2

NN N

¥

S

public static Date lateEnrollmentDate;

QAIS

(A.Y. 2023/2024) — Duration: 1h
July 24, 2024

Exercise 1.

package fst.unicam.it;

public class StudentManagement {

public static double taxes2Pay(Student student) {

double lateEnrollmentRate = 0;
double toBePayed = 500;
double extraTax = 200;

switch (student.status) {
worker:
if (!(Date.isAfter(student.currentEnrollmentDate,lateEnrollmentDate)))
toBePayed = toBePayed * 3;
else {
if (student.firstEnrollmentDate.year < 2015)
lateEnrollmentRate = 0.20;
toBePayed = toBePayed * 3;
}
break;
foreigner:
if (!(Date.isAfter (student.currentEnrollmentDate,lateEnrollmentDate)))
toBePayed = toBePayed * 4 ;
else {
if (student.firstEnrollmentDate.year < 2015)
lateEnrollmentRate = 0.30;
toBePayed = toBePayed * 4;
}
break;
standard:
if (!(Date.isAfter(student.currentEnrollmentDate,lateEnrollmentDate)))
toBePayed = toBePayed * 2;
else {
if (student.firstEnrollmentDate.year < 2015)
lateEnrollmentRate = 0.10;
toBePayed = toBePayed * 2;
}
}
if (student.date0OfBirth.getYear() >= 2000)
lateEnrollmentRate = lateEnrollementRate - 0.02;
extraTax = 200 * (1 + lateEnrollmentRate);
toBePayed = toBePayed + extraTax;
return toBePayed;

//this variable is set to 30/04/2024

Consider the following program written to establish the total amount that a student has to pay to enroll at the university*.

Apply a test derivation strategy that intends to spot all the possible mistakes (boolean, relational and expressions)

related to the conditions of the program. As any good programmer, in case you judge it useful, you can revise the code
to make it simpler and easier to understand. Obviously the global behaviour should not change.

16 points

LAt the end of the document you find all the complementary “java” classes needed to better understand the behaviour of the program. In
the code some simplification have been adopted to make it less verbose. In particular the use of public attributes makes the execution of the
exercise more coincise.



