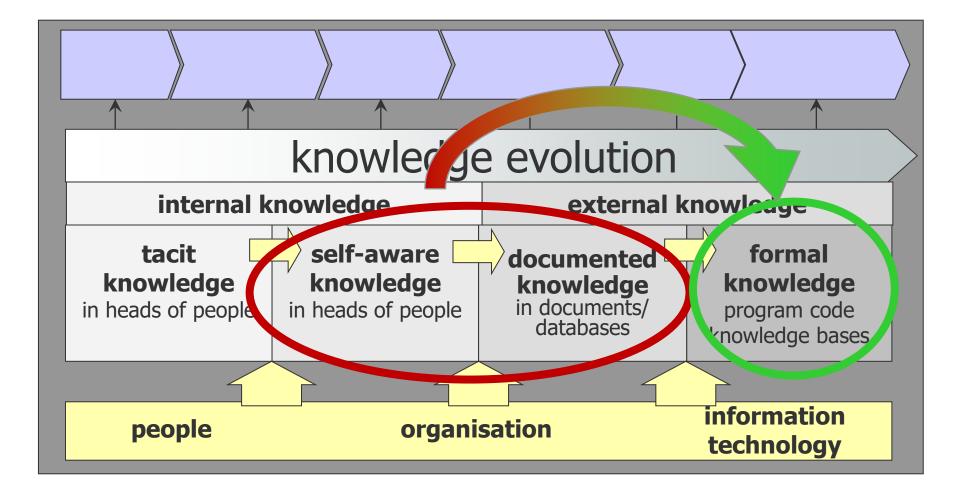
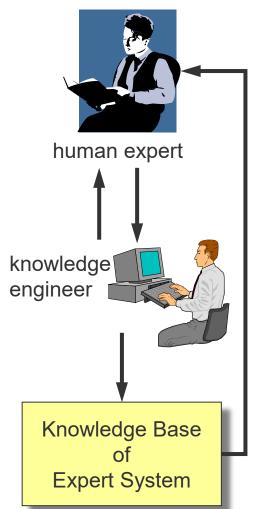
Machine Learning - An Introduction

Knut Hinkelmann

Knowledge Engineering

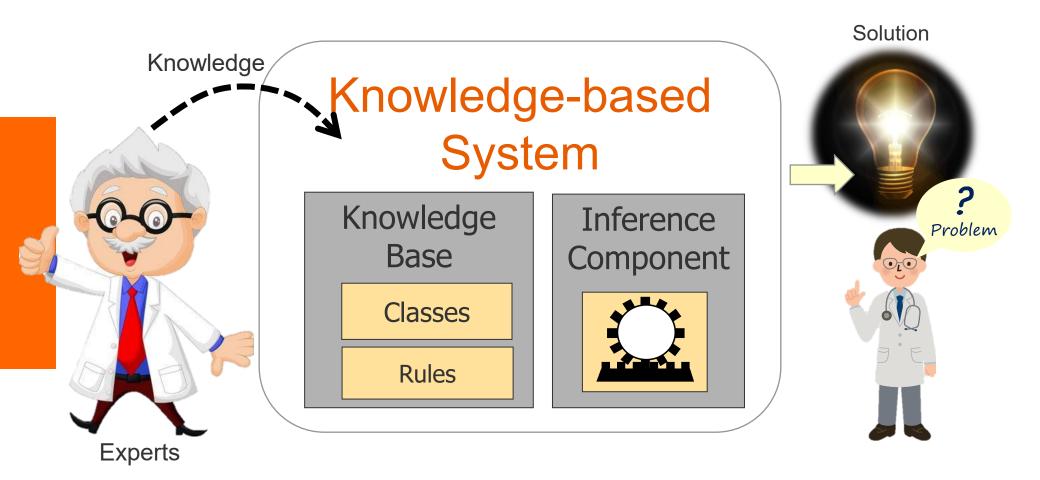


Knowledge Engineering



- Knowledge Engineering is the process of
 - building and
 - maintaining
 knowledge-based systems or intelligent agents
- "Knowledge Engineering is an engineering discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring a high level of human expertise."1)
- Sources of knowledge
 - Human experts
 - Documentation

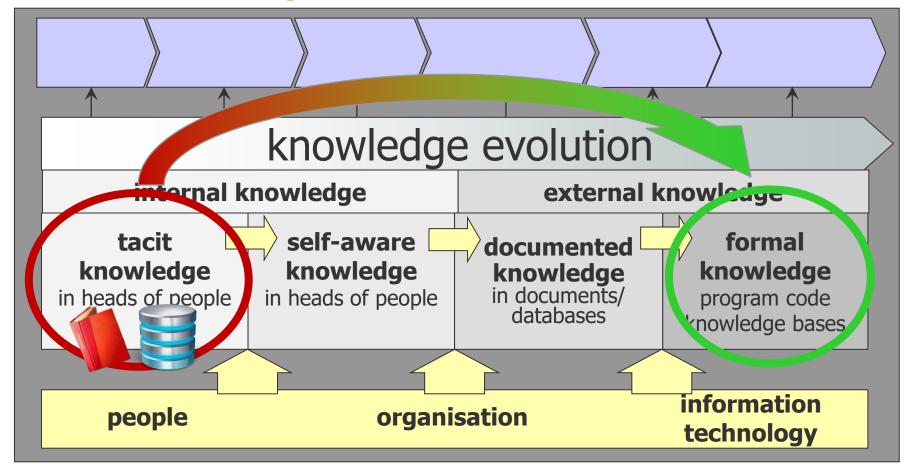
1) Feigenbaum, E., and P. McCorduck. (1983). The Fifth Generation. Reading, MA: Addison-Wesley



Drawbacks of Knowledge Engineering

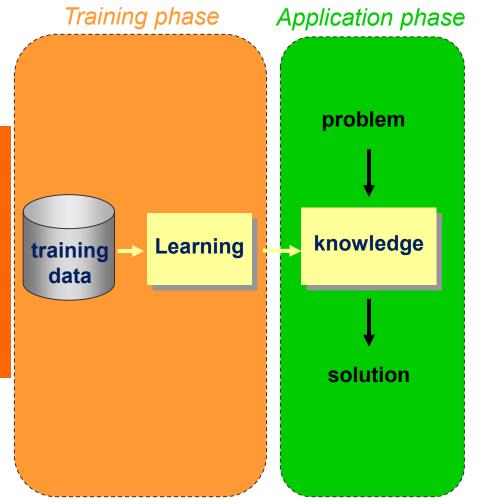
- Effort to ...
 - ... build the knowledge base
 - ... maintain the knowledge base
- Availability of knowledge
- Awareness of knowledge

Machine Learning: Make Knowledge explicit with the Use of Data



From data (texts or structured data) it is possible to learn tacit knowledge and new knowledge

Machine Learning: General Idea



Learning/Training

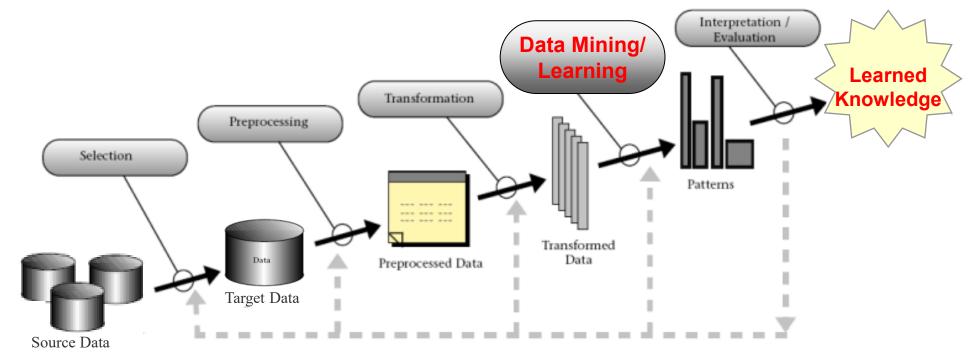
- Collect data for the problem
- Use the data to learn how to solve the type of problem
- Result: Knowledge

Application

 Use the learned knowledge for new problems

Machine Learning in Context

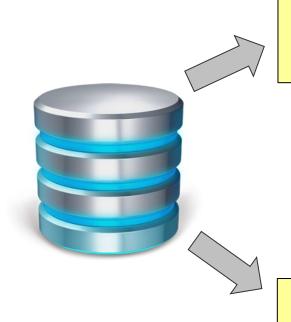
Machine Learning (Data Mining) is a step to discover knowledge in data



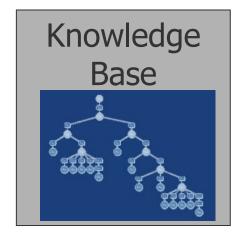
(Fayyad et al., 1996)

**

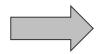
Symbolic vs Subsymbolic Learning

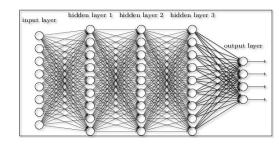


Learning Rules and Classes



Training a Neural Network





Types of Learning

- The learning method depends on the kind of data that we have at our disposal
 - The data contains sets of inputs and corresponding outputs: (i,o)
 - No prior knowledge: The data contains only the inputs i: output has to be determined
 - The data contains sets of inputs without corresponding «correct» output, but we can get some measure of the quality of an output o for input i.
 Rewards for good output quality.

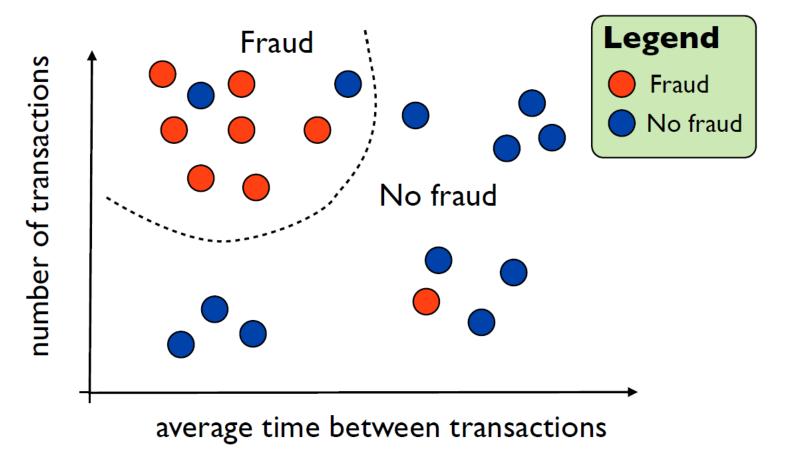
(Lison 2012)

Supervised Learning: Application Examples

	Input i	Output o	
Spam filtering	An email	{spam, non-spam}	Classification
Fraud detection	A financial transaction	{fraud, non-fraud}	Classification
Face recognition	An image	Identified faces	
Machine translation	A sentence in language A	A sentence in language B	

Supervised Learning

Example: Classification



(Lison 2012)

Classification

 Assign objects (input) to known classes (output)

Examples:

credit assessment

Input: customers of a bank

Classes: credit worthy

not credit worthy

Spam filtering

Input: email Classes: spam

non-spam

optical character recognition (OCR)

Input: scanned pixel image

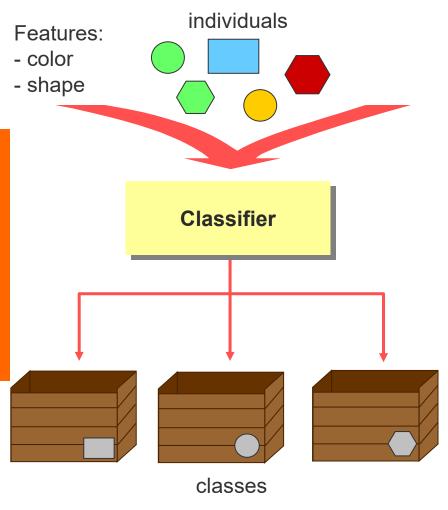
Classes: ASCII characters

Spam Filter

Copyright 2003 by Randy Glasbergen. www.glasbergen.com

"It's not the most sophisticated Spam blocker I've tried, but it's the only one that works!"

Supervised Learning: Classification Criteria



The classifier decides, which individual belongs to which class

■ Problem:

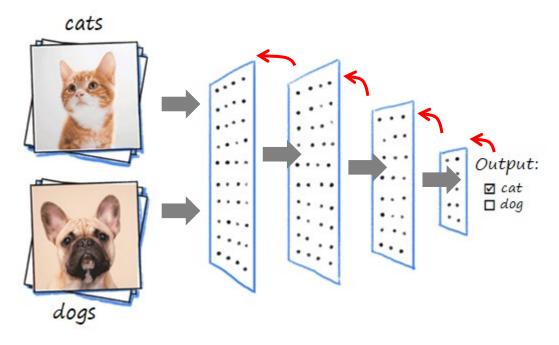
- Input has different features
- The criteria for the decision are not always obvious

Supervised Learning:

- Learn the classification criteria from known examples
- Criteria = relevant features and their valures

Example for Supervised Subsymbolic Learning

Training with large sets of data

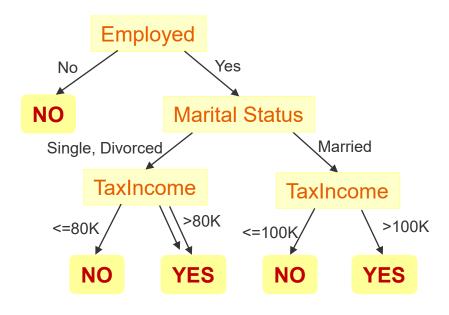


Application: cat or dog?

Example for Supervised Symbolic Learning

Problem: When to give credit

Tid	Employed	Marital Status	Taxable Income	accept
1	No	Single	125K	No
2	Yes	Married	160K	Yes
3	Yes	Single	70K	No
4	No	Married	120K	No
5	Yes	Divorced	95K	Yes
6	Yes	Married	60K	No
7	No	Divorced	220K	No
8	Yes	Single	85K	Yes
9	Yes	Married	95K	No
10	Yes	Single	90K	Yes



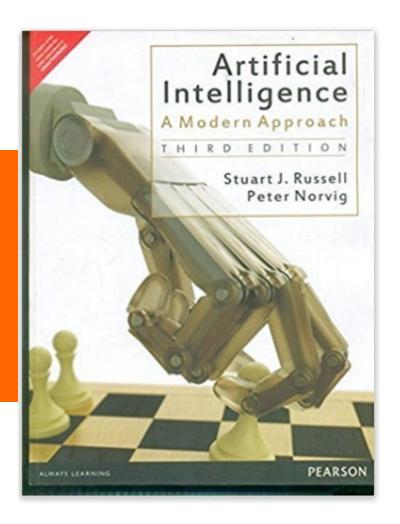
Credit V	Vorthiness			
	Employed	Marital Status	Taxable Income	Accept
	Yes, No	Single, Divorced, Married	Integer	Yes, No
1	No			No
2	Yes	Single	> 80K	Yes
3	Yes	Divorced	> 80K	Yes
4	Yes	Single	≤ 80K	No
5	Yes	Divorced	≤ 80K	No
6	Yes	Married	> 100K	Yes
7	Yes	Married	≤ 100K	No

Unsupervised Learning

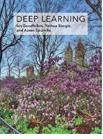
- Sometimes, we don't have access to any output value **o**, we simply have a collection of input examples **i**
- Input: data sets without corresponding output values.
- Objective: learn the underlying patterns of our data
 - Are there any correlations between features?
 - Can we cluster our data set in groups which behave similarly?

(Lison 2012)

Example: Recommender Systems



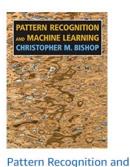
Customers who bought this item also bought



Deep Learning (Adaptive Computation and Machine Learning series)

Hands-On Machine
Learning with Scikit-Learn
and TensorFlow:...

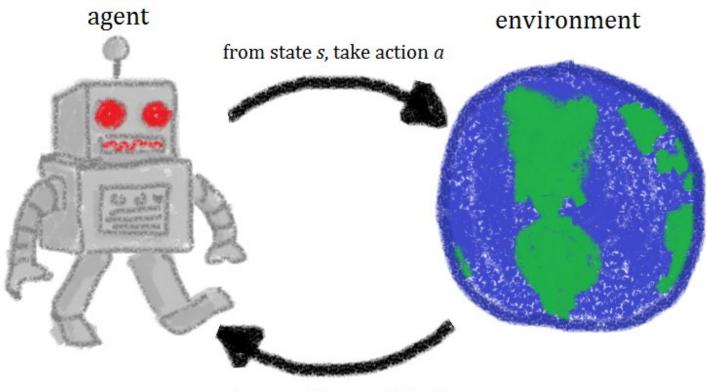
Aurélien Géron



Machine Learning
(Information Science...

Christopher M. Bishop

Reinforcement Learning



get reward R, new state s'

Reinforcement Learning

- Sometimes we don't have direct access to «the» correct output o for an input i
- But we can get a measure of «how good/bad» an output is
 - Often called the reward (can be negative or positive)
- The goal of the agent is to learn the behaviour that maximises its expected cumulative reward over time
 - ◆ To learn how to flip pancakes, the reward could for instance be +3 if the pancake is flipped, -1 if the pancake stays in the pan, and -5 if it falls