
Rule-Based Systems: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Logic Programming

 Logic programming is the use of
 logic as a declarative representation language
 Backward chaining as inference rule

 Logic Programming is the basis of the programming language
PROLOG

3KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 4

Logic Programs – A Sequence of Horn Clauses

 The sentences of a logic program are Horn clauses
 Facts: H
 Rules: H  B1 ∧ B2 ∧ … ∧ Bn

 A Horn clause without any head H is called a query
 Query:  B1 ∧ B2 ∧ … ∧ Bn

 Queries are not part of a logic program, they start
the inference

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 5

Knowledge Bases in PROLOG
 PROLOG (= PROgramming in LOGic) is a programming language based on Horn

clauses

 A Prolog knowledge base consists of clauses.

 Clauses are either facts or rules. Each clause ends with a period "."

 Facts consist of just one literal:

 Rules consist of a head and a body

 Head and body are separated by the symbol ":-" which means „“

 Literals in the body of a rule are separated by comma „ ,“
(the comma is equivalent to the logical AND or „∧“)

 The second rule can be read as: is_strong_sailor(popeye) is true of
is_a_sailor(popeye) is true and eats(popeye,spinach) is true.

KE&BI: Logic Programming

is_strong(popeye) :- eats(popeye,spinach).
is_strong_sailor(popeye) :- is_a_sailor(popeye),

eats(popeye,spinach).

is_a_dog(pluto).
is_a_sailor(popeye).
eats(popeye,spinach).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Predicates and Literals

 Predicates are the building blocks of clauses

 Predicates have a name and arguments (parameters). Arity is the
number of arguments.

 Predicates combine values which “make sense” together (are true)

 Examples:
 person(peter)
 married(peter, cindy)
 appointment(knut, “AB1”, “Lecture KE”)
 not female(knut)

 Literals are predicates and negated predicates

6KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Predicate Expressions (Literals)
 Clauses contain literals (predicate expressions), which consist of a predicate symbol and

arguments. The arguments are called terms, e.g.
eats(popeye,spinach). eats is a predicate symbol,

popeye and spinach are terms

 Predicates can have arbitrary arity. Arity is the number of arguments:
it_rains/0 has arity 0.
eats/2 has arity 2.
eats_spinach/1 has arity 1.

 The facts friends(popeye,pluto,garfield) and
friends(pluto,mickey)

define two different predicates, namely friends/3 (arity 3) and friends/2 (arity 2).

 The predicate expressions eats(popeye,spinach) and
eats_spinach(popeye)

express the same statements but are not equivalent

 The order of the arguments is significant: father(john,paul) is not the same as
father(paul,john). We determine which argument position should stand for what, but
then we have to keep it:

7KE&BI: Logic Programming

it_rains.
eats(popeye,spinach).
eats_spinach(popeye).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Terms

 The basic data structure in Prolog are terms. They are
arguments of predicates.

 Terms are either simple or compound.

 Simple terms in Prolog are constants and variables

 The constants are symbols and numbers.

 Compound terms are either complex terms or lists.

8KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Simple Terms: Atoms, Numbers, Variables

Atoms are strings that begin with lowercase letters and consist only of letters,
numbers, and the underscore, or strings that are enclosed in quotation
marks:
popeye, dog13XYZ, my_dog, "Lea?! @", 'Homer Simpson'

Numbers are integers or floats:
123, 89.5, 0, -323

Variables are strings that begin with a capital letter or an underscore and consist
only of letters, numbers, and the underscore:
X, Variable, _x, _123, Hund_123, _

Hints:
 Terms should always be 'speaking'.
 The _ variable, which consists only of the underscore, is the anonymous variable.

9KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Variables

 Variables can be used in facts, rules and queries.

 Same variables stand for the same values

 The clause exists(X). is a universal fact (fact with an open variable).

10KE&BI: Logic Programming

exists(X).

likes(Everybody, mickey)-

is_strong(X) :- has_trained(X).
friend(X,Y) :- friend(Y,X).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Compound terms consist of a functor and any number of arguments.
 The functor is always an atom.
 The arguments are simple or complex terms.

 Functors – like predicate symbols – have an arity (number of
arguments).

 Examples of complex terms:
loves(mary,father(mary))
friends(X,father(father(popeye)))

 Note: In the second example, father/1 is a function symbol and not
a predicate symbol

Complex Terms

11

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

"Mary loves her father"

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Queries about Facts

 Inference in Prolog starts with a query. The system concludes whether the
statement is true.

 Requests are made to the interpreter in the console and evaluated.

 A query about facts just checks whether the literal in in the knowledge
base:

12KE&BI: Logic Programming

is_a_dog(pluto).
is_a_dog(snoopy).
is_a_sailor(popeye).
eats(popeye,spinach).

?- is_a_dog(pluto).
true

?- eats(popeye, spinach).
true

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Queries with Variables

 If a query contains variables, the interpreter tries to instantiate the variable
(i.e. assign a value) in such a way that the statement becomes true

 The assignment of the variables is displayed as a response

 By entering the semicolon (or clicking "Next") the interpreter looks for
more answers

13KE&BI: Logic Programming

is_a_sailor(popeye).
eats(popeye,spinach).
likes(pluto,mickey).
likes(mickey,pluto).
likes(minnie,mickey).
likes(mickey,minnie).

?- eats(popeye,X).
X = spinach

?- likes(X,Y).
X = pluto, Y = mickey;
X = mickey, Y = pluto;
X = minnie, Y = mickey;
X = mickey, Y = minnie;
no

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 14

Exercises
 Write as a logic program

 john is a person
 peter and mary are persons
 fhnw is a university
 john is matriculated at fhnw
 A student is a person who is matriculated at a university.

 Queries
 Is john a student?

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 15

Exercise

 Represent in Prolog
 Peter is the Father of Mary
 Peter is the Father of John
 Mary is the Mother of Mark
 Jane is the Mother of Jane

 Write rules for
 grandfather
 grandmother
 sibling (father or mother in common)

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 All clauses, whose head have the same predicate symbol
and same arity define a predicate.

Predicates

18

living_being(X) :- mammal(X).
living_being(X) :- bird(X).

mammal(X) :- elephant(X).
mammal(X) :- cat(X).

bird(X) :- penguin(X).

elephant(clyde).

penguin(tweety).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 19

Exercises
 Write as a logic program

 knut is a person
 "KEBI" is a course
 courses belong to study programs
 bachelor and master are study programs
 computer science is a master program
 "KEBI" belongs to computer science
 courses are taught by teachers
 john attends course "KEBI"
 students are attending courses
 a student who a attends a course of a master program is a master student
 knut teaches "KEBI"

 Queries
 Is john a master student?
 Is knut a teacher?

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Inference Procedure

21KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Reasoning in Prolog

 Prolog's principle of automatic reasoning is based on
 the principle of unification and
 backward chaining with backtracking.

 To prove a target clause, Prolog tries to unify the clause with
the facts and rule heads given in the knowledge base.

 If the query contains variables, a valid variable assignment
(substitution) must be found.

22KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 23

Inference Procedure for Logic Programming
Let resolvent be the query ?- Q1, …, Qm

While resolvent is not empty do
1. Choose a query literal Qi from resolvent.
2. Choose a renamed1 clause H :- B1, …, Bn from P such that

Qi and H unify with an most general unifier σ , i.e. Qiσ = Hσ
(Head Unification)

3. If no such Qi and clause exist, then backtrack
4. Remove Qi from the resolvent
5. Add B1, …, Bn to the resolvent

6. Add σ to σall

7. Apply substitution σ to the resolvent and go to 1.
If resolvent is empty, return σall, else return failure.

1 Renaming means that the variables in the clause get new unique identifiers

KE&KT: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Unification

24KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 A predicate from a query must be unifiable with the head of a clause.

 Query: ?- mortal(socrates).

 Clause: mortal(X) :- human(X).

 Head Unification
 predicate symbols are equal
 Substitution: X=socrates

 New query: ?- human(socrates).

Head Unification

25

Source: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 26

Unification

 Two expressions Q and H unify if there exists a substitution σ
for any variables in the expressions so that the expressions
are made identical (Qσ = Hσ)

Unification Rules

 A constant unifies only with itself

 Two structures unify if and only if
 they have the same (function or) predicate symbol and the

same number of arguments, and
 the corresponding arguments unify recursively

 An unbound variable unifies with anything

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 27

Substitution

 A substitution is a finite set of the form σ = {v1/ t1, . . . , vn / tn}
 vi ’s: distinct variables.
 ti ’s: terms with ti ≠ vi .

 Applying a substitution σ to an expression E means to
replace each occurence of a variables vi with the value ti

 Example: E = p(X, Y, f (a))
σ = {X / b, Y / Z}
Eσ = p(b, Z, f (a))

E = father(peter,X)
σ = {X / mary}
Eσ = father(peter,mary)

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 28

Unifier

 A substitution σ is a unifier of expressions E and F iff

 Eσ= Fσ

 Example: Let E and F be two expressions:
 E = f (x, b, g(z)),
 F = f (f (y), y, g(u)).

 Then σ = {x / f (b), y / b, z / u} is a unifier of E and F:
 Eσ = f (f (b), b, g(u)),
 Fσ = f (f (b), b, g(u)

 A unifier σ of E and F is most general iff is more general than any other
unifier of E and F, i.e. for any other unifier ρ there exists a unifier τ such
that ρ = τ ° σ

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 In unification, two terms are compared with each other or
checked whether they can be equated (unified) by a
suitable variable assignment.

 Unification is a part of reasoning. However, there is also
the built-in predicate =, which equates two terms.

Unification

29

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

Unification Rule
Two terms are unifiable if and only if
• they are equal, or
• there is a substitution that assigns values to the

variables in such a way that the two terms
become equal

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 If one of the terms is a variable, then the variable can be
substituted with the other term

 If a variable occurs more than once in a term, the variable
assignment must be compatible everywhere

Unification of Terms

30

SOurce: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- X=Y, X=popeye.
X = popeye,
Y = popeye.

?- X=popeye, X=pluto.
false.

?- friend(popeye) = X.
X = friend(popeye).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Complex terms match exactly when:
1) the terms have the same functor and the same arity, and
2) match all corresponding arguments match, and
3) the variable assignments are compatible with each other.

Unification of Complex Terms

31

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- food(bread,X) = food(Y,sausage).
X = sausage,
Y = bread.

?- meal(food(bread), drink(beer)) = meal(X,drink(Y)).
X = food(bread),
Y = beer.

?- food(bread,X,beer) = food(Y,sausage,X)
false.

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Backward Chaining

32KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Rules and Inferences

 If the rule body is true (i.e. can be derived from the
knowledge base), then the rule head is also true.

 This principle of deduction is called Modus Ponens:

 From the rule is_strong(popeye) :- eats(popeye,spinach).
and the fact eats(popeye,spinach). the Prolog interpreter
infers that is_strong(popeye). applies.

33KE&BI: Logic Programming

is_strong(popeye) :- eats(popeye,spinach).
eats(popeye,spinach).

is_strong(popeye).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Rules and Queries

 To answer queries, the rules are applied backwards.
 If the query matches a fact, the query is true
 If the query matches the header of a rule, the body becomes

the new query

34KE&BI: Logic Programming

is_a_sailor(popeye).
eats(popeye,spinach).

is_strong(popeye) :- eats(popeye,spinach).

has_muscles(popeye) :- has_trained(popeye).
has_muscles(popeye) :- is_strong(popeye).

eats(popeye,spinach).
?- eats(popeye,spinach).

?- true.

is_strong(popeye) :- eats(popeye,spinach).
?- is_strong(popeye).

?- eats(popeye,spinach).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 35

Illustrating Backward Chaining

Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/AI/l2.html

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

There are two choices in the inference procedure where a
decision needs to be made
 Step 1: Selecting the Literal Qi from the Resolvents
 Solution in Logical Programming: left-most goal

 Step 2: Choosing a clause
 Solution in logical programming: top-most clause
 The clauses are selected in the order in which they appear.
 Backtracking: If a selected clause does not succeed and there are

alternative clauses, the next one is selected.

Two Choices in the Inference Procedure

36

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Rule bodies and queries are proven from left to right.

 Only when a proof of the literal i in a rule is found, ther
literal i+1 can be proven

 Example Query:

 Example Rule

 First female(X), is proven and then sibling(X,Y)

Within a Rule: From left to right

37

Source: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- female(X), sibling(X,Y).

sister(X,Y):- female(X), sibling(X,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Head Unification is performed top down.

 The interpreter searches the database from top to bottom
to find suitable clauses for proof

 What is the first answer the the query:

Choosing a Clause: Top-Down

38

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

eat_spinach(popeye).
has_trained(garfield).
is_strong(X) :- has_trained(X).
is_strong(X) :- eat_spinach(X).

?- is_strong(X).
X = garfield

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Search Tree for Depth-Firast Search

39

Source: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- dog(pluto).

?- is_mammal(pluto), barks(pluto).

?- has_four_legs(pluto), barks(pluto).

?- barks(pluto).



X = pluto

is_honest(pluto).
has_four_legs(pluto).
barks(pluto).

dog(X) :-
is_mammal(X),
barks(X).

is_mammal(X) :-
has_four_legs(X).

?- dog(pluto).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Search Tree for Depth-Firast Search

40

Source: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

is_honest(pluto).
has_four_legs(pluto).
barks(pluto).

dog(X) :-
is_mammal(X),
barks(X).

is_mammal(X) :-
has_four_legs(X).

?- dog(pluto).

[trace] 8 ?- trace, dog(pluto).
Call: (7) dog(pluto) ?
Call: (8) is_mammal(pluto) ?
Call: (9) has_four_legs(pluto) ?
Exit: (9) has_four_legs(pluto) ?
Exit: (8) is_mammal(pluto) ?
Call: (8) barks(pluto) ?
Exit: (8) barks(pluto) ?
Exit: (7) dog(pluto) ?
true.

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

A Logic Program and Queries

41KE&BI: Logic Programming

grandfather(X,Z) :- father(X,Y), father(Y,Z).
grandfather(X,Z) :- father(X,Y), mother(Y,Z).

grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).

mother(mary,mark).
mother(jane,mary).

Queries : ?- father(peter,john).
?- father(peter,X).
?- grandfather(peter,mark).
?- grandfather(peter,mary).
?- grandfather(peter,S).
?- sibling(X,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 42

Adding Goal to Resolvent

 In step 5 of the Inference procedure the literals of the clause
are added to the resolvent.

 Depending on whether the literals are added at the beginning
or the end of the resolvent, we get two different strategies:
 Adding the literals to the beginning of the resolvent gives

depth-first search.
 Adding the literals to the end of the resolvent gives breadth-

first search.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Backtracking

43KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Backtracking can be triggered by two causes:
 There is no further clause for the current query predicate.
 An alternative solution is to be calculated.

 In any case, the interpreter goes back to the last branch in
the proof tree, where alternatives were still open (depth-
first).

Backtracking: Depth-First Search

44

Source: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- is_strong(popeye).
?- is_strong(X).

eat_spinach(popeye).
has_trained(garfield).
is_strong(X) :- has_trained(X).
is_strong(X) :- eat_spinach(X).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Search Tree: Decision Point and Backtracking

45

?- is_strong(popeye).

X = popeye

?- has_trained(popeye).

Decision Point

Backtracking

?- eat_spinach(popeye).



X = popeye

?- is_strong(popeye).

eat_spinach(popeye).
has_trained(garfield).
is_strong(X) :- has_trained(X).
is_strong(X) :- eat_spinach(X).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 46

?- is_strong(X).

X = X1

?- has_trained(X1).

Decision Point

Backtracking for
next

?- eat_spinach(X2).



X1 = garfield



X = X2

X2 = popeye

Backtracking
for next solution

fail

?- is_strong(X).

eat_spinach(popeye).
has_trained(garfield).
is_strong(X) :- has_trained(X).
is_strong(X) :- eat_spinach(X).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Backtracking

 Record any decision
(choose) and its alternative

 If backtracking, then go back
to the last decision and try
another option

 When backtracking then roll
back to the former situation
(esp. for resolvent and σall)

47KE&KT: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Search Tree: Decision Points

48

Source: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 49

Prolog‘s Solution: Summary

 Choice of a query literal:
 leftmost literal first

 Choice of a clause
 Topmost clause first - with backtracking

 Adding new goal to the resolvent
 At the beginning.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Recursion

50KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Given these facts:

Task

51

costs_less(lolli,icecream).
costs_less(icecream,burger).
costs_less(burger,steak).
costs_less(steak,sushi).

Write rules for cheaper/2. such that cheaper(X,Y)
is true, if X costs less than Y.

costs_less:
cheaper:

sushi

steak

burger

icecream

lolli

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Nicht-rekursive Definition

52

costs_less:
cheaper:

sushi

steak

burger

icecream

lolli
costs_less(lolli,icecream).
costs_less(icecream,burger).
costs_less(burger,steak).
costs_less(steak,sushi).

cheaper(X,Y):- costs_less(X,Y).

cheaper(X,Y):- costs_less(X,A),
costs_less(A,Y).

cheaper(X,Y):- costs_less(X,A),
costs_less(A,B),
costs_less(B,Y).

cheaper(X,Y):- costs_less(X,A),
costs_less(A,B),
costs_less(B,C),
costs_less(C,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Solution: Recursive Predicate

53

costs_less(lolli,icecream).
costs_less(icecream,burger).
costs_less(burger,steak).
costs_less(steak,sushi).

cheaper(X,Y):- costs_less(X,Y).
cheaper(X,Y):- costs_less(X,Z),

cheaper(Z,Y).

costs_less:
cheaper:

sushi

steak

burger

icecream

lolli

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Recursion

 In the knowledge base we see that pluto likes mickey and als mickey likes
pluto. The same for minnie and mickey.

 Assume that likes is a inverse predicate. How can we avoid to write all
facts. Assume want to write only one likes fact for a couple and get the
inverse by inference.

54KE&BI: Logic Programming

likes(pluto,mickey).
likes(mickey,pluto).
likes(minnie,mickey).
likes(mickey,minnie).

likes(pluto,mickey).
likes(minnie,mickey).
likes(X,Y) :- likes(Y,X).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 A predicate is defined recursively when the predicate in the rule head
is called in one of the defining rules.

 The basic idea is to reduce a common task to a simpler task of the
same class (loops).

 Recursion makes it possible to write compact predicate definitions
and avoid redundancy.

Recursive Predicates

55

costs_less(lolli,icecream).
costs_less(ice_cream, burger).
costs_less(burger,steak).
costs_less(steak,sushi).

cheaper(X,Y):- costs_less(X,Y).
cheaper(X,Y):- costs_less(X,Z),

cheaper(Z,Y).

likes(pluto,mickey).
likes(minnie,mickey).
likes(X,Y) :- likes(Y,X).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Declarative Interpretation
– Declarative meaning is the meaning that is 'meant' or 'expressed' when reading the

knowledge base as a set of logical statements.
– The declarative meaning of a prolog program can be defined as the set of all

statements that can be logically derived from the knowledge base

Declarative und procedural Interpretation of a
Knowledge Base

56

Source: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

Procedural Interpretation
– Procedural interpretation is the meaning that comes from what Prolog 'does' with a

knowledge base.
– The procedural meaning of a Prolog program can be defined as the set of all queries

(statements) for which the Prolog interpreter finds a variable assignment that results in
the output true

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 First rule: To prove that X is cheaper than Y, it is enough to prove that
X costs less than Y.

 Second rule: To prove that X is cheaper than Y, this problem can be
broken down into two sub-problems. We are looking for a Z so that X
costs less than Z (subproblem 1) and that Z is cheaper than Y
(subproblem 2).

Procedural Interpretation of Recursive Predicates

57
Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

cheaper(X,Y):- costs_less(X,Y).
cheaper(X,Y):- costs_less(X,Z),

cheaper(Z,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 As a reminder, Prolog works its way
 through the knowledge base from top to bottom,
within the clauses from left to right.

 How does the order affect the procedural behavior of the
predicate?

Procedural und declarative Interpretation

58

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

parent(john,peter).
parent(mary,john).
parent(susan,mary).

ancestor3(X,Y):- parent(X,Y).
ancestor3(X,Z):- ancestor3(Y,Z),

parent(X,Y).

ancestor1(X,Y):- parent(X,Y).
ancestor1(X,Z):- parent(X,Y),

ancestor1(Y,Z).

ancestor2(X,Z):- parent(X,Y),
ancestor2(Y,Z).

ancestor2(X,Y):- parent(X,Y).

ancestor4(X,Z):- ancestor4(Y,Z),
parent(X,Y).

ancestor4(X,Y):- parent(X,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Recursive predicates always require at least two clauses:
 a recursive clause
 an anchor or exit clause.

 The anchor clause should always precede the recursive clause
(otherwise there is a risk of an infinite loop).

 In the rule body of the recursive clause, it often makes sense to put
the recursive call at the end.

Defining "harmless" recursive Predicates

59

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

anchor clause
cheaper(X,Y):-
 costs_less(X,Y).
cheaper(X,Y):-
 costs_less(X,Z),

cheaper(Z,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 60

Multiple Answers to a Query

 The inference procedure of Prolog computes one solution.

 The user can force the system to compute the next solution by typing a „;“
(typing „;“ is interpreted by the system as a fail and thus backtracking is
started to compute an alternative solution)

 Example:

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).
father(peter,paul).

?- sibling(X,Y).
X=mary, Y=mary;
X=mary, Y=john;
X=mary, Y=paul;
X=john, Y=mary

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Negation and Cut

61KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 62

Negation as Failure

 Prolog allows a form of negation that is called negation as
failure

 A negated query

 not Q

 is considered proved if the system fails to prove Q

 Thus, the clause

 alive(X) :- not dead(X)

 can be read as „Everyone is alive if not provably dead“

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 63

The Cut Operator

 Under procedural reading, a logic program consists of a set
of procedures

 Each procedure consists of a sequence of alternatives

 The inference procedure of Prolog computes all possible
alternatives for a query

 The cut operator (written as „!“) prevents backtracking. It is a
special literal that is always true but that stops all other
alternatives from being applied.

sibling(Y,Z) :- father(X,Y), !, father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 The query ?-risk(X) gives X=high

 When asking for another solution is also give X=low, which is
wrong.

 How this be avoided?

64

Application of the Cut

return(4).

risk(high) :- return(X), X < 5.
risk(low).

risk2(high) :- return(X), X < 5.
risk2(low) :- return(X), X >= 5.

risk3(high) :- return(X), X < 5, !.
risk3(low).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Example with Cut

65

p(X) :- a(X).

p(X) :- b(X),
c(X),!,
d(X),
e(X).

p(X) :- f(X).

a(1).
b(1).
b(2).
c(1).
c(2).
d(2).
e(2).
f(3).

?-p(X).
X=1;
false.

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 66

Defining Negation as Failure with the Cut Operator

 The cut operator can be used to define negation as failure

 If ?- Q can be proved then the query not(Q) fails.

 If Q cannot be proved, the second clause is applied which
always succeeds.

 If Q can be proved the second clause must not be applied.
This is assured by the cut: If Q can be proved, then the cut
prevents backtracking.

not(Q) :- Q, !, fail.

not(Q).

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Reasons to use the Cut
 Efficiency: Cropping the search space
 Shorter Programs
 Enforcing determinism.
 Modeling of defaults.

 Downsides of the cut
 The cut destroys the declarativity of prolog programs.
 The interpretation of a predicate definition with cuts is usually

only possible if the order of the proof steps is taken into
account.

67

Using the Cut

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Arithmetics

68KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 69

Built-in Arithmetic: The Operator is/2

 In Prolog there is a set of built-in functions for arithmetics. To apply these function
there exists a special predicate „is“:

 X is Y is true when X is equal to the value of Y.

 Built-in functions include: +, –, *, /, //, mod, (// performs integer division)
 Using these functions we can compute a value for terms involving numbers.

 Example:
 ?- X is 7+1.

 Will give the answer X = 8

 The is Predicate works as follows:
 First evaluate the right-hand argument (after the „is“)
 The result is is unified with the left-hand argument.
 The values of all the variables on the right-hand side of is must be known for

evaluation to succeed.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

How to use is/2

 The operator forces the second argument to be evaluated
immediately. Therefore, the second argument must be an
evaluable arithmetic expression

 If the second argument cannot be evaluated, Prolog aborts
with an error message

70KE&BI: Logic Programming

?- 3+5 is X.
ERROR: is/2: Arguments are not sufficiently instantiated
?- X is 4+Y.
ERROR: is/2: Arguments are not sufficiently instantiated
?- X is a.
ERROR: Arithmetic: ‘a’ is not a function

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Comparison

The comparison operators < (smaller), =<, (less than or equal to),
> (greater), >= (greater than or equal to), =:= (equal), and =\=
(unequal) force the immediate evaluation of both arguments

71KE&BI: Logic Programming

?- 1+4 < 3*5.
true.

?- 1+7 =< 3*2.
false.

?- 1+3 =:= 2*2.
true.

?- 1+3 =\= 2*3.
true.

?- X < 3.
ERROR: </2: Arguments are not sufficiently instantiated

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 72

Comparison

Equality:

Other Comparisons:

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Lists

73KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Lists are very powerful data structures in Prolog.
 Lists are finite sequences of elements
 Lists can contain different types of terms
 Lists can be nested (lists can have lists as items)
 Difference to sets:
 The order of the elements is important [a,b,c] 6= [b,a,c]
 The same item can appear multiple times in a list

Lists in Prolog

74

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

[mia, vincent, jules, mia]
[mia, 2, mother(jules), X, 1.7]
[]
[mia, [[3,4,paul], mother(jules)], X]

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Two lists are unifiable,
 if they are of the same length, and
 if the corresponding list items are unifiable.

 The length of a list is the number of items it contains

Unification of Lists

75

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- [a,b,X]=[Y,b,3].
X = 3, Y = a

?- [[a,b,c],b,3]=[Y,b,3].
Y = [a, b, c]

?- [a,b,c] = X.
X=[a,b,c]

?- [a,b,X,c]=[Y,b,3].
false.

?- [a,c,3]=[Y,b,3].
false.

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Listenzerlegung in Prolog

 The list constructor ‘|’ divides a list in head and tail.
 The head is the first element of the list
 The tail is the rest of the list. It is itself a list

 A empty list has no head and therfore cannot be split

 The '|' can also seperate more than one leading elements

76

?- [Head|Tail] = [mia, vincent, jules, mia].
Head = mia,
Tail = [vincent, jules, mia].

?- [Head|Tail] = [].
false.

?- [First,Second|Tail] = [mia, vincent, jules, mia].
First = mia,
Second = vincent,
Tail = [jules, mia].

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 The variable ‘_’ is the anonymous variable in Prolog.

 It is always used when a value is no longer needed later.

 Unlike other variables, each occurrence of the anonymous
variable is independent of the others. So it can be
initialized differently again and again:

Anonymous Variable

77

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- [_,X2,_,X4|_] = [mia, vincent, jules, mia, otto, lena].
X2 = vincent,
X4 = mia.

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 Define a predicate member/2, which tests whether an element
occurs in a list

Task

78

Note: member/2 is a predefined predicate in some prolog
systems that is loaded automatically. To define our own
predicate, we use our own name, e.g. my_member/2.

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 member/2 is a recursively defined predicate that checks whether an item
appears in a list:

 The fact member(X,[X|_]). says that something is an element of a list if it is
the first item (the head) of the list.

 The rule member(X,[_|T]):- member(X,T). says that something is an
element of a list if it is an element of the remainder list (the tail).

 Each item in a list is either the first item or an item in the tai

Predicate member/2

79

Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

% member/2, member(Term,List)
member(X,[X|_]).
member(X,[_|T]) :- member(X,T).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 member/2 can be used to

 test whether an element occour in a list (the first
argument is a constant)

 find the elements of a list (the first argument is a variable)

Declarative Application of member/2

80
Quelle: Wiebke Petersen, Grundkurs Prolog, HHU Düsseldorf, https://user.phil.hhu.de/~petersen/WiSe2324_Prolog/WiSe2324_Prolog.html

?- member(1,[1,2,3]).
?- member(1,L).

?- member(X,[1,2,3]).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Four predicates for recursive lists processing:

member/2 access to list elements.
member(Element,List)

append/3 concatenation of lists.
append(List1,List2,Konkatlist)

delete/3 deleting list elements or adding elements to a list.
delete(Element,List,ListDeleted)

reverse/2 reverting a list
reverse(List,ListReversed)

Basic Predicates for List Manipulation

81

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

The predicate append/3 ca

 test, whether a list is the concatenation of two lists:

 concatenate two lists :

 divide lists :

 Petersen

Concatenating Lists: append/3

82

append([],L,L).
append([H|T1],L2,[H|T3]) :- append(T1,L2,T3).

?- append([1,2,3],[4,5,6],[1,2,3,4,5,6]).
true.

?- append([1,2,3],[4,5,6],L).
L = [1,2,3,4,5,6].

?- append(L,[4,5,6],[1,2,3,4,5,6]).
L = [1,2,3].

?- append([1,2,3],L,[1,2,3,4,5,6]).
L = [4,5,6].

?- append(X,Y,[a,b,c]).
X = [], Y = [a,b,c];
X = [a], Y = [b,c];
X = [a,b], Y = [c];
X = [a,b,c], Y = [];

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

The predicate append/3 can be used to determine sublists:

 Prefix of a list [a,b,c,d]: [],[a],[a,b],[a,b,c],[a,b,c,d]

 Suffix os a list [a,b,c,d]: [],[d],[c,d],[b,c,d],[a,b,c,d]

 Sublists of a list [a,b,c]: [],[a],[a,b],[a,b,c],[b],[b,c],[c]

Suffix, Prefix and Sublist

83

prefix(P,L) :- append(P,_,L).

suffix(S,L) :- append(_,S,L).

sublist(SL, L) :- prefix(P,L), suffix(SL,P).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

 delete/3 relates a term and two lists sich that list2 is the
result of deleting one occurence of the term in list 1

Delete a list element: delete/3

84

% delete/3, delete(Term,List1,List2)

delete(X,[X|T],T).
delete(X,[H|T1],[H|T2]):-

delete(X,T1,T2).

?- delete(b,[a,b,c],[a,c]).
true.

?- delete(c,[a,b,c],X).
X=[a,b]

?- delete(X,[a,b,c,d],[a,b,d]).
X = c

?- delete(1,X,[a,b,c]).
X = [1, a, b, c] ;
X = [a, 1, b, c] ;
X = [a, b, 1, c] ;
X = [a, b, c, 1] .

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Length of a List

85

?- len1([a,[b,e,[f,g]],food(cheese),X],4).

true.

?- len1([a,b,a],X).

X=3.

% len1/2 , len1(List, Length)

length([],0).
length([_|T],N):- length(T,X),

N is X+1.

	Rule-Based Systems: Logic Programming
	Logic Programming
	Logic Programs – A Sequence of Horn Clauses
	Knowledge Bases in PROLOG
	Predicates and Literals
	Predicate Expressions (Literals)
	Terms
	Simple Terms: Atoms, Numbers, Variables
	Variables
	Complex Terms
	Queries about Facts
	Queries with Variables
	Exercises
	Exercise
	Predicates
	Exercises
	Inference Procedure
	Reasoning in Prolog
	Inference Procedure for Logic Programming
	Unification
	Head Unification
	Unification
	Substitution
	Unifier
	Unification
	Unification of Terms
	Unification of Complex Terms
	Backward Chaining
	Rules and Inferences
	Rules and Queries
	Illustrating Backward Chaining
	Two Choices in the Inference Procedure
	Within a Rule: From left to right
	Choosing a Clause: Top-Down
	Search Tree for Depth-Firast Search
	Search Tree for Depth-Firast Search
	A Logic Program and Queries
	Adding Goal to Resolvent
	Backtracking
	Backtracking: Depth-First Search
	Search Tree: Decision Point and Backtracking
	Slide Number 46
	Backtracking
	Search Tree: Decision Points
	Prolog‘s Solution: Summary
	Recursion
	Task
	Nicht-rekursive Definition
	Solution: Recursive Predicate
	Recursion
	Recursive Predicates
	Declarative und procedural Interpretation of a Knowledge Base
	Procedural Interpretation of Recursive Predicates
	Procedural und declarative Interpretation
	Defining "harmless" recursive Predicates
	Multiple Answers to a Query
	Negation and Cut
	Negation as Failure
	The Cut Operator
	Application of the Cut
	Example with Cut
	Defining Negation as Failure with the Cut Operator
	Using the Cut
	Arithmetics
	Built-in Arithmetic: The Operator is/2
	How to use is/2
	Comparison
	Comparison
	Lists
	Lists in Prolog
	Unification of Lists
	Listenzerlegung in Prolog
	Anonymous Variable
	Task
	Predicate member/2
	Declarative Application of member/2
	Basic Predicates for List Manipulation
	Concatenating Lists: append/3
	Suffix, Prefix and Sublist
	Delete a list element: delete/3
	Length of a List

