N

Fundamentals of Software Testing*

(AY. 2022/2023) — Duration: 1h30m
February 29", 2024

Exercise 1.

Consider the following program written to establish the total amount that a student has to pay to enroll at the university".

package fst.unicam.it;
public class StudentManagement {

public static double taxes2Pay(Student student) {
double lateEnrollmentRate = 0.05;
double totalAmount = 500;
double extraTax = 200;
if normalEnrollmentExpired()) {
totalAmount = totalAmount * (1 + lateEnrollmentRate)

}
if (student.status == StudentStatus.late &&
! ((student.status != StudentStatus.late || totalAmount > 500) |
totalAmount < 1000)
)
totalAmount += extraTax;
else
if (student.status == student.worklate && student.status == student.work)

totalAmount += extraTax * 0.6;
return totalAmount;

}

public static double normalEnrollmentExpired () {
/* The function returns true if the deadline for normal
enrollment has expired otherwise it returns false */

Apply a test derivation strategy that intends to spot all the possible mistakes (boolean, relational and expressions)
related to the conditions of the program. As any good programmer, in case you judge it useful, you can revise the
conditional statements to make them simpler and easier to understand. Obviously the global behaviour should not

change.
16 points

Exercise 2.

Consider the program in the previous exercise to perform the following activities:

e Compute the condition/decision coverage for the test suite you derived for Exercise 1 (in case you did not derive
any test suite yet, manually derive one with at least 5 tests, and then start from such test suite).

e Derive a data-flow graph for the program above. Some suggestions on how to perform the task:

— Use line numbers to define the blocks in the data flow.

— consider the attributes in the class Student as different variables.
e Provide an assessment for the all-uses coverage criteria

16 points

*For the QAIS module you should solve Exercise 1 in 45 minutes
1At the end of the document you find all the complementary classes needed to better understand the behaviour of the program

1

Supporting Java classes

//studentStatus. java
package fst.unicam.it;

public enum StudentStatus
worker ,
workerlate,
late,
standard

}

//Student . java
package fst.unican.it;

public class Student {

{

//fields made public to reduce code verbosity

public
public
public
public

public
this.
this.
this.
this.

matriculation =

studentStatus =
dateOfBirth =

Student (int matriculation,
matriculation;
firstEnrollmentDate =
stauts;
d0B;

int matriculation;

Date firstEnrollmentDate;
StudentStatus status;
Date dateOfBirth

5
Date fED, StudentStatus

fED;

status,

date0fBirth dob) {

