measured value and the goal 

during the transient phase

Limited overshoot is preferred, as high overshoot increases variability and may 

temporarily violate system requirements

Control Properties: Overshoot
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Control Properties: an Overview
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SISO and MIMO Control Systems

The basic control system structure considers a single instance of each element, but in 

practice, multiple instances may be used

Single-Input Single-Output (SISO) control system: one output is controlled by one control signal

Multiple-Input Multiple-Output (MIMO) control systems may be used, where multiple outputs are 

controlled by multiple control signals
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A controller is added to 
each server to track 
failure rates  and control 
the selection of service 
instances

SISO Example
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Web service system wants to keep the number 
of failed service invocations below a threshold

Disturbances include arrival rates and 
types of service requests, which 
change dynamically



A controller is added to 
each server to track cost  
and adjust the service 
selection 

MIMO Example
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Web service system wants ALSO to keep service 
invocation costs below a threshold

Disturbances include arrival rates and 
types of service requests, which 
change dynamically

Now, the controller must 
ensure both low failure 
rates and low costs, which 
may conflict



Adaptive Control

Adaptive control adds an additional control loop that adjusts the controller itself

It is used to cope with slowly occurring changes in the system or to compensate for inaccuracies in the initial 

system model

Adjustments are made based on measurements collected at runtime
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Automatic Construction of SISO (1)

These approaches rely on the following assumptions:

1. The requirements that need to be satisfied by the control system are known and can be translated 

into quantifiable goals

2. The target software system is available and can be used to run experiments

3. The target system provides a set of sensors to measure whether the goals are satisfied

4. The target system provides a set of actuators to modify the system to realize the goals
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Automatic Construction of SISO (2)

Under these assumptions, an approximate model of the software system can be built automatically

This model can then be used to construct a controller that ensures the target system achieves its goals

A basic approach for a single goal and single actuator is based on the Push-Button Methodology, which is a 

pioneering method for automating controller construction for self-adaptive software

Despite its simplicity, this approach provides formal guarantees for the dynamic behavior of the system
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Phases of Controller Construction
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Phases of Controller Construction (1)

Model Building Phase: This phase automatically constructs a linear model of the target system

The model is identified by running on-the-fly experiments on the software of the target system and testing it 

using a set of systematically sampled values of the control signal, and the effects on the measured output are 

observed

By analyzing the results, a system model is generated that captures how changes in the control signal affect the 

output
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Controller Creation Phase: The results from the model building phase are used to automatically create a 

controller

The goal of the controller is to keep the output close to the reference input while rejecting disturbances

The controller selects a control signal based on the previous value and the difference between the desired 

reference value and the measured output

The controller uses the information from the system model to determine the appropriate adjustments

Phases of Controller Construction (2)
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Operation Phase: In this phase, the controller exercises control on the target system

Its purpose is to keep the output as close as possible to the reference input during runtime, compensating for 

disturbances and changes in the system

Phases of Controller Construction (3)
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Phases of Controller Construction 

Single adaptation goal and a single control signal is often too restrictive for real-world applications

For example, users of a geo-location service may not only want the service to be reliable, but also to have fast 

response times, while ensuring that the cost of using the service does not exceed an agreed fee. Such 

requirements call for an approach that can automatically construct a controller to satisfy multiple goals, often 

including an optimization goal

Approach emerged to realize a control schema with multiple inputs that control multiple outputs and can 

handle multiple goals. 
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In this phase, the system automatically builds a set of linear models of the controlled system, one for each 

adaptation goal

Each model represents the relationship between a control input (what the controller can change) and a 

measured output (what is observed from the system)

To build each model, the system performs on-the-fly experiments: it systematically varies the control inputs and 

records the corresponding changes in the outputs

Model Creation Phase
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Once the models are built, the system automatically creates one controller for each goal

Each controller is responsible for keeping its corresponding system property (e.g., reliability, performance, cost) 

close to its desired value, even when the environment changes.

The controller uses:

● The model that describes how its control actions influence the system

● The error between the desired value and the measured outcome

● A parameter that determines how strongly it reacts to deviations (its responsiveness)

In essence, each controller continuously monitors how well the system meets its goal and adjusts its control 

signal to reduce the difference between the desired and observed behavior

Controller Creation Phase
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Operation Phase (1)
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Each controller runs in parallel, producing control signals that 
guide the system toward its goals while rejecting disturbances. To 
handle changes over time, controllers can update their models 
automatically



This is achieved through the Simplex method technique which receives all control signals, 
analyzes system parameters and constraints, and produces a final actuation signal 

→ a coordinated adjustment of the system that best satisfies reliability, performance, and cost 
requirements together

Operation Phase (2)
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Because multiple goals can sometimes conflict  an optimization mechanism is used to balance them



Wave VII
Learning from Experience
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Learning Under Uncertainty

The seventh wave of self-adaptive systems focuses on the use of machine learning techniques to enhance how a 

system manages itself at runtime

As systems became larger and more complex, it became increasingly difficult to analyze every possible adaptation 

option within the short time available for making adaptation decisions. For example, in systems with very large 

adaptation spaces, performing full formal verification is often infeasible

In these situations, machine learning can be used to narrow the adaptation space to the most relevant options, 

improving efficiency while maintaining effective adaptation
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Machine Learning

It is a branch of artificial intelligence concerned with systems that improve their performance through experience.

 In simple terms, a program learns if its performance on a specific task improves as it gains experience.

Modern advances in computational power have made it possible to apply powerful learning algorithms in practice, especially for 

managing complex software systems.

At its core, a machine learning algorithm:

● Builds a model from data collected through observation or experimentation.

● Uses the model to make predictions or guide decisions about new, unseen situations.

Because data are always limited and future conditions uncertain, machine learning usually provides probabilistic, rather than 

absolute, guarantees
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Types of Machine Learning
1) Supervised Learning

 The algorithm learns from data that includes both inputs and expected outputs.  Through repeated optimization, it learns to 

predict outputs for new inputs.

 Example: A classifier that assigns class labels (e.g., “failure” or “success”) to system behaviors based on historical data

2) Unsupervised Learning

The algorithm learns from unlabeled data, finding hidden structures or patterns

 Example: A neural network grouping similar inputs together without prior labeling

3) Reinforcement Learning

 An agent interacts with an environment by performing actions and receiving rewards.  Over time, it learns a policy on how to act to 

maximize its cumulative reward

Example: where the system learns which actions yield the best outcomes in different situations
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Machine Learning and Uncertainty

Uncertainty is central to machine learning. Algorithms learn from imperfect or incomplete data, discovering 

patterns that help make better predictions or adaptation decisions.  As the system continues to operate and 

gather new data, its models and decisions improve over time

In self-adaptive software, machine learning enables the managing system to:

● Interpret uncertain and dynamic data from the environment

● Identify trends or anomalies

● Support runtime adaptation decisions that help the system meet its goals
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Machine Learning in Self-Adaptive Systems

In SAS, machine learning can be integrated in different MAPE activities:

1. Learning in Monitoring:

 The monitor function is enhanced with a Bayesian estimator that keeps the runtime model up to date.

 → Helps deal with parametric uncertainty (how system parameters evolve over time).

2. Learning in Analysis:

 The analyzer function is supported by a classifier that reduces large adaptation spaces at runtime.

 → Improves efficiency by focusing only on promising adaptation options.

3. Learning Across Functions:

 Several functions of the feedback loop use a combination of fuzzy control and fuzzy Q-learning to 

dynamically adjust auto-scaling rules in Cloud environments.

 → Supports decision making under complex uncertainty while continuously improving performance.
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Keeping Runtime Models Up-to-Date Using Learning

Runtime models are central, they are used to keep track of uncertain and changing operating conditions, analyze 

adaptation options, and decide how to adapt the managed system to achieve its goals

Uncertainties are encoded in runtime models as model parameters. These values can be determined before 

deployment through measurements, experiments, data analysis, or expert knowledge → however, such values 

are only estimates and may be inaccurate

Runtime models must remain up-to-date and accurately represent the actual conditions of the system and its 

environment → the main challenge is therefore to ensure that the models continuously reflect reality
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Keeping Runtime Models Up-to-Date Using Learning

A systematic approach to address this challenge is Bayesian estimation, which allows model parameters to be improved as new data arrives. 

This method combines prior knowledge about model parameters with new observations to update their values dynamically

The approach focuses on runtime models of quality properties formally specified, for example, as Markov models, queuing networks, or 

stochastic timed automata. Such models can be analyzed at runtime using formal verification techniques.

This Bayesian approach is based on KAMI (Keep Alive Models with Implementations), a pioneering method for keeping quality models 

up-to-date during system operation, ensuring that self-adaptive systems maintain accurate and reliable models for effective decision making.
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Bayesian Approach

The Bayesian approach can be applied to various probabilistic models

Here, the focus is on Discrete Time Markov Chains (DTMCs), which describe the behavior of a system through 

states and transitions that represent probabilities of moving between states

Key characteristics

● States (S): represent possible situations or configurations of the system.

● Transitions: describe how the system can move from one state to another with a certain probability

● Labels: associate states with relevant properties or events (e.g., “service available” or “service failed”)

● Markov property: the next state depends only on the current state, not on past history
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Service-based health assistance system

The system workflow is represented as a DTMC with 

discrete states corresponding to the different operational 

steps of the health service (e.g., user interaction, alarm 

triggering, service response)

Each transition between states carries a probability value 

that represents, for example, the likelihood of a service 

succeeding or failing

Initial probability estimates are usually provided by domain 

experts or derived from data offered by service providers
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The Bayesian approach continuously tracks system and environmental elements that 

cause uncertainty, transforms collected runtime data into updated model parameter 

values, and keeps the runtime quality model accurate and current
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Integration in the feedback loop

The monitor component is equipped with a Bayesian estimator, 

which updates the model parameters as part of the feedback cycle.

This refinement divides monitoring into:

○ 2.1: Updates that do not require learning (e.g., 

deterministic parameters)

○ 2.2–2.3: Updates for uncertainty-related parameters, 

handled through Bayesian learning

Focus is on updating quality models represented as DTMCs 

(Discrete Time Markov Chains)
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Reducing Large Adaptation Spaces Using Learning

The Analyzer in a self-adaptive system must evaluate many adaptation options, however:

● Exhaustive analysis (e.g., via formal verification) is often too slow for real-time adaptation

● Large adaptation spaces make timely decision-making infeasible
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Machine Learning Solution

Introduce a Learning Module into the MAPE-K feedback loop

The learning module reduces the adaptation space by selecting relevant subsets of adaptation options

Based on classification, a supervised learning approach that:

● Assigns adaptation options to classes based on compliance with adaptation goals

● Predicts which options are likely to meet all goals
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Learning-Based Feedback Loop

Relevant options (predicted to meet goals) → analyzed by the verifier

Irrelevant options → mostly skipped, but a small sample is re-analyzed periodically to detect new viable 

configurations

Enables faster analysis without sacrificing adaptation quality
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Learning Workflow
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Learning Workflow: offline

Offline Phase

1. Data collection – gather verification results and system features

2. Feature selection – identify key features influencing performance

3. Model selection – choose the best classifier and scaling method 

based on accuracy and F1-score
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Learning Workflow: online

Online Phase

1. Use the classifier to predict relevant options

2. Perform verification only on those options

3. Update the classifier with new verification data (incremental 

learning)
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Integrated Feedback Loop Workflow (1)

The Analyzer reads the current runtime models and 

invokes the classifier. The system state, 

environmental data, and uncertainty parameters 

are provided as input
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Integrated Feedback Loop Workflow (2)

The Classifier predicts which adaptation options are 

most likely to meet the goals

It labels them as relevant or irrelevant based on its 

model. To maintain adaptability, a small random sample 

of “irrelevant” options is also included for exploration
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Integrated Feedback Loop Workflow (3)

The Analyzer sends the relevant subset of adaptation 

options to the Model Verifier for analysis. This reduces 

computational effort by focusing only on promising 

configurations
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Integrated Feedback Loop Workflow (4)

The Verifier evaluates each selected option using its 

quality models and determines performance indicators 

(e.g., reliability, delay, energy usage)
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Integrated Feedback Loop Workflow (4)

Once verification is complete, the Analyzer sends 

the new analysis results to the Classifier. These 

verified results serve as fresh labeled data for 

learning
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Integrated Feedback Loop Workflow (4)

The Classifier refines its internal model using the 

new verification data. This continuous update 

allows it to adapt to changing environmental 

conditions and evolving system behavior
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