Universita di Camerino

1336

Self-Adaptive Systems

Reference: An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective, First Edition. Danny

Key Historical Context

From the earliest days of computing, theorists recognized the potential for computation
to change itself (self-modification)

“Traditional” software engineering focuses on getting things right before a system is
deployed, known environment, components under the control of the developers

Today systems work in much more uncertain contexts

v

The software engineering discipline of Self-Adaptive Systems (SAS) attempts to solve
this, providing principles and tools to harness the vast potential of adaptation

SAS: A Convergence of Disciplines

SAS draws heavily on knowledge from other fields:

e Control Theory: Techniques for maintaining a system’s envelope of behavior within
desired ranges

e Biology & Ecology: Ability of organisms/populations to respond to environmental
changes

e Immunology: Organic mechanisms of self-healing

e Software Architecture: Patterns for structuring systems to enable predictable
construction

e Artificial Intelligence: Mechanisms supporting autonomy

Defining a SAS

There are two generally acknowledged principles that determine what constitutes a self-adaptive system

External Principle (opaque system)

A self-adaptive system is a system that can handle
changes and uncertainties in its environment, the
system itself, and its goals autonomously (i.e., without
or with minimal required human intervention)

Internal Principle (engineer’s view)
A self-adaptive system comprises two distinct parts:

1. Domain Concerns: Interacts with the environment,
responsible for user goals

2. Adaptation Concerns: Consists of a feedback loop
that monitors the first part (and its environment) and
is responsible for managing the system under changing
conditions

SAS: an example

3] 3]
2]| change drug z |
Medical | ; & . Drug
Service enange cose Service
.—.(= _>O—
execute
Workflow
7] —O< - Engine
take trigger alarm Al
I sample SO e
WU 5 G Service
Service
Workflow
- -4] Environment
' Patients (service providers, resources)

elements

KEY 2] Component —(<-)- Interface i Actor Group of

Sources of Uncertainty

Patient-related variability:
differences in health conditions,
behaviors, and response times

Workflow dynamics:
unpredictable frequency and
sequence of service invocations
depending on patient states

Service availability: changes in
the number or status of
third-party service instances
over time

3]
g | change drug 2]
e
Medical L 20 Drug
Service chaﬁge dose Service
(>0
execute
Workflow
z] — O)— Engine
take trigger alarm ”
| sample - arm
— Service
\ -
Service
Workflow
-] Environment
' Patients (service providers, resources)
2] ¢ t v Interf = Act Group of
KEY omponent —(<-)- Interface ' ctor a7

&> SAS Conceptual Model

@ Stakeholders

; i ! g
% Self-Adaptive System ! |
v : | g]J
T evolve evolve ? ? support
2]
P read gl
aptation
0=}
Goals Feedback Loop

Managing System

Environment

KEY ~O i I:l /

Component Interface Actor Group of elements

SAS Conceptual Model: Environment

The environment refers to the part of the external world with which a self-adaptive
system interacts and in which the effects of the system will be observed and evaluated

The environment can be sensed and effected through sensors and actuators

4

Uncertainty in terms of what is sensed by the sensors and actuators outcomes

©» Environment Example

2] 3]
3 || change drug Z]
. includes: Medical X Drug
Environment includes: Service change dose Service
1) the patients that make use of the system execute Workflow
- —O< -) Engine
2) the application devices with the sensors that ¢ take trigger alarm A
. . " sample arm
measure vital parameters of patients Ui GC>0— senvice
Service
3) the service providers with the Workflow
services instances they offer —
-
- | Environment
: : id
4) the network connections used in the system (' Ee 'Q"D [setvice providars, ’950“@

e [commt 0 s o [S22

SAS Conceptual Model: Managed System

Managed System: application software that realizes the functions of the system and
senses/effects the environment

To support adaptations, the managed system needs to be equipped with
sensors and actuators

Enable monitoring Execute adaptation actions

10

&> SAS Conceptual Model

@ Stakeholders

)_

! : z]
% Self-Adaptive System E
>k ! | {I
T evolve evolve ? ? support
2]
Adaptati read i
aptation
0=}
Goals Feedback Loop

Managing System

Environment

KEY ~O i I:l Y

Component Interface Actor Group of elements

&= Mana ged System Examp le (1)

Managed System includes:
1) receives messages from patients with values of

their vital parameters

2) invokes a drug service to notify a local
pharmacy to deliver new medication

3) invokes an alarm service in case of an
emergency to notify medical staff to visit the

patient

4) the network connections used in the system

3]
g | change drug Z]
Medical Drug
Service change dose Service
—(->0——
execute
Workflow
3 —O< - Engine
9\) take trigger alarm 2
I sample e arm
W >0 Service
Service
Workflow
L -] Environment
' atients (service providers, resources)
2] ¢ t S interf = Act Group of
KEY omponent —(Q<-)- Interface ' ctor |: ool

12

&= Mana ged System Examp le (1)

g | 3]
3 || change drug z]

daptation: Medlgal . g Drug
Adapta . Service cnange dose Service
1) allows the selection and use of concrete execute Wikt
instances of the different types of services 7 —O< -) Engine

9\) take trigger alarm a
2) provide support to change service instances in kljsamp'e Cra—— Sefv'ir:e
a consistent manner by ensuring that a service is Sanvice
only removed and replaced when it is no longer Workflow
involved in any ongoing service invocation of the
health assistance system | am | Environment
' atients (service providers, resources)

e [ommonert - wrico,) or [l CE

13

SAS Conceptual Model: Adaptation Goals

Represent concerns regarding the managed system adaptation goals: relate to quality
properties of the managed system

Principal High-Level Types:
o Self-configuration: Systems automatically configuring themselves

o Self-optimization: Continually seeking ways to improve performance or reduce cost
o Self-healing: Detecting, diagnosing, and repairing problems
o Self-protection: Defending against attacks or cascading failures

Adaptation goals can be subject to change, adding new goals or removing goals will
require updates, and often also require updates of probes and effectors

14

Adaptation Goals Example

e 8] 2]
3 || change drug z]
. edical = Drug
Adaptation goals: PR change dose Sirics
1) the system dynamically selects service / execute e
instances under changing conditions to keep the 7] —O< -) Engine
failure rate over a given period below a required take trigger alarm "
threshold (self-healing goal), while the cost is | e (o
minimized (optimization goal) Sarvica
Workflow
2) On the other hand, adding a new adaptation \
goal, for instance to keep the average response . am ~ Environment /
time of invocations of the assistance service " Qfea ASecvice providers; [eeourcec) /
below a required threshold, would be more \
i i i i KEY g] Component —(<-)- Interface W Actor
invasive and would require an evolution of the N\ ' D

adaptation goals and the managing system

15

SAS Conceptual Model: Feedback Loop (1)

Comprises the adaptation logic that deals with one or more adaptation goals

Feedback loop monitors the environment and the managed system and adapts the
latter when necessary to realize the adaptation goals

Reactive policy Proactive policy
The feedback loop responds to a violation of The feedback loop tracks the behavior of the
the adaptation goals by adapting the managed system and adapts the system to
managed system to a new configuration that anticipate a possible violation of the

complies with the adaptation goals adaptation goals

16

&> SAS Conceptual Model

@ Stakeholders

)_

! : z]
% Self-Adaptive System E
>k ! | {I
T evolve evolve ? ? support
2]
Adaptati read i
aptation
0=}
Goals Feedback Loop

Managing System

Environment

KEY ~O i I:l Y

Component Interface Actor Group of elements

SAS Conceptual Model: Feedback Loop (2)

The managing system can be subject to change itself

U U

Update a feedback loop to resolve a problem To support changing adaptation goals, i.e.
or a bug (e.g. add or replace some change or remove an existing goal or add a new
functionality) goal

In both cases the need for evolving the feedback loop model is triggered by users
based on observations

18

wy Feedback Loop Example

Feedback Loop:

Ensures that the adaptation goals are realized
monitoring the system behavior

1) reactive policy: the feedback loop will select
alternative service instances

2) proactive policy: the managing system may
involve a stakeholder to decide on the adaptation
action to take

3]
g | change drug Z]
Medical - Drug
Service change dose Service
—(->0——
execute
Workflow
3 —O< - Engine
9\) take trigger alarm
I sample - Alarm
() Service
Service)
Workflow
/
\/
L -] Environment
‘ atients (service providers, resources)
2] ¢ t S interf = Act Group of
KEY omponent —(Q<-)- Interface ' ctor l: ool

19

Conceptual model applied to a self-adaptive
service-based health assistance system

handle fail-safe

®
ﬁ)<._)_ ' Operator

(support)

Failure Rate & Cost read g

Adaptation Goals —O<--

(hcep) "y Feedback Loop (-

(Managing System) l

pesnemeeae i — :
1 | \',/
: sense adapt
o o
: Health Assistance System (Managed System)
| 2] change drug] + 4
i , (550
! Medical b Drug
! Service change dose Service
] Ee .
i execte Workflow
! o — O Engine
i Q take trigger alarm i
| 1
i Ly sample (>0 Service
i Service
i Workflow

Environment
(Service Providers, Resources)

20

Engineering Self-Adaptive
Systems

The seven waves

Universita di Camerino

1336

The Seven Waves

1. Automating
Tasks

systematic engineering
perspective

requirements of
self-adaptive

2. Architecture-based
systems

Adaptation

requirements for
feedback loops

theoretical
complexity of framework for
concrete design self-adaptation

link goal models to
feedback loop designs

4. Requirements-
driven Adaptation

3. Runtime
Models

uncertainty as
first-class
citizen

guarantees under
uncertainty

5. Guarantees Under
Uncertainties

complexity to provide
assurances

6. Control-based
Software Adaptation

growing scale and increasingly
complex levels of uncertainty

7. Learning from
Experience

Wave Trigger of wave

22

First Wave: Automating Tasks

Focuses on delegating complex and error-prone
management tasks from humans to the system

A managing system (external manager) monitors
and adapts the system automatically based on
high-level objectives

The main goal is to automate management
through decomposition of essential
management functions

1. Automating
Tasks

requirements of
self-adaptive
systems

requirements for
feedback loops

4. Requirements-
driven Adaptation
rtainty

first-class
citizen

5. Guarantees Under
Uncertainties
7. Learning from
Experience

systematic engineel

link goal models to
feedback loop designs

growing scale and increasingly
complex levels of uncertainty

e
erspective
2.

complexity of
concrete design

guarantees under
uncertainty

complexity to provide
assurances

Wave

spe

ring

Architecture-based
Adaptation

ity of f

3. Runtime
Models

theoretical
rrrrrrrrrr
self-adaptation

6. Control-based
Software Adaptation

Trigger of wave

Second Wave: Architecture-based

Adaptation

Introduces a systematic, engineering-oriented
approach to self-adaptive systems using
software architecture principles

Emphasizes abstraction and separation of
concerns between change management
(handling environmental changes) and goal
management (handling changing objectives)

Uses architectural models to reason about
system and environment changes effectively

1. Automating
Tasks

requirements of
self-adaptive
systems

ersps

requirements for
feedback loops

link goal models to
feedback loop designs

4. Requirements-
driven Adaptation
rtainty

first-class
citizen

5. Guarantees Under
Uncertainties

growing scale and increasingly
complex levels of uncertainty

7. Learning from
Experience

ring
Spe
Architecture-based
Adaptation
ity of f

complexity of ;
concrete design self-adaptation

complexity to provide
assurances

systematic engineel

e
ctive
2.

theoretical
rrrrrrrrrr

3. Runtime
Models

guarantees under
uncertainty

6. Control-based
Software Adaptation

Wave Trigger of wave

Third Wave: Runtime Models

Addresses the complexity of implementing
self-adaptive systems by introducing runtime
models (models that exist and evolve while the
system operates)

Extends model-driven development to the
runtime, allowing systems to analyze and make
adaptation decisions during operation using
these live models

1. Automating
Tasks

requirements of
self-adaptive
systems

ersps

requirements for
feedback loops

link goal models to
feedback loop designs

4. Requirements-
driven Adaptation
rtainty

first-class
citizen

5. Guarantees Under
Uncertainties

growing scale and increasingly
complex levels of uncertainty

7. Learning from
Experience

systematic engineel

e
ctive
2.

spe
complexity of
concrete design

3. Runtime
Models

guarantees under
uncertainty

complexity to provide
assurances

Wave

ring

Architecture-based
Adaptation

ity of f

theoretical
rrrrrrrrrr
self-adaptation

6. Control-based
Software Adaptation

Trigger of wave

Fourth Wave: Requirements-driven Adaptation

Emphasizes requirements as central elements
of self-adaptive systems, linking them to
feedback loop design

Distinguishes between requirements that define
adaptation goals and those ensuring the correct
functioning of the managing system itself.

1. Automating
Tasks

requirements of
self-adaptive
systems

ersp

requirements for
feedback loops

link goal models to
feedback loop designs

4. Requirements-
driven Adaptation
rtainty

first-class
citizen

5. Guarantees Under
Uncertainties

growing scale and increasingly
complex levels of uncertainty

7. Learning from
Experience

ring
Spe
Architecture-based
Adaptation
ity of f

complexity of
concrete design

complexity to provide
assurances

systematic engineel

e
ctive
2.

theoretical
rrrrrrrrrr
self-adaptation

3. Runtime
Models

guarantees under
uncertainty

6. Control-based
Software Adaptation

Wave Trigger of wave

Fifth Wave: Guarantees Under Uncertainty

Focuses on managing uncertainty in
self-adaptive systems and ensuring that
adaptation goals are still met

Aims to provide trustworthiness through the
collection of evidence, both offline
(pre-runtime) and online (during execution),
demonstrating that goals are achieved despite
uncertainty

1. Automating
Tasks

requirements of
self-adaptive
systems

ersps

requirements for
feedback loops

link goal models to
feedback loop designs

4. Requirements-
driven Adaptation
rtainty

first-class
citizen

5. Guarantees Under
Uncertainties

growing scale and increasingly
complex levels of uncertainty

7. Learning from
Experience

systematic engineel

e
ctive
2.

spe
complexity of
concrete design

3. Runtime
Models

guarantees under
uncertainty

complexity to provide
assurances

Wave

ring

Architecture-based
Adaptation

ity of f

theoretical
rrrrrrrrrr
self-adaptation

6. Control-based
Software Adaptation

Trigger of wave

Sixth Wave: Control-based Software Adaptation

Uses control theory to establish a formal,
mathematical foundation for self-adaptive
systems

Involves defining adaptation goals, selecting
controllers, and modeling the managed system

to analyze and guarantee stability, performance,

and other key properties

1. Automating
Tasks

requirements of
self-adaptive
systems

PSP

requirements for
feedback loops

con

link goal models to
feedback loop designs

4. Requirements-
driven Adaptation

uncertainty as
first- class
citizen

5. Guarantees Under
Uncertainties

growing scale and increasingly
complex levels of uncertainty

7. Learning from
Experience

complex

compl
a

ct

2. Architecture-based
Adaptation

crete des gn

guarantees under
uncertainty

exity to provide
issurances

Wave

3. Runtime
Models

theo retical
rrrrrrrrrr
self adaptation

6. Control-based
Software Adaptation

Trigger of wave

Seventh Wave: Learning from Experience

Leverages machine learning to enhance
adaptation in large-scale and highly uncertain
systems

Learning techniques support updating runtime
models, reducing adaptation search spaces,
predicting adaptation outcomes, and improving
decision-making efficiency

1. Automating
Tasks

requirements of
self-adaptive
systems

PSP

requirements for
feedback loops

con

link goal models to
feedback loop designs

4. Requirements-
driven Adaptation

uncertainty as
first- class
citizen

5. Guarantees Under
Uncertainties

growing scale and increasingly
complex levels of uncertainty

7. Learning from
Experience

complex

compl
a

ct

2. Architecture-based
Adaptation

crete des gn

guarantees under
uncertainty

exity to provide
issurances

Wave

3. Runtime
Models

theo retical
rrrrrrrrrr
self adaptation

6. Control-based
Software Adaptation

Trigger of wave

Wave |

Automating Tasks

30

Motivation

In the late 1990s—2000s, installing and maintaining software systems required
extensive manual work, leading to serious management challenges

¢

IBM introduced the concept of autonomic computing, aiming to create systems that
manage and adapt themselves based on high-level goals set by administrators

At the core is a feedback loop that collects data and acts automatically to maintain
objectives, reducing manual effort and improving system efficiency and responsiveness

31

Maintenance Task: Self-Optimization

Self-optimization is the capability of a system to continuously improve the use of its
limited resources such as memory, computational power, bandwidth, or energy while

maintaining the required quality levels. This property ensures system sustainability and
business profitability by avoiding resource waste.

32

Maintenance Task: Self-Healing

Complex systems often face software bugs or hardware faults that can disrupt normal
functioning. Manually identifying and fixing such issues is time-consuming and costly

Refers to a system’s ability to detect, diagnose, and recover from failures
automatically, ensuring continuous and reliable operation

A self-healing system continuously monitors itself to detect anomalies, localizes the
source of the problem, and takes corrective actions to restore normal operation

33

Maintenance Task: Self Protection

While tools like firewalls and intrusion detection systems provide basic defense,
complex systems often remain vulnerable and difficult for humans to monitor

effectively

Capability of a system to defend itself against malicious attacks and to anticipate

potential threats that could compromise its operation

A self-protecting system can detect suspicious behavior, take preventive or corrective
actions, and contain cascading effects caused by security breaches

34

Maintenance Task: Self-Configuration

In large-scale systems, manual installation and configuration of new elements is
complex, time-consuming, and error-prone

Capability of a system to automatically integrate new components or elements
according to high-level objectives, without disrupting normal operation

Self-configuration ensures that new elements are seamlessly added, enabling the
system to adapt and scale efficiently while maintaining continuous operation

35

Reference Model

Key Characteristics:

1) Functional decomposition: Breaks down
self-adaptation into core functions

2) Cooperation: Defines how elements
interact and share information

3) Experience-based: Consolidates domain
knowledge and maturity of self-adaptive
systems

4) Independent of implementation: Focuses
on what needs to be done, not how it is
mapped to software

Managing System

external element

functional element

Knowledge
Monitor » Analyzer » Planner » Executor
v
Probe
Managed System Effector
i Managed System
Environment
A] — 3

data flow control flow

36

Managing System

Knowledge

y

Executor

Monitor —» Analyzer » Planner

\ ~/

Realize the four basic functions of any self-adaptive system sharing common Knowledge

Hence the reference model of a managing system is often referred to as the MAPE-K model

37

MAPE-K Elements

Monitor:

e Collects data from the system and environment via probes
* Updates the Knowledge base with processed data

Analyzer:

* Uses up-to-date knowledge to detect the need for adaptation
* Analyzes possible adaptation options

Planner:

* Selects the best adaptation option
* Creates a plan with one or more actions to move the system from its current to desired
configuration

Executor:

Implements the plan via effectors, adapting the system as required
38

Knowledge Element

Provides the shared knowledge and mechanisms for MAPE elements to work together
through reading, writing, notification and updating functionalities

Ensures consistency when multiple clients access knowledge simultaneously (avoiding
race conditions)

Four types of
knowledge

Managed
System
Model

2]

Environment
Model

8]

Adaptation
Goals Model

2]

MAPE
Working
Models

2]

39

Managed System Model

A managed system model represents the system that is managed by the managing
system

® Focuses on parts relevant to self-adaptation
e Enables self-awareness

The environment model represents elements or properties of the environment in which
the managed system operates

® Represents relevant aspects of the system’s environment
e Enables context-awareness

40

Adaptation Goals Model

The model of the adaptation goals maintains a representation of the objectives of the
managing system

Can be expressed as:

® Rules with constraints and priorities
e Fuzzy goals with intermediate truth values (0-1)
e Utility functions representing preferences

Enables goal-awareness

41

MAPE Working Models

A MAPEworking model represents knowledge that is shared between two or more
MAPE elements

Often domain-specific, e.g., quality prediction or adaptation plans.

Parameterized models allow predictions for different system configurations.

42

Monitor Function

Monitor Function has a dual role

U U

Keeps track of the environment in Keeps track of changes of the managed system
which the managed system operates and and updates the managed system model
reflects the relevant changes in the accordingly

environment model

43

Monitor Workflow

—>

/Sensor Date/ / Knowledge /

N Y

Update
Knowledge

Pre-processing

A

Analysis
Required?

Start/End Trigger
Monitoring Analyzer

A

Updated
Knowledg

/

44

Monitor Workflow: Activation

External trigger: e.g., probe
finishes a sensing cycle.

Periodic trigger: based on
predefined time windows.

Continuous cycle: automatically
restarts after each monitoring
cycle.

(Start/End
[:> Mon@

45

Monitor Workflow: Data Collection

After activation, the monitor collects
data taken from sensors

Data may require some form of
pre-processing before it can be used
to update the knowledge models

e Simple: filtering, aggregation
e Advanced: Bayesian estimation,
deep neural networks

fSensor Data;

——— | Pre-processing

T

46

Monitor Workflow: Updating Knowledge

The monitor uses the current knowledge
and the pre-processed data to update the
knowledge models

The monitor may perform a check to
identify whether an analysis step is
required or not

Simple check: values exceed thresholds
Advanced check: detect trends or patterns

Trigger
Analyzer

f Knowledge /

A4

Update

Analysis
Required?

no

Knowledge

Updated
Knowledge

47

The role of the analyzer function is to (1) assess the up-to-date knowledge and (2)

determine whether the system satisfies the adaptation goals or not, and if not, to (3)
analyze possible configurations for adaptation

48

Analyzer Workflow

trigger
workflow

Start/End

Analysis /|~

Apply Fail-safe
Strategy

Analysis
Results

Trigger
Planner

yes

y

Assess
Adaptation Goals

A

Adaptation

Analysis
Required?

Completed
Successfully?

yes
Knowledge
N
Analyze Compose
Adaptation Options | Adaptation Options

49

Analyzer Workflow: Activation

trigger
workflow

Externally triggered: e.g., by Fiah
Monitor.

Periodic trigger: fixed time — v
intervals.

Continuous cycles: restarts
after previous cycle.

50

Analyzer Workflow: Assessment

Assesses the actual conditions
based on the knowledge
(adaptation goals) to determine

no

l

whether adaptation needs or not

Assess
Adaptation Goals

Simple: Check if any adaptation
goal is violated — initiate
adaptation

Advanced: Compute utility
combining weighted quality
properties

Adaptation
Required?

yes

f Knowledge /

51

Analyzer Workflow: Adaptation (1)

Adaptation options are
composed

Set of configurations reachable
from the current configuration
by adapting the managed
system

Exhaustive, Distance-based,
Advanced

h 4

Compose

| Adaptation Options

52

Analyzer Workflow: Adaptation (2)

Defines how well each option
meets adaptation goals

Mechanism types

® Reactive: uses past
knowledge

® Active: uses current system
state

® Proactive: predicts future
outcomes

no

yes

Analysis
Completed
Successfully?

Analyze
Adaptation Options

53

When preparing the adaptation

plan, analysis may fail

Alternative choices:

1) Do not adapt the system
2) Apply predefined safe
configuration

3) Bring system to safe stop

Apply Fail-safe
Strategy

T

Analysis
Results

Trigger
Planner

I

54

Planner Function

The role of the planner function is to select the best adaptation option and generate a
plan for adapting the managed system from its current configuration to the new
configuration defined by the best adaptation option

In the event that a fail-safe strategy needs to be applied, the planner only needs to
generate an adaptation plan to bring the system to a safe state

55

Planner Workflow

Compose
Adaptation Plan
no

yes

Adaptation
Plan

N Configuration v

Determine Best
Adaptation Option

Adaptation
Goals

i ?
in Use* 1

Executor

Start/End
Planning

Use Fail-safe
Strategy?

trigger
workflow
Analysis

Results 56

Planner Workflow: Activation

the planner determines the best

adaptation option based
adaptation goals

Two mechanisms for selecting:

1. Rule-based goals
2. Utility-based goals

Determine Best
Adaptation Option

Adaptation
Goals

Use Fail-safe
Strategy?

Analysis
Results

Start/End
Planning

trigger
workflow

57

Planner Workflow: Activation

the planner determines the best adaptation option based on the adaptation goals

Two mechanisms for selecting:

1. Rule-based goals

a. Divide options into compliant vs. non-compliant with threshold rules

b. Rank compliant options based on minimizing or maximizing quality properties
2. Utility-based goals

a. Rank options based on expected accumulated utility

58

Planner Workflow: Planning and Adaptation Actions

The Planner creates a plan (sequence of
actions) detailing the actions (executable
units) needed to adapt the system

Planning criteria:

e Quality: likelihood of achieving
adaptation goals

e Timeliness: speed of generating the
plan

® Tradeoff

Compose
Adaptation Plan

Configuration
in Use?

59

Planning Mechanisms

Several planning mechanisms exist. The choice depends on system complexity and
required performance
Reactive planners:

e Fast, use condition-action rules or finite state machines
e Parameterized for the current context

State-variable planners:

® Represent system states and actions
e May face combinatorial explosion in large systems

After plan generation, the Planner triggers the Executor function
60

Planner Workflow: Planning and Adaptation Actions

Adaptation
Plan
A
Trigger
Executor

executor function , ' ‘ End |

Once the adaptation plan has been
generated, the planner triggers the

61

Executor Function

The Executor function is responsible for carrying out the adaptation plan generated by
the Planner. It applies adaptation actions to the managed system, ensuring that the
system transitions from its current configuration to the new configuration.

Key Points:
e Activated externally by the Planner
e Executes the adaptation plan step by step
® Uses effectors to enact changes on the managed system
[

Waits for confirmation that each action has taken effect before proceeding

62

Executor Workflow

Adaptation
Plan

Y

trigger
workflow

Start/End

> Execution Selec;\ A?aptation
/ ction
A

A

Adaptation
Action

y

Confirm Adaptation
Action

Adaptation Plan
Completed?

ﬂConflrmatlo /

trigger
conflrmatlon

63

Executor Workflow: Executing Actions

Adaptation actions are executed
according to the plan (ordered or
unordered)

Ordered plans: first action executed
first, following the sequence

Unordered plans: any action can be
selected

trigger

Adaptation
Plan

Y

workflow
Start/End
> Execution
no

—

Select Adaptation
Action

Adaptation
Action

64

Executor Workflow: Confirmation and Plan Completion

After executing an adaptation action,
the Executor confirms its effect
and decides whether to continue
with the next action or end the plan

Confirmation can be obtained via:

e Direct notification from the
managed system

e Delegation to the Monitor function

e Waiting for predefined time
windows

Adaptation Plan
Completed?

l

Confirm Adaptation
Action

trigger
confirmation

65

Software Evolution Overview

Software evolution is the process of repeatedly updating software after its initial
deployment. Updates are necessary to correct faults, improve performance, adapt to
environmental changes, or add new functionality. Modern systems demand updates
with minimal or no service interruption.

66

Evolution Management Artifacts and Activities

Running

Development
models can be very
diverse, including
specifications of
requirements,
design,
deployment,
processes, efc

Changes
Development
Models

System
— 1
T o
A

Monitor and
Enact

[

]

System
Implementation

==

Evolution
% (Management » L
\ Plan and /

Evolve

{1

External triggers for evolution

The system
implementation
includes the actual
code, supporting
infrastructure,
deployment
scripts, and other
related artifacts

67

Triggers for Software Evolution

Software evolution can be triggered externally, based on planned changes, or
internally, in response to system observations

* External triggers: requests for new functionality, strategic release plans
* Internal triggers: detection of bugs, failure to meet performance or quality
objectives

Enables proactive and reactive evolution

68

Self-Adaptation Management Overview

Self-adaptation management is the process through which a software system
automatically adjusts its behavior or structure in response to internal or external
changes. It ensures that the system continues to meet its goals without requiring
constant human intervention.

69

Core Artifacts and Activities

Represent system
state, environment,
and goals
(Knowledge)

Plan and

Adapt
The system being
@ / T W observed and
~—=— T adapted

—— Self-Adaptation
LICT &l E Management . L—T;]

l Adaptation can be
Monitorand |, reactive or proactive

Enact

Changes
J

Y
Activities (MAPE loop)

70

Integrating Software Evolution and
Self-Adaptation (1)

Evolution management and self-adaptation management are complementary activities
that deal with different types of change

U U

Handles unanticipated change; requires Handles anticipated change; may operate
human involvement automatically

Anticipated = the system has been built such

that it can detect the change and handle it in
some way

71

Integrating Software Evolution and

Self-Adaptation (2)

Plan and
Adapt
Runtime Models / I v\ Running System
] ;
e Self-Adaptation —L]
pmmpu— I% Management — —
= |
\ Monitor and /
Enact
Changes
Development System
Models Implementation
1] s
—u Evolution 1
Q_%I . Management D_%
=]
\ Plan and /
Evolve

0

External triggers for evolution

72

Interacting activities

Plan and
Adapt

=]
DD&

=

5a: Update
Runtime Models

4a: Enact update
Runtime Models

J

1:No
Adaptation
Plan Available

l

Monitor and
Enact
Changes

3a: Evolve
Planner Models

l

2: Trigger
Evolution
Management

|

4a: Update
System Model

=5

o =1
| &4—

[

5b: Update
Running System

4b: Enact
System Update

4b: Read
System Model

5a: Update
System
3: Update
System =
MoEitor i 5b: Load System
nact Update
Changes P

=)

e

—

Plan and
Evolve

3b: Evolve System
Implementation

3a: Evolve

System Model l

2: System

o
= ﬁ(—Update Needed —» D—:]—:I

Plan and
Evolve

—

3b: Evolve

System Implementation

1: Change System Component

73

= g

=]

5a: Update
Runtime Models

4a: Enact update
Runtime Models

Adaptation Triggers Evolution (1)

Plan and
Adapt

1:No
Adaptation
Plan Available

The analysis element of the feedback loop
discovers a problem for which no
mitigation plan is available

Monitor and
Enact

Changes

J

D
=l

3a: Evolve
Planner Models

l

2: Trigger
Evolution
Management

|

Plan and
Evolve

I

5b: Update
Running System

4b: Enact
System Update

i o e

3b: Evolve System
Implementation

74

Adaptation Triggers Evolution (2)

This triggers evolution management,
which will process the request

Plan and
Adapt

|| 1:No
L Adaptation o

Plan Available

5a: Update l o 5b:.Upgate
i t
Runtime Models Morstor and unning System
Enact
4a: Enact update Changes 2 4tbi Erbaccg :
Runtime Models ysiem Lpdate
v
| 2: Trigger e
== % Evolution EI=E=i O
] Management
3a: Evolve 4 3b: Evolve System
Planner Models Plan and Implementation
Evolve

75

Adaptation Triggers Evolution (3)

The evolved planner models and

corresponding implementations will
be added

=]

= 4

5a: Update

Runtime Models

4a: Enact update
Runtime Models

3a: Evolve \

Plan and
Adapt

v

1:No
Adaptation
Plan Available

l

T

Monitor and
Enact
Changes

l

2: Trigger
Evolution
Management

|

Planner Models

Plan and
Evolve

5b: Update
Running System

4b: Enact
System Update

3b: Evolve System
Implementation

76

Adaptation Triggers Evolution (4)

Plan and
Adapt

|| 1:No
L Adaptation o

Plan Available

l

5a: Update 5b: Update

Running System

Runtime Models Moritorand
Enact
! Changes 4b: Enact
4a: Enact update - Enac
Runtime Models l System Update
Finally, the running system will be —— 2 Trgger g
. . g L volution =ie=i)
updated, resolving the initial problem O ﬁ? Management =
3a: Evolve l 3b: Evolve System
Planner Models Plan and [mplementation
Evolve

77

Evolution Triggers Adaptation (1)

4a: Update 5a: Update
System Model System

[
I

—_

3: Update —
&' System ‘? [

|

4b: Read MoEitor i 5b: Load System
System Model nact Update
Y Changes

|

J
I |
—_

2: System e |
%HUpdate Needed —»| l214_‘—"*l:|

3a: Evolve 3b: Evolve
System Model System Implementation

Plan and
Evolve

An update of the running managed
system is requested

1: Change System Component

78

Evolution Triggers Adaptation (2)

4a: Update 5a: Update
System Model System
l:l
— 3: Update —
el i i =
4b: Read Mog:;rc?nd 5b: Load System
System Model Changes Update
A
=
— 2: System]|
3a: Evolve 3b: Evolve
System Model ystem Implementation
A
Plan and
Evolve

This request will trigger evolution
management, which will initiate an update
of the system model and a corresponding
evolution of the system implementation

1: Change System Component

79

Evolution Triggers Adaptation (3)

4a: Update 5a: Update
System Model System

—_

l:l
— 3: Update —
it &' System ‘? [

N~

4b: Read MoEitor i 5b: Load Syste!
System Model nact Update
y / Changes

|

|
— 2: System e |
l:|]:|—:|%<—Update Needed —»| l214_‘—"*l:|

|

Adaptation management will be triggered
to update the runtime model of the system
and the running code accordingly

3a: Evolve 3b: Evolve
System Model System Implementation
Plan and
Evolve

1: Change System Component

80

Wave Il

Architecture-based Adaptation

81

Wave | — motivation, set of principles and concepts

Wave Il — abstractions that enable designers to define self-adaptive systems

— modeling abstractions that enable the system to reason about change

82

Handling Change in Software Systems

Changes were usually managed using internal mechanisms tied directly to the system’s

code (e.g., €X(Tightly coupled with protocols, etc.)

code — difficult to
modify and reuse

However, modern approaches like self-adaptation use external mechanisms

Enable modularity,
reusability, and
easier updates

83

Why a Software Architecture Perspective?

A software architecture perspective offers a structured way to manage runtime

adaptation using external feedback loops ensuring maintainability and scalability

1.

© o A L b

Separation of concerns

Integrated approach

Leveraging consolidated efforts
Abstraction to manage system change
Dealing with system-wide concerns
Facilitating scalability

84

Why a Software Architecture Perspective?

Separation of concerns: divide a software system into parts that address specific goals. Separating domain
functionality, handled by the managed system, from adaptation logic, handled by the managing system

Integrated approach: connects all stages of system engineering, from configuration and deployment to runtime
adaptation and maintenance

Leveraging consolidated efforts: By relying on proven specification languages, design patterns, and tactics,
engineers can reuse consolidated knowledge and methods

Abstraction to manage system change: Modeling a system as components and their connections allows
engineers to reason about adaptation at a higher level, focusing only on what matters for change while hiding
unnecessary detail

Dealing with system-wide concerns: An architectural view enables a global understanding of the system. It allows
monitoring and reasoning about system-wide properties such as performance, reliability, and security

Facilitating scalability: support composition and hierarchy, making it possible to manage systems at multiple

levels of granularity. This property is essential for the self-adaptation of large-scale and complex applications
85

Three-Layer Model for Self-Adaptive Systems

The three-layer model provides an architectural view of self-adaptive systems,
organizing adaptation activities into distinct layers of increasing complexity

Reactive Planning Strategy

Inspired by robotic architectures

86

& Three-layer Model

realizes a
MAPE-based
workflow

w Operator

change goals or
add new goals l

Goal
Management

plan request change plans

Change
Management

status

Component
Control

sense .
Environment

87

Component
Control

Environment

Components sense and effect the environment in order to realize the
goals for the users of the system

88

Component
Control

Equipped with instrumentation to
report the system’s current status to
higher layers

sense

Environment

Enable runtime modifications (adding,
removing, reconnecting, or
reconfiguring components).

89

Change Management Layer (1)

Reactive
Approach

Change
Management

plan request change plans

change actions

Change management reacts in
response to status changes of the

bottom layer by analyzing the changes .

Change Management Layer (2)

plan request change plans

Change
Management

status change actions

Centered on a set of plans, which are typically predefined. Each plan defines a strategy for adapting the
system (e.g., adjust parameters, replace components)

91

Change Management Layer (3)

plan request change plans

Change
Management

change actions

status

Executes plans through change actions that adapt the configuration of the bottom layer. These actions
perform the concrete adaptation: tuning parameters, adding/removing components, changing links

92

Change Management Layer (4)

Change

Management

status change actions

If a condition is reported that cannot be handled by the available plans, the change management layer
invokes the services of the goal management layer

93

plan request change plans

Change
Management

status change actions

The upper layer provides new or updated plans in response to the request

94

Goal management can also be triggered by
stakeholders that want to change goals or
introduce new goals

[
w Operator

change goals or
add new goals l

Goal |
Management

plan request change plans

Deliberative
Approach

95

change goals or
add new goals l

Goal |
Management

plan request

A request from change management will trigger goal management to

change plans

analyze the situation 96

change goals or
add new goals l

Goal |
Management | |

plan request change plans

Select alternative goals based on the current status of the system. Instantiated
goals or alternative goal sets generated by the reasoning in Goal Management

97

change goals or
add new goals l

Goal |
Management

change plans

plan request

Generate plans to achieve these alternative goals. The new plans are
then delegated to the change management layer

98

Universita di Camerino

Mapping Between the Three-Layer Model and the Conceptual Model for Self-Adaptation

1336

@ Stakeholders

i i z]
change goals or - Self-Adaptive System ' i
add new goals ! i ! ; :
""" v : ! [g]
/ T evolve evolve ? EF support
Goal read g
Management Adaptation O<-)—
Gcala Feedback Loop
””” Managing System (|\ /J_\
¢hange =) | rTTTToTToooomoosmsoeeees (P sense CP adapt
Management t 1
o — ;
__ Managed System
status change actions T
Component o
Control i
sense é effect
___ ’ RN Y VRGR G e £ NG S RS S8 G s XN
[i Environment
sense effect

KEY O i I:l 99

Component Interface Actor Group of elements

Makes an explicit
distinction between
the functionality of
the managing system

<

change goals or
add new goals l

Goal Realizing the adaptation goals
i B S T given the current conditions

plan request - change plans . .
P " Reasoning about and selecting
Management / ﬁ the adaptation goals

status change actions
Component
Control

sense ; effect
Environment

100

Runtime Architecture of Architecture-based Adaptation (1)

Architectural model
to realize
self-adaptation

Adaptation Layer
] g]
Colragggle o Properties Constraints
Architectural Model
Andlvsis Adaptation g] Adaptation 3]
y Strategies Operators
Y A A y
y A\ 4 A4 A
Model 5] Constraint 8] Adaptation 5] Adaptation 8]
Manager Evaluator Engine Executor

A

2]

Managed System Interface

A 4

Effectors 3]

3

§]

Managed System Layer

2]

101

Runtime Architecture of Architecture-based Adaptation (2)

Adaptation Layer g
] g]
Coagggle fiL Properties Constraints
Architectural Model
Analviis Adaptation g Adaptation 2]
y Strategies Operators
Y 7y A y
y v v A
Model 5] Constraint 8] Adaptation 8] Adaptation 8]
Manager "| Evaluator “| Engine "| Executor
2 2

Observing the : v - Applying changes to
Probes 2] Managed System Interface Effectors 8]
system x ; the system

y A

Managed System Layer

[Provides domain functionalities to the users]

2]

102

Runtime Architecture of Architecture-based Adaptation (3)

|

Encodes domain-specific
knowledge of the system

|

Implement the basic functions
of a managing system

|

[Components forming a feedback loop 1

4

3

A

Adaptation @ 2]
5]
Co&gggle o Properties Constraints
Architectural Model
Andlvsis Adaptation g] Adaptation 3]
y Strategies Operators
Y A 7y Y
v v N
< Model g] »| Constraint 3] » Adaptation ~ Adaptation\g>
anager Evaluator Engine Executor

A

Managed System Interface

A 4

Effectors 8]

A

2]

y

A

Managed System Layer

2]

103

Architecture-based Adaptation of the Web-based Client-Server System (1)

Web-based client-server system with multiple server groups. Clients send stateless requests to
servers via network links. Each server group manages incoming requests through a request queue.

Adaptation Focus: Monitor & Control:
® Goal: Optimize performance,
specifically client response time
e Key influencing factors: Server
load, Network bandwidth,
Number of incoming requests
(dynamic & unpredictable)

e ClientType.responseTime
e ServerType.load
e LinkType.bandwidth

Adaptation goal (constraint for each client):

invariant (self.responseTime < maxResponseTime) | — responseTimeStrategy(self); -

Universita di Camerino

1336

Architecture-based Adaptation of the Web-based Client-Server System (2)

' 8]
Adaptation Layer
Architectural Model -] EE
/(I;I:rop_?mes Time: /IAdaptation Operators
//Component Model £] p font _I;response 0 ServerGroupT.addServer()
ServerGroupT: ... erverT.load: ... s :
ServerT:.... ServerGroupT.load: ... ghgp;I.Tove(SeverGroupT,
LikT: . LinkT bandwidth: ... P
//Analysis gJ fﬁg:}:ﬁg‘;ff responseTime //Adaptation Strategies g
Queuing model B HesponaaT e strategy responseTimeStrategy ...
2 3 7y
v v A
Model gJ ,| Constraint gl | Adaptation gJ »| Adaptation g]
Manager Evaluator Engine Executor
3
v y gl
Probes 2] Client-Server System Interface Effectors 2]
L v
2]

ServerGroup, 2]

2]

ServerGroup,

g]

ServerGroup, g

Link, &

Link, &

‘oliem1 33‘ ‘Clienti 33‘

‘Clientj 53‘ ‘cnemk @’

‘ Client, 33‘ ‘ Client, 33‘

Client-Server System Layer

105

Universita di Camerino

1336

Architecture-based Adaptation of the Web-based Client-Server System (2)

Keeps track of the
response time of
clients, the server
load, and the

bandwidth of links

\

)

' 8]
Adaptation Layer
Architectural Model -] EE
/(I;I:rop_?mes Time: /IAdaptation Operators
//Component Model £] s font _I;response 0 ServerGroupT.addServer()
ServerGroupT: ... erverT.load: ... s :
ServerT ServerGroupT.load: ... ghgp;:.r;love(SeverGroupT,
Lk LinkT bandwidth: ... P
//Analysis gJ {;?/g:::;g‘élsf responseTime &J //Adaptation Strategies g
Queuing model B HesponaaT e strategy responseTimeStrategy ...
2 3 7y
— ¥ v v "
Model & ,| Constraint gl | Adaptation gJ »| Adaptation g]
Manager Evaluator Engine Executor
\ h
v y g:]
Probes 2] Client-Server System Interface Effectors 2]
L v
2]

ServerGroup, £] ServerGroup, £ ServerGroupg, g
Link, & Link, %] Link, &

‘Client1 33‘ ‘Clienti 33‘

‘Clientj 33‘ ‘cnemk @’

‘ Client, 33‘ ‘ Client, 33‘

Client-Server System Layer

106

Universita di Camerino

1336

Architecture-based Adaptation of the Web-based Client-Server System (2)

/Periodically checks\

whether the
measured response
time of clients is

below a required
threshold

Qaandwidth of links /

! 8]
Adaptation Layer
Architectural Model -] EE
/(I;I:rop_?mes Time: /IAdaptation Operators
//Component Model £] s font _I;response 0 ServerGroupT.addServer()
ServerGroupT: ... erverT.load: ... s :
ServerT ServerGroupT.load: ... t((:)hGernotI.r)nove(SeverGroupT,
Lk LinkT bandwidth: ... P
//Analysis gJ f:]sg:::;‘:;lsf responseTime &J //Adaptation Strategies g
Queuing model B HesponaaT e strategy responseTimeStrategy ...
2 3 7y
/_v Y Y
Model gJ ,| Constraint g] | Adaptation gJ »| Adaptation g]
Manager Evaluator Engine Executor
3
v y g:]
Probes 2] Client-Server System Interface Effectors 2]
L v
2]

ServerGroup, 2]

Server,

Server,,

ServerGroup,

2]

ServerGroup,

g]

2]

Link,

Link, %]

Link, &

‘olient1 33‘ ‘cuemi 33‘

‘Clientj 33‘ ‘cnemk @’

‘ Client, 33‘ ‘ Client, 33‘

Client-Server System Lay.

er

107

Universita di Camerino

1336

Architecture-based Adaptation of the Web-based Client-Server System (2)

v
Probes

ﬂxecutes the

response time
strategy adding a
server to the
group, decreasing
the load and
consequently also

Qhe response timeJ

! 8]
Adaptation Layer
Architectural Model -] EE
/IFfropemes . /IAdaptation Operators
/IComponent Model 2 glleanfresponseTlme. ServerGroupT.addServer()
ServerGroupT: ... erverT.load: ... s :
ServerT ServerGroupT.load: ... t((:)hGernotI.r)nove(SeverGroupT,
Lk LinkT bandwidth: ... P
//Analysis gJ f:]sg:::;‘:;lsf responseTime //Adaptation Strategies g
Queuing model B HesponaaT e strategy responseTimeStrategy ...
2 3 7y
v L A
Model gJ ,| Constraint gl | Adaptation gJ »| Adaptation g]
Manager Evaluator Engine Executor
3
i 2]
g Client-Server System Interface Effectors 2]
L v
2]
ServerGroup, £J ServerGroup, & ServerGroupg, £]
a1 v
Link, & Link, %] Link, &
‘olient1 33‘ ‘cuemi 33‘ ‘Clientj 33‘ ‘cnemk @’ ‘Clienq 33‘ ‘Clientn 33‘
. 108
Client-Server System Layer

Architecture-based Adaptation of the Web-based Client-Server System (2)

1336

i 8]
Adaptation Layer
Architectural Model]
UEroperties 2 /IAdaptation Operators &

//IComponent Model $:| CIlentT.respo'nseTlme: ServerGroupT.addServer()
ServerGroupT: ... ServerT.load: ... ClientT.move(SeverGroupT.

ServerT: ... ServerGroupT.load: ... oG i R

LinkT: .. LinkT bandwidth: ... oBrode)

. g1 [//Constraints g . : a]
//Anal‘yS|s invariant(self.responseTime //Adaptation Strategles
Queuing model S HesponeaT i) strategy responseTimeStrategy ...

A 4 A

v " N
Model &] Constraint &] .| Adaptation g] J Adaptation
Manager "| Evaluator “| Engi \ Executor

¥

2]
/ prob;s 7] Client-Server System Interface Effectors %]
/Applies the \ s v

reql“red OperatOFS ServerGroup, g] ServerGroup,] ServerGroup, £]

to adapt the Server,, -
. . Server,
system, i.e. adding Servery

a server to the
group if the load of Lk Link, &J Link, &J

the current server ‘olient1 33‘ ‘cuemi 33‘ ‘Clientj 33‘ ‘cnemk @’ ‘Clienq 33‘ ‘Clientn 33‘

Qro u p IS tOO h Igh / Client-Server System Layer 109

Comprehensive Reference Model for Self-Adaptation

reasons about

1.7 and acts upon >
Computation Model
.................. <>
§.8
? Representation
triggers > Reflection Domain
] 0..1 o Model Model
Domain Reflective adapts > 1.7 1.7
Computation 0.1 Computation |~ - System i
sensesand | | 1 " 1 T ' '
effects v | | ' ;
Perceivable | T [T—— | Reflective | _; 5
. : ' senses v System i
characteristic of Attribute :] :
i z S Managed e
the environment i g < “aem [|
Environment|>- . : |
! |
Activity that can AETHE <is situated in L---<{ Self-Adaptive | , |
change the Sl
. Process
environment
attributes

110

reasons about

Reflective | '~ and acts upon > !-" [Reflection
Computation Model
! : : System
triggers > triggers > triggers > Model
Monitor 1 1 Analyze ! |1 Plan . Execute p
Environment
1 1% adapts Model
Vv senses 1
* Adaptation
System Goals Model
% MAPE Working
1 < senses] | Model
and effects 7
Environment . Managed Peflachis
System System
! LY L KEY UML
i |
! i : _ element integrated
< is situated in << :I with other perspective

System

111

Universita di Camerino

1336

112

Wave ||

Architecture-based Adaptation

The Third Wave of Self-Adaptation

The third wave centers on runtime models, models used by the system during operation
to reason, decide, and adapt

Purpose:

1. Manage the complexity of concrete designs
2. Support autonomous decision-making
3. Keep system understanding up to date during runtime

114

Runtime Models — From Design to Operation

Offline Online
Model-driven engineering Runtime models
Engineers refine models before systems refine and update models during
deployment execution

Benefits:

1. Enable systems to reason about themselves and their context
2. Allow continuous adaptation to changing conditions
3. Bridge the gap between design-time abstraction and runtime reality

115

What is a Runtime Model?

A runtime model is a first-class runtime abstraction of a system, or any aspect related

to it, used to realize self-adaptation

Managed System Model

Environment Model
Adaptation Goals Model

MAPE Working Model

_/

Used both as shared
knowledge among MAPE
components and as active
elements in executing the
adaptation loop

116

Causality in Runtime Models

Runtime models must stay consistent with the system or aspects they represent,
especially as the system changes dynamically

Outdated models can lead to poor or inaccurate adaptation decisions

Casual connection — ensures that if the system changes, the representation of the
system also changes, but also if the representation changes, the system changes
accordingly

Real-time synchronization Full controllability

117

Weak Causality

Issues of “strong” causality

1. Delay in the update of model or system
2. Runtime models may not represent the ground truth when dealing with
uncertainty

Weak causality Links the state of a runtime model and the system, allowing an
acceptable discrepancy (temporal, quantitative, etc.)

118

Motivations for Runtime Models (1)

Enable systems to adapt intelligently at runtime through model-based reasoning and abstraction

Representing Dynamic Change:

1. Capture system evolution at an abstract, system-wide level
2. Focus on relevant runtime aspects, omitting low-level details

Separation of Concerns:

1. Different models for different system aspects
2. Enable tracking, understanding, prediction, and planning

Runtime Reasoning:

1. Support monitoring, constraint checking, simulation, and “what-if” analysis

2. Enable formal reasoning for reliable adaptation decisions e

Motivations for Runtime Models (2)

Leveraging Humans in the Loop:

1. Models designed for human readability (e.g., domain-specific languages)
2. Support human participation in:

a. Dataenrichment

b. Evaluation and decision-making

C. Guiding large-scale adaptation

Facilitating On-the-Fly Evolution:

1. Runtime models act as living design artifacts
2. Enable detection of issues and live updates during operation
3. Models can evolve and be redeployed dynamically

120

Dimensions of Runtime Models

Runtime models can be classified according to different dimensions

Dimension — describes a particular characteristic of the representation of a
self-adaptive system or aspects related to the system

Options — represent the extremes of the domain

121

Structural vs. Behavioral Runtime Models

Structural Models

Focus on system composition (elements and
their relationships)

Represent types or instances at varying
abstraction levels

Capture what the system is (its architecture and
configuration

Useful for reasoning about system organization
and structure changes

Behavioral Models

Focus on dynamic behavior and changes over
time

Describe Activities (event sequences,
control/data flows)

Describe State changes (transitions, protocols,
interactions)

Capture how the system behaves and evolves
Useful for analyzing runtime processes and
interaction dynamics

122

Universita di Camerino

1336

receive msgs

z] Sleeping
DeltaloT Mote wakeup
sense 0
O Buffer = i Receiving
control 5 E
buffer
i :
gl sent ; sense
Node Manager ! Sensing
|
control /]\ control (l\ load
receive ? send buffer a? sensed
Sending Preparing
O— Receive Queue E]—CO— Send Queue’ T (load
receive relggi(\j/e send queue ready buffor

send msgs load receive queue

KEY Component —Q)- Interface

KEY O State —» Transition

123

Declarative vs. Procedural Runtime Models

Declarative Models

Describe what needs to be achieved or what is
true

Capture goals, constraints, or desired states
Focus on purpose and outcomes, not steps

Example: an adaptation goal defining system
performance targets

Procedural Models

e Describe how something is or should be done
Capture processes, plans, and actions for
adaptation

e Focus on execution and method

Example: a plan specifying steps to adapt the system

124

Declarative model

Procedural model

// Declaration of the adaptation goals
int MAX_PACKET_LOSS = 10; //max packet loss 10%

// Procedures to test the adaptation goals for a given configuration
bool satisfactionGoalPacketLoss(Configuration gConf,
int MAX_PACKET_LOSS) {
return gConf.qualities.packetLoss < MAX_PACKET_LOSS;

125

Functional vs. Qualitative Runtime Models

Functional Models

e Represent the functionality of the system or its
components

e Describe elements, their functions, and
interrelations

e Capture inputs, outputs, and data flows
Support functional analysis e.g., checking
validity of system reconfigurations

e Ensure the system continues to provide required
services after adaptation

Verify what the system does and how its functions
interact

Qualitative Models

126

setNetworkSettings(List<MoteSettings>)

setNetworkSettings setDefaultSettings

Effector

A

setMote Adapting

Ready Active

setMote(MoteSettings)

KEY

) Required interface

2] Component HTTie
—0O Provided interface

KEY O State —» Transition

127

Qualitative Runtime Models

Defined by 1SO 9126/25010:

“the set of characteristics, and the relationships between them, that provides the basis for specifying quality
requirements and evaluation.”

Key Properties:

* Discretization: represent continuous aspects via discrete values for reasoning
* Relevance: focus on properties meaningful for decision-making
* Accuracy: maintain precision despite uncertainty

Examples:

* Markov Models: stochastic state—transition models for reliability prediction
* Queuing Models: analyze performance based on workload and response time

128

Formal vs. Informal Runtime Models

Formal Models

Based on mathematical foundations (discrete
math, logic, automata)

Have well-defined syntax and semantics

Enable automated reasoning and guarantees for
strict adaptation goals

Produce replicable analytical results

Limitations: hard to capture all real-world
aspects; modeling can be complex

Informal Models

Use domain abstractions or programming-oriented
notations without full formal basis

Easier and faster to apply; suitable when
formalization is impractical or too costly

May include stakeholder input or heuristic
reasoning

Less precise — may involve interpretation or
ambiguity

Practical for real-world adaptation when full rigor
isn’t required

129

Universita di Camerino

1336

ParameterAna]ysis StartService AlarmDirect
vitalParamSample? pushAlarmButton?
C)< O 2C
O ¢
fRate = I

getMedicalServiceFailureRate()

MedicalAnalysis

p_CHANGE_MEDICATION A
N

SelectDrugService

fRate = fRate + (1-fRate)*
getDrugServiceFailureRate()

DrugService

KEY @ Comitted State

’ ~

fRate = fRate + (1-fRate)*
getAlarmServiceFailureRate()

e 0 o AlarmService

p_INDIRECT_EMERGENCY

~
Q SelectAlarmService

totalFailureRate =
totalFailureRate +f Rate
avgFailureRate =
totalFailureRate/invocations
done!

fRate =
getAlarmServiceFailureRate()

Waiting

@ Urgent State

Lk y,
N

FailureRateCalculated

»

@ Initial State —> Transition AA Branch Point

130

Principal Strategies for Using Runtime Models

How a runtime model can be used? 3 strategies

Shared Model Strategy

All MAPE components access a
common set of runtime
models. Most frequently used
in self-adaptive systems.
Promotes consistency and
centralized knowledge

Exchanged Model Strategy

MAPE components exchange only
the models they need. Reduces
data sharing overhead. Less
commonly used

Shared MAPE Model Strategy

MAPE models themselves share a
common runtime model set.
Supports modular design of MAPE
components. Less frequently
applied

131

Universita di Camerino

1336

Runtime Models
A A A A
data data data data
Y Y
g]
Monitor Analyzer Planner Executor Runtime Models
A A A A
(a) MAPE Components Share K Models
data data data data
E Y Y v Y
Runtime Monitor a Analyzer 2] Planner &l Executor gl
Model Model Model Model
Analyzer € » Planner
7]] (c) MAPE Models Share K Models
Runtime Runtime
Models Models
i & g]
Monitor Executor KEY B
MAPE Component K Model Data Exchange

(b) MAPE Components Exchange K Models

132

MAPE Components Share Models

All MAPE components access a common knowledge repository. Centralizes runtime models for

the managed system and environment

Workflow:
1. Monitor — updates runtime models with probe data (system + environment)
2. Analyzer — queries models via runtime simulation; evaluates adaptation options. Configures
parameterized quality models
3. Planner — reads analysis results from models to select adaptation option. Generates adaptation plan and
writes it to models
4. Executor — reads plan from models and applies it to the system

133

MAPE components exchange runtime models instead of using a single shared repository.

Components reason on and manipulate models relevant to their function. Adaptation emerges as a
result of model exchanges and updates

134

System Architecture (Three Layers):

1. Business Application (Bottom Layer)
o Managed system with application components
o Equipped with sensors and factories for runtime monitoring and instantiation

2. Causal Connection (Middle Layer)
o Implements weak causal connection between runtime models and managed system

3. Online Model Space (Top Layer)

o MAPE components manipulate runtime models
o Five adaptation components exchange four types of runtime models

135

Universita di Camerino

1336

System Architecture (Three Layers)

1. Business Application (Bottom Layer)

O

Managed system with application
components

Equipped with sensors and factories for
runtime monitoring and instantiation

2. Causal Connection (Middle Layer)

O

Implements weak causal connection
between runtime models and managed
system

3. Online Model Space (Top Layer)

@)

O

MAPE components manipulate runtime
models

Five adaptation components exchange four
types of runtime models

Configuration
Online Model Space Chlockae
Architecture
Model

Reasoning Feature

Model ER| Model ER|

o) based Model Weaver
Reasoner
Feature
Model
Context Architecture
Model Model
Causal $:| Configuration E
" Event Processor
Connection Manager
k
runtime events factory services
v E
Business Siners $j‘ Factories ﬂ‘

Application

136

©y System Architecture Runtime Models

Specifies the system’s variability, including
mandatory, optional, and alternative features, along

with constraints among them, linking featuresto————__ |

/

architectural fragments

Associates sets of features with contexts, often as
event-condition-action rules, to trigger adaptation
actions based on system events and condition

,< Reasoning Feature
Model ER| Model

Online Model Space

2]

Configuration
Checker

Architecture
Model

Goal-Based

Mode)¥eaver

Reasoner

Feature

Captures relevant environmental attributes and
processes, kept up-to-date at runtime using sensor
data to inform adaptations

Defines the component composition of the business
application, supporting dynamic reconfigurations and
refining feature model leaves into concrete
architectural fragments

pd

Application

Model
g] :
{ Context Architecture
Model A Model
Cau $:| Configuration $:|
" Event Processor
Copréction Manager
k
runtime events factory services
v E

Business Sensors $:|‘ Factories $:|‘

137

MAPE Models Share Models

Runtime models are shared by MAPE functions themselves. MAPE functions are specified and executed as
runtime models, making the adaptation logic fully model-centric

138

Universita di Camerino

s MAPE Models Share Models

Represent architectural aspects of the managed
system and environment

Map system observations to the abstraction used in

\

\ {]
Reflection Models

Knowledge Repository

Evaluation

2]

Models

Change

2]

g]
Execution
Models

. — Z]
reflection models .
Monitoring
Models
Define allowed configurations and thresholds on . —

quality properties

1

Y e | A4
Mopi » Analyzer Planner Executor
Model Model Model Model

Define the space of allowed system variability for /
planning

!

&

l

!

Model Execution Engine

\

Map plan-level steps to concrete system-level adaptation
actions

A/ !

Probes £]

Managed System

& g
Effectors £]

139

Universita di Camerino

1336

trigger
work flow

Start Analysis

<Analyze>

Check for

Failures

End Analysis

Number of
Failures < 5?

Failures
Detected?

<Change Model>
Repair Strategies

A 4
<Evaluation Model> <Evaluation Model> <Analyze> o
Failure Analysis Deep Failure Deep Check for ——p» Racal
: > epair
Rules Analysis Rules Failures
<Reflection Model>
Architecture Model
End Plan

140

Wave |V

Requirements-driven Adaptation

141

Requirements-driven Adaptation

Focuses on requirements understanding stakeholder needs and linking them to
adaptive behavior. Self-adaptive systems must be built on a clear understanding of

requirements, not ad-hoc feedback loops

Adaptation goals express stakeholder concerns in a machine-readable, operational form

to guide system adaptation

142

Requirements Engineering Focus

Key activities:

R

Elicitation — Identify stakeholders’ needs, system goals, and adaptation conditions
Analysis — Examine and prioritize requirements; resolve conflicts and trade-offs
Specification — Clearly define requirements (often as adaptation goals or rules)
Operationalization — Link requirements to system elements and feedback loops
for execution

Maintenance — Update and refine requirements as the system and context evolve

143

Three Main Approaches

1) Relaxed Requirements — Tolerate uncertainty in dynamic environments

2) Meta-Requirements— Specify requirements about other requirements to guide
adaptive behavior

3) Feedback Loop Requirements — Define functional behavior and adaptability of
feedback mechanisms

144

Relaxing Requirements for Self-Adaptation

Traditional Requirements

e Define what a system should do (functions) and how it should perform (qualities)
e May include why the requirements exist (stakeholder rationale)
e Common notations:

O Use cases, user stories — functional requirements
o Structured natural language, quality scenarios, goal models — quality requirements

J—@ 1 AND refinement link
&} e

OR reflnement link
B i
gl Use Case Name
________ J_ e Be e S Ao |
= Description

1

| : 0 -

. Pre-condition <expectatlon>
| = Post-condition

= Basic path

]
i

= Altermnative paths
! -Entlty
ERT TR PR TR * Exception paths Actor(system)> <Actor (user)>

145

Relaxing Requirements for Self-Adaptation

Challenge for Self-Adaptive Systems

e These systems face uncertainty in environment and operation
e Traditional requirement methods are often too rigid

Relaxed Requirements Approach

Uses structured natural language to make requirements more flexible
Allows adaptation goals to be “relaxed” to handle changing or uncertain conditions.
e Example: Instead of “Response time must always be < 2s”, use “Response time should be < 2s under normal

conditions.”

146

Relaxed Specification Approach

Introduces a structured language to mark:

e Invariants — requirements that must always hold
e Relaxable requirements — can temporarily change under certain conditions

Based on the RELAX Language

e Designed specifically for self-adaptive systems
e Provides explicit support for expressing uncertainty and flexibility in requirements

147

The RELAX Language

Operators

Explanation

Model operators
SHALL
MAY...OR

Temporal operators
AS SOON AS POSSIBLE TO

IN [interval]

Ordinal operators
AS CLOSE AS POSSIBLE TO [quantity]

AS MANY AS POSSIBLE [quantity]

The requirement must hold

Requirement with alternative
options

The requirement should hold as
soon as possible

The requirement should hold in a
time interval

Relaxation of value of countable
quantity specified in a requirement

Relaxation of number of countable
quantity specified in a requirement

148

The RELAX Language

Modal Operators: define obligation level
(e.g., SHALL, MAY)

Operators

Explanation

Model operators
SHALL
MAY...OR

Temporal operators
AS SOON AS POSSIBLE TO

IN [interval]

Ordinal operators
AS CLOSE AS POSSIBLE TO [quantity]

AS MANY AS POSSIBLE [quantity]

The requirement must hold

Requirement with alternative
options

The requirement should hold as
soon as possible

The requirement should hold in a
time interval

Relaxation of value of countable
quantity specified in a requirement

Relaxation of number of countable
quantity specified in a requirement

149

The RELAX Language

Temporal Operators: add flexibility to
when a requirement must hold

Relaxation:

® Strict: “The system SHALL keep packet
loss under a threshold at all times.”

® Relaxed: “The system SHALL keep
average packet loss under a threshold
IN 12 hours.”

Operators

Explanation

Model operators
SHALL
MAY...OR

Temporal operators
AS SOON AS POSSIBLE TO

IN [interval]

Ordinal operators
AS CLOSE AS POSSIBLE TO [quantity]

AS MANY AS POSSIBLE [quantity]

The requirement must hold

Requirement with alternative
options

The requirement should hold as
soon as possible

The requirement should hold in a
time interval

Relaxation of value of countable
quantity specified in a requirement

Relaxation of number of countable
quantity specified in a requirement

150

The RELAX Language

Ordinal Operators: add flexibility to
quantities or degrees

Operators

Explanation

Model operators
SHALL
MAY...OR

Temporal operators
AS SOON AS POSSIBLE TO

IN [interval]

Ordinal operators
AS CLOSE AS POSSIBLE TO [quantity]

AS MANY AS POSSIBLE [quantity]

The requirement must hold

Requirement with alternative
options

The requirement should hold as
soon as possible

The requirement should hold in a
time interval

Relaxation of value of countable
quantity specified in a requirement

Relaxation of number of countable
quantity specified in a requirement

151

Semantics of Language Primitives

Every specification language needs precise semantics to ensure consistent
interpretation. For relaxed requirements, semantics are often defined using fuzzy
temporal logic

152

Fuzzy Temporal Logic Basics

Temporal Logic: describes properties over system paths and states

Example: AG p — for all paths (A), p always (G) holds

Fuzzy Sets: extend classical logic (true = 1, false = 0) with degrees of truth € [0, 1]

Enables reasoning under uncertainty

153

Operationalization of Relaxed Requirements

Transform relaxed requirements into self-adaptive system behavior.

Core aspects

Handling uncertainties Requirements reflection Mitigation mechanisms

154

Handling Uncertainty

Identify sources of uncertainty
o Determine environmental or behavioral factors that may prevent strict satisfaction of requirements.

Analyze each requirement
o Decide if it must always hold (invariant) or can be relaxed under certain conditions.

Document uncertainty conditions
o Define when and why relaxation is allowed (e.g., overload, interference, data loss).

Monitor uncertainty
o Use sensors to detect and quantify uncertainty sources at runtime.

Enable self-adaptation
o Apply appropriate relaxation operators (e.g., IN, AS CLOSE AS POSSIBLE TO) to support adaptive responses.

155

Requirements Reflection and Mitigation Mechanisms

From Specification to Operation
e The textual language defines how to express relaxed requirements,

but not how the system implements them.

e Operationalization requires:
o Integration of requirements, uncertainties, and adaptations into one unified framework.

Requirements Reflection

® Applies computational reflection to requirements.
® Makes requirements accessible at runtime — the system can inspect and analyze them.
e Enables runtime adaptation decisions to mitigate uncertainties.

156

Requirements reflection # adaptation goals

In self-adaptive systems, adaptation goals are runtime entities representing stakeholder

requirements

Designers must translate stakeholder requirements into machine-readable adaptation
goals used by the feedback loop

157

Realization Challenges

Full requirements reflection: where requirements remain active and inspectable at runtime

Goal modeling provides a foundation for realizing it within a model-driven engineering approach

The process:

e Capture uncertainties and stakeholder goals
® Progress through design, implementation, and deployment
o Keep the goal model alive at runtime.

158

Meta-Requirements for Self-Adaptation

What is the requirements problem a feedback loop for self-adaptation is intended to

solve?

The feedback loop addresses problems related to the runtime success or failure of other
system requirements

Thus, the requirements of the managing system are meta-requirements — i.e.,
requirements about the requirements of the managed system

These define the concerns of the managing system in the conceptual model of
self-adaptive systems

159

Modeling Approach

Awareness Requirements - specify when adaptation is needed

e I|dentify situations where managed system requirements are violated or at risk

Evolution Requirements — specify how the system should adapt

e Define actions or strategies to restore or improve system behavior.

160

Express situations where deviations from regular system requirements are acceptable.

Define the degree of success or failure that stakeholders can tolerate.

Evaluated at runtime, enabling adaptive responses when deviations occur.

161

Awareness Requirements (2)

Type Short description

Regular A requirement that should never fail.

Aggregate Imposes a constraint on the success/failure rate of another requirement,
which can refer to a frequency, an interval, or a bound on the
success/failure.

Trend Enables comparing success/failure rates over a number of periods in order
to specify how success/failure rates of a requirement evolve over time.

Delta Enables the specification of acceptable thresholds for the fulfillment of a
requirement.

Meta An awareness requirement about another awareness requirement.

162

Awareness Requirements Examples

Regular AR1: Fail-safe Operation — NeverFail
Aggregate AR2: Packet Loss < 10% — SuccessRate(100%, 12h)

Delta AR3: ComparableDelta(SetFailsafe, TransmitPackets, 1 cycle)

163

Goal-Oriented Requirements Engineering

(GORE):

® Represents goals, softgoals, and
quality constraints.

® Decomposes goals into tasks linked
to responsible actors.

® Awareness requirements (AR1-AR3)
integrated into the goal model to
monitor runtime satisfaction.

TSS

0
,®
Schedule \@ -~
Time Slots Show Store
Graphs Statistics
Secure
35 Avoid Jamming
Transmif _’ 4 NWs
Packets
\\
\
Reliability

\
PacketLoss < 10%

Fail-safe
Configuration

AR3: CompareDelta(SetFailsafe,
TransmitPackets, 1 cycle)

Fail-safe Operatio

O
AR1: NeverFail

Energy Minimize Energy
Efficiency Consumption

AR2: SuccessRate(100%, 12h)

% Reconfigure()

) <:> o—> »0—> -9

Quality Awareness Adaptation strategy

/ Task : B

Constraint requirement of evolution
requirement

KEY

O

Goal Soft Goal Contributes to Control variable 164

Evolution Requirements

Prescribe the actions or changes the system must perform when awareness
requirements are triggered.

Define how the system should adapt or evolve in response to detected deviations.

Represented as sequences of operators that modify:

e Elements or instances of the goal model, or
e The managed system and/or managing system (feedback loop)

165

Evolution Requirements Operators

Operator

Short description of effect

apply-config(C)

change-param(R, p, v)

Jind-config(algo, ar)

disable(R)

enable(R)

The managed system should change from its current configuration to the
specified configuration C.

The managed system should change the parameter p to the value v for all
future executions of requirement R.

The managing system should execute algorithm algo to find a new
configuration to reconfigure the managed system when awareness
requirement ar fails. The managing system should provide the algorithm
all data that is required to find a suitable configuration.

The managed system should stop trying to satisfy requirement R from
now on. If R is an awareness requirement, the managing system should
stop evaluating it.

The managed system should resume trying to satisfy requirement R from
now on. If R is an awareness requirement, the managing system should
resume evaluating it.

166

An Example

[/*¥* ¢: current configuration; NWS: network settings; AG: adaptation goals */
Reconfigure(algo: bestAdaptationOption(c, NWS, AG), ar:SuccessRate(100, 12)) {
¢’ = find-config(algo, ar);
apply-config(c’);
}

The adaptation strategy Reconfigure defines a sequence of two operations to deal with failures of the awareness
requirement SuccessRate(100, 12) (i.e. AR2). The strategy takes as arguments an algorithm algo to find a new
configuration and the awareness requirement ar that triggered the strategy. The algorithm uses the current
configuration c, the network settings NWS (i.e. the control variables) that define the adaptation options to select
a new configuration, and the adaptation goals AG to determine the best option. The strategy, which is executed
when the awareness requirement fails, will find a new configuration that satisfies the goals and adapt the
managed system accordingly.

167

Operationalization of Meta-Requirements

Operationalization means translating meta-requirements (awareness + evolution
requirements) into executable self-adaptive behavior at runtime.

The system must include mechanisms that allow it to monitor, decide, and adapt
dynamically.

168

Key Components Needed

Runtime Goal Model
A live representation of the system’s goals, implemented (e.g., via object-oriented classes and runtime
objects).

Monitoring Framework
Probes continuously track the parameters of awareness requirements (e.g., packet loss for AR2).

Mitigation Mechanisms
Implement adaptation strategies (from evolution requirements) to correct deviations.

System Support (Effectors)
Enact the required operations on the managed system (e.g., reconfiguration, enabling/disabling goals).

169

Implementation Strategy

Often realized using Event-Condition-Action (ECA) rules:

Event: change in monitored parameter (e.g., packet loss increases).

Condition: requirement constraint violated (e.g., loss > 10%).

Action: execute adaptation strategy (e.g., reconfigure network).

170

Functional Requirements of Feedback Loops

Focuses on requirements about the behavior of feedback loops themselves, rather than
stakeholder requirements.

Ensures that MAPE components (Monitor, Analyze, Plan, Execute) perform their functions
correctly.

1. Software Testing
o Executes software against test cases to detect and correct errors.
o Verifies correctness relative to a set of test scenarios.

2. Formal Verification
o Uses mathematical techniques on a formal model to guarantee correctness.
o Must be complemented by validation to ensure the system meets stakeholder needs.

171

Design and Verify Feedback Loop Model

Correct-by-Construction Modeling
Requires three main elements:

1. Formal models of MAPE-K components (Monitor, Analyzer, Planner, Executor, Knowledge).
2. Formally specified properties of functional requirements.
3. Model verifier to check that the model satisfies these properties.

Uses timed automata and Computational Tree Logic (CTL).
Examples of properties:

1. P1: Monitor.AnalysisRequired — Analyzer.CheckForAdaptationNeed

2. P2: Analyzer.AdaptationNeeded — VerifierVerificationCompleted

3. P3: Analyzer.RuntimeVerification && Analyzer.time = Analyzer. MAX_VERIF_TIME —
Analyzer.UseFailSafeStrategy

Ensures correct behavior of functions, guards, and invariants.

172

&> AnExample

Monitor: updates knowledge (quality properties, uncertainties) and checks if

analysis is needed.

Analyzer: evaluates if adaptation is required; composes and verifies options.

Planner & Executor

e Selects the best adaptation option.
e Adapts the managed system accordingly.

Fail-Safe Mechanism

e Analyzer enforces a maximum verification time.
e If exceeded — fail-safe strategy is applied.

StartMonitor updateSystemSettings(), : KnowledgeUpdated
updatePacketLoss(), updateEnergyConsumption(),
updateSNRLInks(), updateTrafficMotes()
(c) c
4

analysisRequired()

monitor? AnalysisRequired = analyze!
initialize() (C)e
27
ostprocessin
A postp 9()) .
W lanalysisRequired()
feedbackLoopCompleted!
Waiting ~ PR
P .
AnalysisNotRequired —~
(a) Monitor Model DeltaloT
UseFailSafeStrategy QualityEstimatesReady Waiting NoAdaptationNeeded
. postprocessing()
useFallSafeStrategy() T~ A feedbackLoopCompleted!
® G O ®
H s L%
1 A analyze? 0
? ; .
initalize() ladaptationNeeded()
verificationinterrupted? useVerificationResults
P 0 analyzeSystemSettings(),
analyzePacketLoss(),
analyzeEnergyConsumption(),
InterruptingVerification VerficationCompleted analyzeSNRLInks(),
~ 7z analyzeTrafficLinks() -
Cg \c> v ©)
- =
StartAnalysis CheckForAdaptationNeed
interruptVeriication! verficationCompleted?
uptven adaptationNeeded()
time>=MAX_VERIF_TIME a0 composeAdaptationOptions()

@< /\< invokeVerifier! =
time<=MAX_VERIF_TIME

Y

VerificationTimeExceeded RuntimeVerification StartVerification AdaptationNeeded

173

Deployment Requirements

After verification, feedback loop models are deployed for runtime execution to realize self-adaptation.

Direct execution ensures that correctness guarantees from design and verification are preserved.

1. Model Execution Engine
o Executes feedback loop models according to model semantics.
o Preserves verification guarantees.

2. Integration with Probes, Effectors, and Verifier connect models to:
m Probes — monitor system parameters
m Effectors — enact adaptations
m Verifier — analyze adaptation options at runtime

3. Correctness of Connectors and Engine ensured via:
m Extensive testing, or

m Formal proofs
174

Managing System

Knowledge Repository 3]
Monitor 3] Analyzer 2] Planner 3] Executor 2] 2]
Model
Verifier
Virtual Machine g]
O)
Probes & | Effectors 2 |

Managed System

175

Wave V

Guarantees Under Uncertainties

176

Guarantees Under Uncertainties

Focus shifts to guaranteeing compliance with adaptation goals despite uncertainty.

Builds on insights from:

e Third Wave (Runtime Models): uses probabilistic models to reason about uncertainties.

e Fourth Wave (Requirements-Driven Adaptation): highlights importance of uncertainty in system
requirements.

Uncertainty becomes a central driver for self-adaptation

177

Uncertainties in Self-Adaptive Systems

Uncertainty in self-adaptive systems is any deviation of deterministic knowledge that may reduce
the confidence of adaptation decisions made based on the knowledge.

Two main types:

e Aleatoric: imprecision in knowledge (common in self-adaptation)
e Epistemic: lack of knowledge

Poorly mitigated uncertainty can lead to inaccurate or unreliable adaptation, degraded quality, or
safety violations

Managing uncertainty increases trustworthiness of the system

178

Sources of Uncertainty

System-related

e Simplifying assumptions, model drift, incompleteness, future parameter values
e Uncertain adaptation functions, decentralized decision-making, automatic learning

Goal-related

e Requirements elicitation, conflicting qualities, future goal changes
Context-related

® Inaccurate context models, noisy sensing, multiple or inconsistent data sources
Human-related

e User input variability, multiple ownership, hidden/confidential information

179

&y OSources of Uncertainty

Group

Source of uncertainty

Brief explanation

System

Simplifying assumptions

Model drift

Incompleteness

Future parameter values

Adaptation functions
Decentralization

Automatic learning

Modeling abstractions that introduce some
degree of uncertainty.

Misalignment between elements of the system
and their representations.

Some parts of the system or its model are
missing and may be added at runtime.

Lack of knowledge about future values of
parameters that are relevant for
decision-making.

Imperfect monitoring, decision-making, and
executing functions for realizing adaptation.

Lack of accurate knowledge about the
system-level effects of local decision making.

Learning with imperfect and limited data, or
randomness in the model and analysis.

Goals

Requirements elicitation
Specification of goals

Future goal changes

Elicitation of requirements is known to be
problematic in practice.

Difficulty of accurately specifying the
preferences of stakeholders.

Changes in goals due to new customer needs,
new regulations, or new market rules.

Context

Execution context

Noise in sensing

Different information sources

Context model based on monitoring might not
accurately determine the context and its
evolution.

Sensors/probes are not ideal devices, and they
can provide (slightly) inaccurate data.

Inaccuracy due to composing and integrating
data originating from different sources.

Humans

Human in the loop

Multiple ownership

Human behavior is intrinsically uncertain; it
can diverge from the expected behavior.

Parts of the system provided by different
stakeholders may be partly unknown.

180

Taming Uncertainty with Formal Techniques

Taming uncertainty focuses on the analysis and planning stages of the self-adaptive workflow. It relies on formal
techniques applied at runtime to support reliable adaptation decisions

Use formal runtime verification to reduce uncertainty in decision-making

Decision-Making Process: . . -
and ensure goal compliance under changing conditions

1. Analysis Phase:
o The analyzer uses formal verification to evaluate possible adaptation options
o Ensures each option meets the system’s goals and constraints

2. Planning Phase:

o The planner compares the verified options
o Selects the best adaptation option based on verification results and adaptation goals

181

Formal Analysis Workflow

Read: The analyzer reads the runtime models of the managed system,
environment, and adaptation goals to identify possible adaptation options

(system reconfigurations)

Configure: For each adaptation option, the analyzer configures the quality
models, setting parameters that represent system configurations and

environmental uncertainties

Invoke Query: The analyzer calls the model verifier to check each
configured quality model against a property corresponding to a specific

adaptation goal

Verify: The model verifier performs formal verification, producing an
estimate (prediction) of a quality property for each adaptation option

Write: The verification results are written to the knowledge base,
recording the predicted quality values for all adaptation options

182

Adaptation % | 8] i 81 | Verification Resuits 2]
Goals System Quality Models
Quality Option | Q1 | Qj | Qp
Gadhy Model,
o Environment Q:J:’i;ity i 9it | gjj | Qim
Goslyi Model,, e
1 ‘ ‘
1: read 2: configure; 4: verify;; 5: write g
3: invoke-query; $]
Analyzer > Model Verifier
(1 —
KEY
Component Runtime Model Specific Model ~ Control Flow

Selection of Best Adaptation Option

Read: The planner retrieves adaptation goals and verification results from
the analyzer

Select: It applies a decision-making mechanism such as a utility function
(weighing quality properties and their importance) or a rule-based system
to rank and choose the best adaptation option. Options failing threshold
criteria (e.g., too costly) are discarded

Read: The planner reads the current system configuration to prepare for
adaptation

Generate Plan: A plan is generated to transition the system from its current
state to the selected configuration

Write: The plan is stored in the knowledge base, where the executor
retrieves it to carry out the adaptation actions

Adaptation E

Verification Results EI E E

Goals
Option | Q¢ | Q; |Qp
Goal
1 System Blan
. Model
i 9i1 | 9j [9im
I Goalm
T f A A
3: read 5: write
1: read 2: select 4: generate-plan
l 4
Planner —

183

Exhaustive Verification to Provide Guarantees for Adaptation Goals

This approach ensures that a self-adaptive system meets its adaptation goals through runtime quantitative (exhaustive)
verification.

Quantitative verification checks if probabilistic or quantitative properties (e.g., message loss probability, response time)
hold for Markov-based models of systems with stochastic behavior

In the MAPE feedback loop, the analyzer applies this verification at runtime to evaluate the quality of each adaptation
option, while the planner selects the option that best satisfies the goals

In the example system, users access composed web services provided by different providers, each offering varying quality

attributes like reliability, response time, and cost. Verification ensures that the chosen configuration provides the best
trade-off between these properties

184

Universita di Camerino

Architecture of a feedback loop that uses exhaustive verification

Context: Variations in the
failure rates of concrete
services

System: Variations in the
availability of concrete
services

Human: Variations in how
users use the services

Managing System E
Knowledge Abstract $:] E
Workflow
il Concrete
Operational | (" QoS erification Workflow
Model Goals Results
A 1
v 4: verify 5: write 7: write
It I
1: update Model $:] IReLER Pt 8: enact
model Checker 2: read 6: read plan
3: invoke t
A A 4
effectors
Monitor Analyzer — |—— Planner ——{ Executor
ly ©_
¢ sensors

w 9

Component Runtime Model

(1 o> —

Specific Model

Interface

i Users

Workflow Engine

!

=g

Resources $:|

Service-Based System

R1: The probability that a failure of
the workflow execution occurs

must be less than 0.14

R2: The cost of executing the
workflow should be minimized

Interactions

185

Universita di Camerino

Architecture of a feedback loop that uses exhaustive verification

The Monitor observes the live behavior of the service-based system,
for instance, tracking how often a medical analysis service or an alarm
service fails during operation

It updates an operational model (a probabilistic model such as a
Discrete Time Markov Chain) with the current reliability and usage
data of each service

Example: if the failure rate of the drug service suddenly increases, the
Monitor updates that value in the runtime model so later analysis
reflects the new risk

Managing System
Knowledge Abstract $:| $]
Workflow
2] Concrete
Operational | (" QoS erification Workflow
Model Goals Results
y 4
v 4: verify 5: write 7: write
It I
1: update Model $:| TR8LTR pan 8: enact
model Checker 2: read 6: read plan
3: invoke t
@ y $:| A 4
< Monitor Analyzer |—— Planner |— Executor

effectors

sensors

P
?

O—

i Users

Workflow Engine

t
g (=g

Wondon

w 4

Component Runtime Model

(] -0 —

Specific Model Interface Interactions

4

Resources $:|

Service-Based System

186

Architecture of a feedback loop that uses exhaustive verification

1336

When quality goals (like reliability) are not met, the Analyzer starts an
evaluation of possible configurations. It instantiates the operational
model for different combinations of services and uses quantitative
verification (e.g., via the PRISM tool) to check which ones meet the
reliability requirement

Example: it may verify if using “Drug Service 2” together with “Alarm
Service 1” keeps the probability of workflow failure below the
accepted threshold

i Users

Managing System $:]
Knowledge Abstract $:| $]
Workflow
2] Concrete
Operational | (" QoS erification Workflow
Model Goals Results
y 4
v 4: verify 5: write 7: write
It I
1: update Model $:| TR8LTR pan 8: enact
model Checker 2: read 6: read plan
3: invoke
r A 4
/ $j E effectors
Monitor Analyzer Planner — —— Executor
= O—

I
A\ sensors
T

Workflow Engine

!

ik
vl

w 4

(] -0 —

Component Runtime Model Specific Model

Interface

=

Resources $:|

Service-Based System

Interactions

187

Universita di Camerino

Architecture of a feedback loop that uses exhaustive verification

The Planner examines the verified configurations and selects the one
that best satisfies the adaptation goals while optimizing other criteria
such as cost

Example: among all service combinations that keep reliability above
target, the Planner chooses the one that provides the same reliability
at the lowest cost

Managing System {]
Knowledge Abstract $:| $]
Workflow
2] Concrete
Operational | (" QoS erification Workflow
Model Goals Results
y 4
v 4: verify 5: write 7: write
It I
1: update Model $:| TR8LTR pan 8: enact
model Checker 2: read 6: read plan
3: invoke I
y A 4
$j @ $j effectors
Monitor Analyzer Planner Executor
= i O—

I
A\ sensors
T

i Users

Workflow Engine

!

ik
vl

w 4

Component Runtime Model Specific Model

(] -0 —

Interface

=

Resources $:|

Service-Based System

Interactions

188

Universita di Camerino

Architecture of a feedback loop that uses exhaustive verification

Once a plan is ready, the Executor applies it to the running system. It
reconfigures the workflow by deactivating the old service instances
and activating the new selected ones

Example: it may replace the failing “Drug Service 1”7 with “Drug
Service 2” and connect it to the workflow engine so requests are
automatically redirected

Managing System
Knowledge Abstract $:| $]
Workflow
2] Concrete
Operational | (" QoS erification Workflow
Model Goals Results
y 4
v 4: verify 5: write 7: write
It I
1: update Model $:| TR8LTR pan 8: enact
model Checker 2: read 6: read plan
3: invoke I
{' ¥
Monitor Analyzer |—— Planner 4{ Executor

effectors

I
A\ sensors
T

O—

i Users

Workflow Engine

!
g (=g

Wondon

w 4

Component Runtime Model

(] -0 —

Specific Model

Interface

4

Resources $:|

Service-Based System

Interactions

189

Statistical Verification to Provide Guarantees for Adaptation Goals

This approach ensures efficient runtime adaptation under uncertainty using statistical model checking (SMC),
which estimates property satisfaction through simulation and statistical analysis rather than exhaustive
verification

It provides results with controllable accuracy—confidence trade-offs, reducing verification time and
computational cost

190

Universita di Camerino n m
1336 X a

Context: network interference

System: fluctuating traffic load

ole

Gateway

!

loT Motes

g]

g

DeltaloT System

Managing System &l
Confi 1 Adaptation Adaptation
M onfigureion Options Goals Knowledge
A KEY
Quality 8] Network g]
Models Settings
A
T 5- veri f Component
1: update - verify | 6: read
model 2] results
2: read Statistical
: 8: enact
3: configure Q Model i
models Checker P X
: Runtime Model
6: write results 7 writ
4: invoke e
]
Monitor Analyzer Planner Executor Specific Model
Virtual Machine $:| _@_
Interface
@ sensors effectors Q % Users S
| \ 2]
Management Interface 2] v)
Front End Actor

R1: average packet loss < 10%
over 12 hours

R2: minimize energy

consumption

R3: use default settings if no
feasible configuration exists

191

Universita di Camerino

An Exam

The Monitor collects data (packet loss,
traffic load) to update a Configuration
model

When variations exceed thresholds, the
Analyzer evaluates possible configurations
using quality models that predict energy use
and packet loss

These models are verified through UPPAAL
SMC, which runs multiple simulations to
estimate average energy consumption with
defined accuracy and confidence

Managing System &l
Conf 1 Adaptation Adaptation
M onfigtretion Options Goals Knowledge
A KEY
Quality $] Network $j
Models Settings
A
T 5- veri f Component
1: update - verify | 6: read
model 2] results
2: read Statistical
: 8: enact
3: configure Q Model i
models Checker P X
: Runtime Model
6: write results 7 writ
4: invoke e
o
Monitor Analyzer Planner Executor Specific Model
Virtual Machine $:| :)_
Interface
@ sensors effectors ?] Users S
| | $:| Ir ion:
Management Interface 2] v)
Front End Actor

Gateway

!

loT Motes

g]

g

DeltaloT System

The Planner then selects the best adaptation
option by applying two goals:

1. Filter configurations that meet R1
(packet loss < 10%).

2. Among those, choose the one with
minimum energy consumption (R2).

Executor finally enacts these settings,
completing the adaptation cycle.

192

Proactive Decision-Making using Probabilistic
Model Checking

This approach enhances self-adaptation by making proactive decisions — anticipating future changes instead of
reacting only when problems occur

It is inspired by Model Predictive Control (MPC) and applies probabilistic model checking to plan a sequence of
adaptations that maximize long-term utility rather than short-term fixes

193

Universita di Camerino

1336

Example System: RUBIS (1)

RUBIS is a web-based auction application composed of:

A Web tier receiving user requests

A Server tier processing requests

A Database tier storing data

A load balancer distributing requests among servers

Managing System 3:]
MDP
) —$j Knowledge
Managed Reward
System Model Structure |
- Utility Adapation
Environment Adaptation Function Strategy
Model Tactics
A
A
5: execute v 4: read ;
1: update Probabilistic 3]| 6: write
o Clock 2 ||| Model 7: enact
2: rigger Checker
El v T 3: invoke \
Monitor Decision Making —1 Executor
{? sensors effectors C?
i .| Auction via "
Web Servers |« Load Balancer |« Biowsar — i
Data RUBIS System e

KEY

8]

Component

5]

Runtime Model

(]

Specific Model

O

Interface

—>

Interactions

T

Actor

Universita di Camerino

Example System: RUBIS (2)

Response time of
requests

System load and
resource usage

Managing System 3:]
MDP
. $:| Knowledge
Managed Reward
System Model Structure |
- Utility Adapation
Environment Adaptation Function Strategy
Model ‘ Tactics
A
A
5:execute g 4:read g
1: update Probabilistic 3 | 6: write
otk Clock & J|| Model 7: enact
o e Checker
y ? 3: invoke v
Monitor Decision Making Executor
[? sensors effectors ¢
Auction via -
Web Servers |4 Load Balancer Bicaaar. |[& i
Data RUBIS System Utexn

KEY

8]

Component

3

Runtime Model

(]

Specific Model

The goal is to maximize overall utility,
balancing revenue and operational cost
over a look-ahead horizon

O

Interface

—

Interactions

T

Actor 195

Universita di Camerino

1336

Example System: RUBIS (3)

Server management

Add server (increases capacity; slow due to startup latency)
Remove server (frees cost instantly)

Brownout mechanism

Dimmer control adjusts how much optional content (like
recommendations) is included in responses.

Lowering the dimmer reduces load but slightly lowers user
experience (and revenue).

Managing System 3:]
MDP
E Knowledge
Managed Reward
System Model Structure |
- Utility Adapation
Environment Adaptation Function Strategy
Model Tactics
A
A
5: execute y 4iread y
1: update Probabilistic 3]| 6: write
o Clock 2 ||| Model 7: enact
2: trigger Checker
E v T 3: invoke \
Monitor Decision Making —— Executor
{? sensors effectors C?
i |, .| Auction via .
Web Servers |« Load Balancer |« Biowsar — i
Data RUBIS System e

KEY

8]

Component

5]

Runtime Model

(]

Specific Model

O

Interface

—>

Interactions

®

Actor

Universita di Camerino

1336

Example System: RUBIS (4)

Monitor collects data such as:

Current number of active servers
Current dimmer setting

Request arrival rate

Average response time

Managing System $:|
MDP
. —$] Knowledge
Managed Reward
System Model Structure ’
- Utility Adapation
Environment Adaptation Function Strategy
Model Tactics
A
h
5: execute v 4: read ;
1: update Probabilistic 3]| 6: write
o Clock 2 J|| Model 7: enact
2: rigger Checker
L T 3: invoke \
Monitor Decision Making — Executor
effectors

{? sensors

?

Web Servers |4 Load Balancer |4 A;I?;::Qevrla i
Dein RUBIS System Users

KEY

8]

Component

5]

Runtime Model

(]

Specific Model

O

Interface

—>

Interactions

T

Actor

Universita di Camerino

1336

Example System: RUBIS (4)

Decision-Making (Analyze + Plan combined)

Runs periodically (every T minutes).

Uses a Markov Decision Process (MDP) model to
simulate system behavior and uncertainties (e.g.,
possible traffic patterns)

Employs a probabilistic model checker (e.g.,
PRISM) to:

o Explore possible future evolutions over a
look-ahead horizon (n-T)

o Evaluate which tactics maximize
accumulated utility

o Synthesize an optimal adaptation strategy

Managing System 3:]
MDP
E Knowledge

Managed Reward
System Model Structure

- Utility Adapation

Environment Adaptation Function Strategy
Model ’ Tactics

A
A
5: execute y 4:read a
1: update Probabilistic 3]| 6: write
o Clock 2 ||| Model 7: enact
2: Trigger Checker

El v I 3: invoke \

Monitor Decision Makingzg— Executor

f? sensors effectors /CJ?

s |, .| Auction via o
Web Servers |« Load Balancer |« Browsor — @
Data RUBIS System e

KEY

8]

Component

5]

Runtime Model

(]

Specific Model

O

Interface

—>

Interactions

i

Actor

Universita di Camerino

1336

Applies only the first set of actions from the best strategy
(e.g., “reduce dimmer and add one server”)

The strategy is recomputed at the next cycle, keeping the
system adaptive to new conditions

Example System: RUBIS (5)

Managing System 3:]
MDP
. E Knowledge
Managed Reward
System Model Structure |
- Utility Adapation
Environment Adaptation Function Strategy
Model Tactics
A
A
5: execute v 4: read ;
1: update Probabilistic 3]| 6: write
o Clock 2 ||| Model 7: enact
2: rigger Checker
El v T 3: invoke \
Monitor Decision Making { Executor >
{? sensors effectors C?
i .| Auction via "
Web Servers |« Load Balancer |« Biowsar — i
Data RUBIS System e

KEY

8]

Component

5]

Runtime Model

(]

Specific Model

O

Interface

—>

Interactions

T

Actor

Integrated Process to Tame Uncertainty

Uncertainty prevents full assurance of requirement compliance before deployment
Self-adaptive systems address this by collecting runtime data, analyzing uncertainties, and adapting dynamically

An integrated process links offline (human) and online (machine) activities across the system life cycle

200

Universita di Camerino

1336

The four stages of the integrated process to tame
uncertainty

key C

stage

lil. VERIFY ADAPTATION
OPTIONS, DECIDE & ADAPT

. ©

Knowledge

IV. EVOLVE ADAPTATION
GOALS & MANAGING SYSTEM

Knowledge

Feedback Loop

Stub Runtime Verifier

evolve Feedback Loop

Knowledge
Feedback Loop
Stubs Probe & Effector

Managed System
With Probe & Effector

Knowledge

Feedback Loop % Knowledge

run

Design Time
Verifier

update
Feedback Loop

Managed System
With Probe & Effector

I. IMPLEMENT & VERIFY
MANAGING SYSTEM

Il. DEPLOY / UPDATE
MANAGING SYSTEM

Runtime Verifier

Knowledge

Stub Runtime Verifier

Feedback Loop

Knowledge
Feedback Loop
Stubs Probe & Effector

Feedback Loop

Managed System
With Probe & Effector

Runtime Verifier

) > — |] ¢(| Il O -

runtime evolved
stage artifacts

stage transition with input use software specification
transferred artifacts P software model P tool

201

Stage | — Implement and Verify the Managing System

Goal: Build and verify the feedback loop (MAPE) and runtime models

Activities:
Encode adaptation goals (e.g., “keep latency < 2s”) in a machine-readable form

o Build models for the managed system, its environment, and quality parameters (e.g., response time,

reliability)
o Define uncertainty parameters (e.g., variable network load) and adaptation options (e.g., add server, lower

quality)
Verify correctness with feedback loop requirements, such as ensuring safe fallback configurations.

o Use stubs and model checking or testing to validate behavior

Example: For RUBIS, verify that adding a server triggers correctly and that the system can always fall back to a

single-server configuration

202

Stage Il — Deploy the Managing System

Goal: Install and connect the verified managing system

Activities:
o Deploy the MAPE loop and link it to probes and effectors in the managed system
o Configure the runtime verifier (e.g., model checker) for evaluating adaptation options
o Ensure reliable communication between components (tested via dedicated code)
o Load initial parameters (e.g., starting load estimates, cost models)

Example: Deploy the RUBIS adaptation controller and connect it to the load balancer and server control API

203

Stage Ill — Verify Adaptation Options, Decide, and
Adapt (Runtime)

Goal: Continuously monitor, analyze, and adapt the system
Steps:

Compose adaptation options (e.g., add server, dim content)

Assign observed values to uncertainty variables (e.g., current request rate)
Invoke runtime verification to predict the quality for each option

Select and plan the best option using adaptation goals

If no valid option is found, use a fail-safe configuration

aoRrOODdb=

Example: If RUBIS detects growing load, the system evaluates whether adding a server or dimming
optional content gives the best utility before acting

204

Stage IV — Evolve Adaptation Goals and
Managing System

Goal: Install and connect the verified managing system

Activities:
o Deploy the MAPE loop and link it to probes and effectors in the managed system
o Configure the runtime verifier (e.g., model checker) for evaluating adaptation options
o Ensure reliable communication between components (tested via dedicated code)
o Load initial parameters (e.g., starting load estimates, cost models)

Example: Deploy the RUBIS adaptation controller and connect it to the load balancer and server control API

205

Wave VI

Control-based Software Adaptation

206

Control Theory for Self-Adaptive
Systems

This wave applies control theory to design and analyze self-adaptive software systems that must operate under
uncertainty offering mathematically grounded guarantees for their behavior

Control theory provides techniques and tools to design and formally analyze feedback loop systems

A controller forms a feedback loop with a system:

1. Monitors a system variable (affected by disturbances)
2. Compares it to a reference value (goal)
3. Generates control actions to minimize deviation

Enables formal analysis of system properties such as:

e Stability (will the system converge to desired behavior?)
e Accuracy (how close to the target?)
e Settling time (how quickly?)

207

Challenges for Software Systems

Applying control theory to software is harder than in mechanical or industrial systems because:

Software behavior is often non-linear

Instrumenting sensors and actuators in software can be difficult

Multiple, interdependent quality goals (performance, cost, reliability) complicate modeling
Mathematical complexity of control design is often beyond typical software engineering expertise

208

Main Control Strategies Used

Feedback Control

Adjusts system behavior based on measured output vs.
desired output

Deals effectively with unknown disturbances.
(e.g., adjusting CPU allocation based on measured
latency)

Feedforward Control

Anticipates known disturbances and acts proactively,
without relying on feedback.

(e.qg., pre-scaling servers before a predicted workload
spike)

209

Three Approaches Introduced in This Wave

Proportional-Integral (Pl) Control: Handles single goals automatically (e.g., maintaining a target response time)

Multi-goal Control with Optimization: Extends Pl control to handle multiple, possibly conflicting objectives

Model Predictive Control (MPC): Uses look-ahead decision-making to optimize adaptation over a future
horizon, balancing several goals dynamically

210

A Brief Introduction to Control Theory

A control-based computing system consists of a target system that is subject to adaptation and a controller that
implements a particular control strategy to adapt the target system

The task of the controller is to ensure that the output of the system is as close as possible to the reference input,

while reducing the effects of uncertainty that appear as disturbances, noise, or imperfections in the models of
the system or environment used to design the controller

211

Basic Elements of a Feedback Control Loop

The external element
added to the target
system to dynamically
adjust its behavior
based on the difference
between the measured
system output and the
reference input

Feedback
Loop

Reference
Input r(k)

4@—>

Control

Disturbances d(k)

Control

l

Error e(k) Signal u(k)
@—>

Transduced
Output

Target
System

Measured
Output y(k)

»
o

The element that transforms the
measured output so that it can be
compared with the reference input

The system that is

manipulated by

controller to achieve
the desired output in

the presence of
disturbances

d

Managed

System

212

©y JSignals (functions of time k)

Disturbances d(k)
Desired value of the
Reference Control Control Measured
measured output at Input r(k) Error e(k) Signal u(k) Output y(k)
time k Target

Controller —

System

Adaptation
Goals

Transduced
Output

Transducer |«

213

©»y Signals (functions of time k)

Difference between the reference
input and the measured output

Disturbances d(k)
Reference Control Control i Measured
Input r(k) Error e(k) Signal u(k) Output y(k)
Target

Controller —

System

Transduced
Output

Transducer |«

214

Signals (functions of time k)

Parameter setting that allows the
behavior of the target system to

be dynamically adjusted Histurbances d(k)
Reference Control Control i Measured
Input r(k) Error e(k) Signal u(k) Output y(k)
Controller +——— ST;;?;; »

Transduced
Output

Transducer |«

215

©y JSignals (functions of time k)

Reference Control

Any exogenous phenomena that interfere with the
effects of the control input on the measured output

Control

Input r(k) Error e(k)

Disturbances d(k)

Signal u(k)
Controller —

Transduced
Output

Target
System

Measured
Output y(k)

>

Transducer |«

216

©»y Signals (functions of time k)

Measurable
parameter of the
Disturbances d(k) target system
Reference Control Control i Measured
Input r(k) Error e(k) Signal u(k) Output y(k)
Controller —— T »
System

Transduced
Output

Transducer |«

217

Purposes of Control

There are three main purposes for control:

1. Regulatory control: aims to keep the measured output equal to (or near) the reference input
2. Disturbance rejection: aims to suppress the effects of disturbances acting on the system

3. Optimization: aims to find the best possible value of the measured output, e.g., minimizing or maximizing

a system quality property

218

Controller Design (1)

Using control theory to build self-adaptive software requires a model of the target system in the form of a
dynamic system

This model defines the relationship between the effector settings (input variables that can be used to control the
system), the state variables and internal dynamics, and the control goals (output variables)

The model of the target system is analytic and described mathematically. A system model can be specified

manually based on knowledge of the target system, identified through experiments, or using a combination of
both

219

Controller Design (2)

A variety of model types can be used to specify the target system, including Markovian models, queuing models,
and difference equations. For example, in a system with a queue:

e The input variable could be the number of incoming requests

e The output variable could be the average service time

® The state variable could be the number of requests in the queue

To design the controller, a variety of techniques are available, depending on the information required and the
guarantees they offer. One common approach is Proportional-Integral (Pl) control, widely used in software
systems

220

Control Properties

The main properties that can be analyzed in control theory are SASO:

Stability Accuracy Settling time Overshoot

221

Control Properties: Stability

A system is stable if for any bounded input, the output is also bounded

Stability implies that the output of feedback control (controlled variable) converges to
an equilibrium value after a change

Stability ensures the system operates in a region where it performs as required

222

Control Properties: Accuracy

Accuracy refers to the convergence of the measured output to the goal or optimal
value

Accuracy ensures control goals are met, for example achieving required throughput
without violating response time constraints

223

Control Properties: Settling Time

Settling time expresses how long it takes for the controller to reach the steady-state
value

It accounts for the duration of the transient phase and is important when the system
must react to sudden environmental changes or changes in goals

Fast settling time is desirable but may make the system follow noise or transient
variations

224

Control Properties: Overshoot

Overshoot is the maximum difference between the measured value and the goal
during the transient phase

Limited overshoot is preferred, as high overshoot increases variability and may
temporarily violate system requirements

225

Control Properties: an Overview

Controlled variable

A
overshoot
T _______________ steady state error
A
transient phase steady state phase
B P
— Time

settling time

226

SISO and MIMO Control Systems

The basic control system structure considers a single instance of each element, but in
practice, multiple instances may be used

Single-Input Single-Output (SISO) control system: one output is controlled by one control signal

Multiple-Input Multiple-Output (MIMO) control systems may be used, where multiple outputs are
controlled by multiple control signals

227

&y SISO Example

Web service system wants to keep the number
of failed service invocations below a threshold

Reference
Input r(k)

4@—>

Control

Control

Error e(k)

Disturbances include arrival rates and
types of service requests, which
change dynamically

Disturbances d(k)

Measured

Signal u(k)

Controller |——»

Transduced
Output

Target
System

Output y(k)

Transducer |«

A controller is added to
each server to track
failure rates and control
the selection of service

instances

228

Web service system wants ALSO to keep service
invocation costs below a threshold

Reference

Input r(k)

Now, the controller must
ensure both low failure
rates and low costs, which
may conflict

Control

Control

Error e(k)

Signal u(k)

Disturbances include arrival rates and
types of service requests, which
change dynamically

Disturbances d(k)

Measured

Controller |——»

Transduced
Output

Target
System

Output y(k)

Transducer

A controller is added to
each server to track cost
and adjust the service
selection

)

229

Adaptive Control

Adaptive control adds an additional control loop that adjusts the controller itself

It is used to cope with slowly occurring changes in the system or to compensate for inaccuracies in the initial
system model

Adjustments are made based on measurements collected at runtime

230

Automatic Construction of SISO (1)

These approaches rely on the following assumptions:

1.

The requirements that need to be satisfied by the control system are known and can be translated

into quantifiable goals
The target software system is available and can be used to run experiments
The target system provides a set of sensors to measure whether the goals are satisfied

The target system provides a set of actuators to modify the system to realize the goals

231

Automatic Construction of SISO (2)

Under these assumptions, an approximate modﬂof the software system can be built automatically
This model can then be used to construct a controller that ensures the target system achieves its goals
A basic approach for a single goal and single actuator is based on the Push-Button Methodology, which is a

pioneering method for automating controller construction for self-adaptive software

Despite its simplicity, this approach provides formal guarantees for the dynamic behavior of the system

232

Controller Disturbances

creation

Target System i
» Model Builder @ R l
Reference @ @ Measured
Input M o Output
odel building Target >
System
—» Controller 4.\[\-

Transducer <

233

Phases of Controller Construction (1)

Disturbances

Controller
creation
Target System Operation
Model Builder @ :
Reference @

Input Model buildin g

|

Controller

A

®

Target
System

Measured
Output

Model Building Phase: This phase automatically constructs a linear model of the target system

The model is identified by running on-the-fly experiments on the software of the target system and testing it
using a set of systematically sampled values of the control signal, and the effects on the measured output are

observed

By analyzing the results, a system model is generated that captures how changes in the control signal affect the

output

234

Phases of Controller Construction (2)

Target System
Model Builder

Operation l

Controller Disturbances

Reference
Input Model building

Target
System

Controller

A

Measured
Output

Controller Creation Phase: The results from the model building phase are used to automatically create a

controller

The goal of the controller is to keep the output close to the reference input while rejecting disturbances

The controller selects a control signal based on the previous value and the difference between the desired

reference value and the measured output

The controller uses the information from the system model to determine the appropriate adjustments

235

Phases of Controller Construction (3)

Controller Disturbances
creation
Target System @ Operation
Model Builder
Reference @ Measured
Input Model building - Target i
System

» Controller

Operation Phase: In this phase, the controller exercises control on the target system

Its purpose is to keep the output as close as possible to the reference input during runtime, compensating for

disturbances and changes in the system

236

Phases of Controller Construction

Single adaptation goal and a single control signal is often too restrictive for real-world applications

For example, users of a geo-location service may not only want the service to be reliable, but also to have fast
response times, while ensuring that the cost of using the service does not exceed an agreed fee. Such

requirements call for an approach that can automatically construct a controller to satisfy multiple goals, often
including an optimization goal

Approach emerged to realize a control schema with multiple inputs that control multiple outputs and can
handle multiple goals.

237

Model Creation Phase

In this phase, the system automatically builds a set of linear models of the controlled system, one for each
adaptation goal

Each model represents the relationship between a control input (what the controller can change) and a
measured output (what is observed from the system)

To build each model, the system performs on-the-fly experiments: it systematically varies the control inputs and
records the corresponding changes in the outputs

238

Controller Creation Phase

Once the models are built, the system automatically creates one controller for each goal
Each controller is responsible for keeping its corresponding system property (e.g., reliability, performance, cost)
close to its desired value, even when the environment changes.

The controller uses:

e The model that describes how its control actions influence the system
® The error between the desired value and the measured outcome
e A parameter that determines how strongly it reacts to deviations (its responsiveness)

In essence, each controller continuously monitors how well the system meets its goal and adjusts its control
signal to reduce the difference between the desired and observed behavior

239

©» Operation Phase (1)

Goal ry(k)

—,(é_?—>

Goal rp(k)

Error signal/\ Control signal
uy(k)

e4(k)

Optimization Goal ro(k)

Disturbances d(k)

Y

l Parameters P(k)

Actuation signal

Usx(k)

Controller C4

Error sigJ
en(k)

al

A 4

Simplex

|

Control signal

Un(k)

A

Controller C,/

N

Y

Target
System

Measured
Output
Yi(k)-..yn(k)

L

Each controller runs in parallel, producing control signals that
guide the system toward its goals while rejecting disturbances. To
handle changes over time, controllers can update their models

automatically

240

1336

&> Operation Phase (2)

Because multiple goals can sometimes conflict an optimization mechanism is used to balance them

Optimization Goal ro(k) Disturbances d(k)
Parameters P(k)
i i i i Measured
Error signal Control signal Actuation signal
Goal rq(k) e (k)g uq(k) Ugy(k) Output
1 ~ Target Yilk)---Ynlk)
;@ » Controller Cy 4< Simplex > > Systom >
b A /
T
Error signal :
Goal ry(k) e, (k) Control signal
up(k)
Controller C,,

This is achieved through the Simplex method technique which receives all control signals,
analyzes system parameters and constraints, and produces a final actuation signal

— a coordinated adjustment of the system that best satisfies reliability, performance, and cost
requirements together

241

Wave VII

Learning from Experience

Learning Under Uncertainty

The seventh wave of self-adaptive systems focuses on the use of machine learning techniques to enhance how a
system manages itself at runtime

As systems became larger and more complex, it became increasingly difficult to analyze every possible adaptation
option within the short time available for making adaptation decisions. For example, in systems with very large
adaptation spaces, performing full formal verification is often infeasible

In these situations, machine learning can be used to narrow the adaptation space to the most relevant options,
improving efficiency while maintaining effective adaptation

243

«» Machine Learning

It is a branch of artificial intelligence concerned with systems that improve their performance through experience.
In simple terms, a program learns if its performance on a specific task improves as it gains experience.

Modern advances in computational power have made it possible to apply powerful learning algorithms in practice, especially for
managing complex software systems.

At its core, a machine learning algorithm:

e Builds a model from data collected through observation or experimentation.
e Uses the model to make predictions or guide decisions about new, unseen situations.

Because data are always limited and future conditions uncertain, machine learning usually provides probabilistic, rather than
absolute, guarantees

244

Types of Machine Learning

1) Supervised Learning
The algorithm learns from data that includes both inputs and expected outputs. Through repeated optimization, it learns to

predict outputs for new inputs.

Example: A classifier that assigns class labels (e.g., “failure” or “success”) to system behaviors based on historical data

2) Unsupervised Learning
The algorithm learns from unlabeled data, finding hidden structures or patterns

Example: A neural network grouping similar inputs together without prior labeling
3) Reinforcement Learning
An agent interacts with an environment by performing actions and receiving rewards. Over time, it learns a policy on how to act to
maximize its cumulative reward

Example: where the system learns which actions yield the best outcomes in different situations

245

Machine Learning and Uncertainty

Uncertainty is central to machine learning. Algorithms learn from imperfect or incomplete data, discovering
patterns that help make better predictions or adaptation decisions. As the system continues to operate and
gather new data, its models and decisions improve over time

In self-adaptive software, machine learning enables the managing system to:

® Interpret uncertain and dynamic data from the environment
e |dentify trends or anomalies
e Support runtime adaptation decisions that help the system meet its goals

246

Machine Learning in Self-Adaptive Systems

In SAS, machine learning can be integrated in different MAPE activities:

1.

Learning in Monitoring:
The monitor function is enhanced with a Bayesian estimator that keeps the runtime model up to date.

— Helps deal with parametric uncertainty (how system parameters evolve over time).

Learning in Analysis:
The analyzer function is supported by a classifier that reduces large adaptation spaces at runtime.

— Improves efficiency by focusing only on promising adaptation options.

Learning Across Functions:
Several functions of the feedback loop use a combination of fuzzy control and fuzzy Q-learning to

dynamically adjust auto-scaling rules in Cloud environments.
— Supports decision making under complex uncertainty while continuously improving performance.

247

Universita di Camerino

1336

Managing System

context @ | 8] 8] z | 3 |
model quality quality Knowledge adaptation adaptation plan
system &] | model 1 model n options goals
model
A yy
: 6: update
2: update models : 4 0-umitate Dk
using runtime data adaptation = UpOass P
; options :
5: determine 9: determine
and analyze best adaptation
adaptation option and
options 8:read | generate plan
4: read models adaptation options 12: collect plan
& adaptation goals
v A Y
) {] 3 {] 7 :E] 11
Monitor Analyzer Planner »| Executor

1: track properties & uncertainties

13: execute actions of plan

Managed System

248

Keeping Runtime Models Up-to-Date Using Learning

Runtime models are central, they are used to keep track of uncertain and changing operating conditions, analyze
adaptation options, and decide how to adapt the managed system to achieve its goals

Uncertainties are encoded in runtime models as model parameters. These values can be determined before
deployment through measurements, experiments, data analysis, or expert knowledge — however, such values

are only estimates and may be inaccurate

Runtime models must remain up-to-date and accurately represent the actual conditions of the system and its
environment — the main challenge is therefore to ensure that the models continuously reflect reality

249

Universita di Camerino

Keeping Runtime Models Up-to-Date Using Learning

A systematic approach to address this challenge is Bayesian estimation, which allows model parameters to be improved as new data arrives.
This method combines prior knowledge about model parameters with new observations to update their values dynamically

The approach focuses on runtime models of quality properties formally specified, for example, as Markov models, queuing networks, or
stochastic timed automata. Such models can be analyzed at runtime using formal verification techniques.

This Bayesian approach is based on KAMI (Keep Alive Models with Implementations), a pioneering method for keeping quality models
up-to-date during system operation, ensuring that self-adaptive systems maintain accurate and reliable models for effective decision making.

250

Bayesian Approach

The Bayesian approach can be applied to various probabilistic models

Here, the focus is on Discrete Time Markov Chains (DTMCs), which describe the behavior of a system through
states and transitions that represent probabilities of moving between states

Key characteristics

States (S): represent possible situations or configurations of the system.

Transitions: describe how the system can move from one state to another with a certain probability
Labels: associate states with relevant properties or events (e.g., “service available” or “service failed”)
Markov property: the next state depends only on the current state, not on past history

251

Service-based health assistance system

The system workflow is represented as a DTMC with
discrete states corresponding to the different operational
steps of the health service (e.g., user interaction, alarm
triggering, service response)

Each transition between states carries a probability value
that represents, for example, the likelihood of a service
succeeding or failing

Initial probability estimates are usually provided by domain
experts or derived from data offered by service providers

{stop} {exit} {activate_first_aid} {failed_alarm}

{failed_change_drug]

{change_drug}

{failed_analysis}

{failed_change_dose

0.02
]

{notify_patient} {change_dose}

KEY O 7 O

State Transition Absorbing State

The Bayesian approach continuously tracks system and environmental elements that

cause uncertainty, transforms collected runtime data into updated model parameter
values, and keeps the runtime quality model accurate and current

253

Integration in the feedback loop

The monitor component is equipped with a Bayesian estimator,

which updates the model parameters as part of the feedback cycle.

This refinement divides monitoring into:

o 2.1: Updates that do not require learning (e.g.,
deterministic parameters)

o 2.2-2.3: Updates for uncertainty-related parameters,
handled through Bayesian learning

Focus is on updating quality models represented as DTMCs
(Discrete Time Markov Chains)

Managing System 2 |
context g | 2] 3 |
model ,

quality
system 2 | model Knowledge
model

A

2.1: update properties I

Bayesian
Estimator

4

2.3: update estimates
of model parameters

2.2: update uncertainties

Monitor

2]

3: trigger analyzer

1: track properties & uncertainties

Managed System

Reducing Large Adaptation Spaces Using Learning

The Analyzer in a self-adaptive system must evaluate many adaptation options, however:

e Exhaustive analysis (e.g., via formal verification) is often too slow for real-time adaptation
e Large adaptation spaces make timely decision-making infeasible

255

Machine Learning Solution

Introduce a Learning Module into the MAPE-K feedback loop

The learning module reduces the adaptation space by selecting relevant subsets of adaptation options

Based on classification, a supervised learning approach that:

® Assigns adaptation options to classes based on compliance with adaptation goals
e Predicts which options are likely to meet all goals

256

Learning-Based Feedback Loop

Relevant options (predicted to meet goals) — analyzed by the verifier

Irrelevant options — mostly skipped, but a small sample is re-analyzed periodically to detect new viable
configurations

Enables faster analysis without sacrificing adaptation quality

257

©» Learning Workflow

Offine ' Online

1 relevant
data | Feature features : SaaniRion
> selection ' Testing o
analysis : cycle
Data collection y '
T . verification
(Set of verification Setup of results
resul'ts for a]l system
adaptation options :
over multiple - '
cycles) '
data Model ' Training
»{ selection : cycle
analysis | selected classifier
and scaler :

kev [] acvy —> Fow <> Decision

258

@y Learning Workflow: offline

Offline Phase

1. Data collection — gather verification results and system features

2. Feature selection — identify key features influencing performance

3. Model selection — choose the best classifier and scaling method
based on accuracy and F1-score

Data collection

(Set of verification
results for all
adaptation options
over multiple
cycles)

Offline
data Feature features
> selection
analysis
y
Setup of st
system
h
data Model
p selection
analysis | selected classifier

and scaler

259

Learning Workflow: online

Online relevant

adaptation
Testing options
——
cycle

”

Online Phase verification

results

-ﬁ‘,—-----

1. Use the classifier to predict relevant options

2. Perform verification only on those options

Training

3. Update the classifier with new verification data (incremental e

learning)

260

Universita di Camerino

1336

The Analyzer reads the current runtime models and
the classifier. The
environmental data, and uncertainty parameters

invokes system state,

are provided as input

Integrated Feedback Loop Workflow (1)

Managing System 2]
classifier quality quality
model model 1 model n Knowledge
4 Y
5.2: predict classes 5.6: update 5.4: verify 6: update
of adaptation options | classifier model quality models | adaptation options
= E Model E
Classifier Verifier
P ——
. . k o
A readimodels 41: determine 5,5.. gxp{on 5.3 venfy
< relevant verification adaptation
3: trigger \adapta:ion options results options 7: trigger
analyzer $:] planner
E— Analyzer >
Managed System

261

Universita di Camerino

1336

The Classifier predicts which adaptation options are
most likely to meet the goals

It labels them as relevant or irrelevant based on its
model. To maintain adaptability, a small random sample
of “irrelevant” options is also included for exploration

Integrated Feedback Loop Workflow (2)

Managing System 2]
classifier quality quality
model model 1 model n Knowledge
/ 4 A
5.2: predict classes 5.6: update 5.4: verify 6: update
‘ of adaptation options J| classifier model quality models | adaptation options
Classifier i
Verifier
. . k o
A readimodels 5.1: determine 5,5.. gxp{on 5.3 venfy
relevant verification adaptation
3: trigger adaptation options results options 7: trigger
analyzer $:] planner
E— Analyzer >

Managed System

262

Universita di Camerino

1336

The Analyzer sends the relevant subset of adaptation
options to the Model Verifier for analysis. This reduces
computational effort by focusing only on promising
configurations

Integrated Feedback Loop Workflow (3)

Managing System 2]
classifier quality quality
model model 1 model n Knowledge
4 A
5.2: predict classes 5.6: update 5.4: verify 6: update
of adaptation options | classifier model quality models | adaptation options
= E Model E
Classifier Verifier
A readimodels 5.1: determine 5,5.: gxp{oit 53 ver;fy\
relevant verification adaptation ,
3: trigger adaptation options results options 7: trigger
analyzer ~— — $:] planner
E— Analyzer >
Managed System

263

Universita di Camerino

1336

The Verifier evaluates each selected option using its
quality models and determines performance indicators
(e.g., reliability, delay, energy usage)

Integrated Feedback Loop Workflow (4)

Managing System 2]
classifier quality quality
model model 1 model n Knowledge
P ——
N‘
5.2: predict classes 5.6: update 5.4: verify : update
of adaptation options | classifier modi quality models daptation options
= E Model
Classifier Verifier
. . k o
A readimodels 5.1: determine 5,5.. fexp{on 5.3 venfy
relevant verification adaptation
3: trigger adaptation options results options 7: trigger
analyzer $:] planner
E— Analyzer >

Managed System

264

Universita di Camerino

1336

Once verification is complete, the Analyzer sends
the new analysis results to the Classifier. These
verified results serve as fresh labeled data for
learning

Integrated Feedback Loop Workflow (4)

Managing System 2]
classifier quality quality
model model 1 model n Knowledge
4 Y
5.2: predict classes 5.6: update 5.4: verify 6: update
of adaptation options | classifier model quality models | adaptation options
Classifier i
Verifier
. . k o
A readimodels 5.1: determine 5,5.. gxp{on 5.3 venfy
relevant verification adaptation
3: trigger adaptation optiol results options 7: trigger
analyzer $:] planner
E— Analyzer >

Managed System

265

Universita di Camerino

1336

The Classifier refines its internal model using the
new verification data. This continuous update
allows it to adapt to changing environmental
conditions and evolving system behavior

Integrated Feedback Loop Workflow (4)

Managing System 2]
classifier quality quality Knowled
model model 1 model n it
4 Y
5.2: predict classes 5.6: update 5.4: verify 6: update
of adaptation option classifier model quality models | adaptation options
; £]
Classifier i
Verifier
. . k o
A readimodels 5.1: determine 5,5.. gxp{on 5.3 venfy
relevant verification adaptation
3: trigger adaptation options results options 7: trigger
analyzer $:] planner
E— Analyzer >

Managed System

266

Universita di Camerino

1336

Universita di Camerino

1336
: dynamic architectures, quiescence, architectural styles, architecture languages, utility,
Foundations computational reflection, causality, model checking, control theory, machine learning

Basic Research
I autonomic computing, MAPE-K, runtime architectural model,

adaptation strategies and tactics, workshops

Concept Formulation

at runtime, uncertainty taxonomies, community

> reference models, modeling dimensions, models
symposia and seminars, dedicated volumes

Development/Extention

B

stochastic models, formal analysis at runtime,
automated control solutions, roadmaps, special issues

> requirements languages, meta-requirements, runtime

Internal Enhancement/Exploration patterns, engineering processes, empirical

I evidence, MIMO control of software, online
machine learning, exemplars, top conference
and journal publications, books

IBM Autonomic Computing, External Enhancement/Exploration ; .

Sun N1, HP Adaptive Enterprise, |ndus§ry efforts e.g., IBM Autonomic

Microsoft Dynamic Systems, etc. >| Toolkit, IBM/Google Large-Scale
Internet Computing initiative;

applications e.g., auto-scaling Cloud

Popularisation

| e~
> 268

1990s 2010 2020 Time

