

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Forward Chaining vs. Backward Chaining

PROLOG

Decisior

Tables

Forward Chaining vs. Backward Chaining

Logical Rules can be applied in two directions

- Backward chaining
 - start with the desired conclusion(s)
 - work backwards to find supporting facts
 - corresponds to modus tolens
 - goal-directed
 - Forward chaining
 - Starts from the facts
 - apply rules to find all possible conclusions
 - corresponds to modus ponens
 - data driven

Illustrating Backward Chaining

Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/AI/I2.html

Illustration Forward Chaining

Goal state: Z

Termination condition: stop if Z is derived or no further rule can be applied

Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/AI/I2.html

Forward Chaining: Deriving ground Facts

- Usually for forward chaining the facts are ground, i.e. they do not contain variables
- To ensure that the derived facts are ground, all the variables which occur in the consequence of the rule must occur in the antecedents of the rule
- Unification is thus restricted to matching (one of the expressions is ground):
 - The condition can contain variables
 - The matching fact does not contain variables

Forward Chaining Procedure: Recognise – Select – Act Cycle

Let the fact base consist of facts $FB = \{F_1, \dots, F_n\}$

1. **Recognise**: Match the conditions of the rules against the facts of the fact base, i.e. find all rules

 C_1 and C_2 and ... and $C_m \rightarrow H$

such that the conditions C11, C2, ..., Cm can be unified with facts F11, F21, ..., Fm with unifier σ

(the set of applicable rules is called conflict set)

- 2. Select: If there is more than one rule that can be applied, choose one to apply. Stop if no rule is applicable
- 3. Act: Apply the chosen rule by adding adding H σ to the fact base, i.e. FB = FB \cup {H σ }
- 4. Stop if termination condition holds, otherwise and go to 1

Example of a Declarative Knowledge Base

- F1: Father(peter,mary)
- F2: Father(peter, john)
- F3: Mother(mary, mark)
- F4: Mother(jane, mary)

R1: Father(X,Y) AND Father(Y,Z) \rightarrow Grandfather(X,Z)

R2: Father(X,Y) AND Mother(Y,Z) \rightarrow Grandfather(X,Z)

R3: Mother(X,Y) AND Father(Y,Z) \rightarrow Grandmother(X,Z)

R4: Mother(X,Y) AND Mother(Y,Z) \rightarrow Grandmother(X,Z)

R5: Father(X,Y) AND Father(X,Z) \rightarrow Sibling(Y,Z)

R6: Mother(X,Y) AND Mother(X,Z) \rightarrow Sibling(Y,Z)

The rules can be used to

- Derive all grandparent and sibling relationships (forward chaining)
- Answer questions about relationships (backward chaining)

Forward Chaining Strategies

- Forward chaining computes all the facts that can be derived from the knowledge base
- Forward chaining strategies differ in step "Select". Here are some examples of strategies:
 - Apply the rules sequentially
 - Randomly select a rule
 - Apply more specific rules first
 - Prefer rules where conditions match a recently derived fact
 - Derive consequences of a set of starting facts: Only apply rules where at least one condition matches either with a starting fact or a derived fact
 - Fact base contains facts that are generally true, e.g. insurance product
 - Starting facts describe a concrete situation, e.g. customer data

Choosing Forward or Backward Chaining

- Backward Chaining
 - If you already know what you are looking for
- Forward Chaining
 - If you don't necessarily know the final state of your solution

Decision Criteria for Forward or Backward Reasoning

- More possible goal states or start states?
 - Move from smaller set of states to the larger
- Is Justification of Reasoning required?
 - Prefer direction that corresponds more closely to the way users think
- What kind of events triggers problem-solving?
 - If it is arrival of a new fact, forward chaining makes sense.
 - If it is a query to which a response is required, backward chaining is more natural.
- In which direction is branching factor greatest?
 - Go in direction with lower branching factor

Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/AI/I2.html

n

Branching Factor

Forward chaining more appropriate

Forward or Backward Chaining?

Which reasoning strategy do you regard as appropriate in the following scenarios:

- Diagnosis of a machine defect. Rules have symptoms in the antecedent and defect in the conclusion. Given a set of symptoms derive the reason for the defect
- Check whether a patient is at risk for breast cancer. Rules have risks in antecedent and possible diseases in the head, e.g. "smoking -> lung cancer"
- Proving integrity constraints. Rules specify conditions when a database is inconsistent. Rules are checked at every update
- Check credit card accounts for possible occurrence of fraud as soon as a payment is made.