

Vague Knowledge: Fuzzy Logic

Acknowledgement

■ Slides are based on slides from Prof. Dr. Knut Hinkelmann

FUZZY SETS

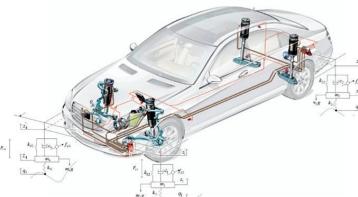
Applications of Fuzzy Logic

Fuzzy Systems became well-known as control systems

(Washing machine, ...)

- Other application areas:
 - Diagnosis
 - Language understanding

Washing Machine



Active Suspension Control System

Inventor of Fuzzy Logic

Lotfi Zadeh 2010

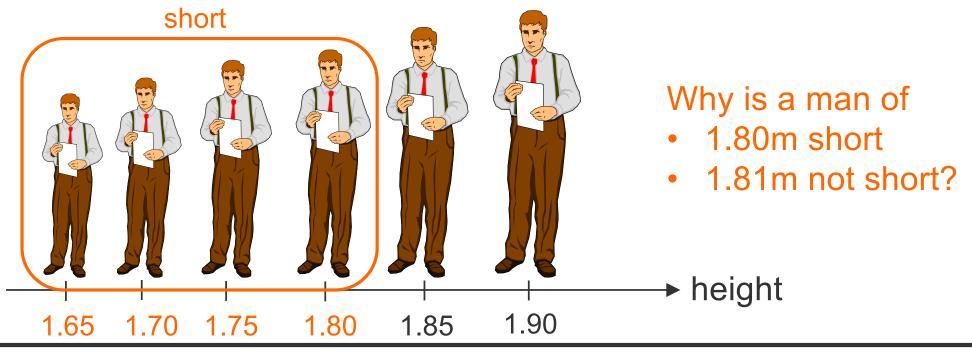
Lotfi Zadeh 1945

Who is short and who is tall? And who is medium?

Dr. Gwendolin Wilke MSc BIS/

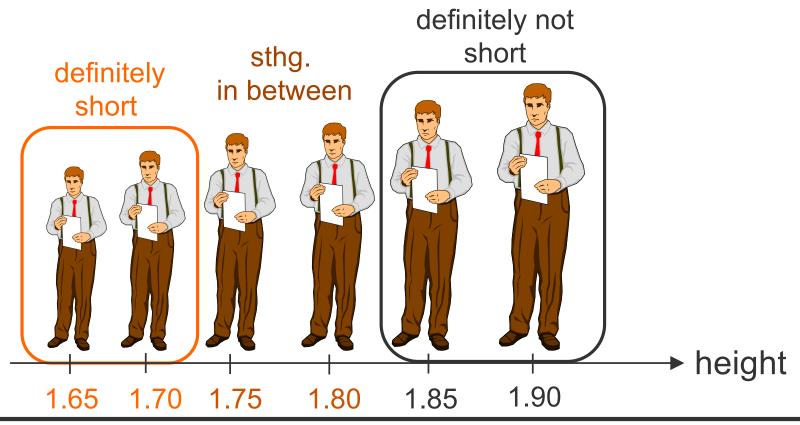
Classical vs. Fuzzy Sets

- When is a man short?
- Classical Set Theory: Either short or not short.
 E.g.: set of short men S= {m|height(m) ≤ 1.80}



Classical vs. Fuzzy Sets

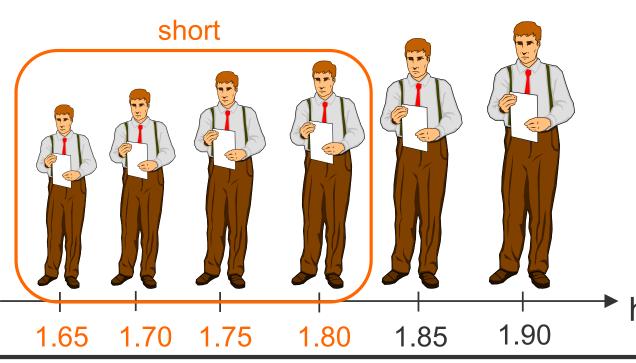
■ Fuzzy sets have unsharp boundaries:



Classical vs. Fuzzy Sets

- A classical set can be seen as a special case of a fuzzy set, where the fuzziness of the set boudary is infinitely small.
- Classical sets are also called crisp sets.

Classical sets, e.g.: set of short men S= {m|height(m) ≤ 1.80}



height	short?
1.65	1
1.70	1
1.75	1
1.80	1
1.85	0
1.90	0

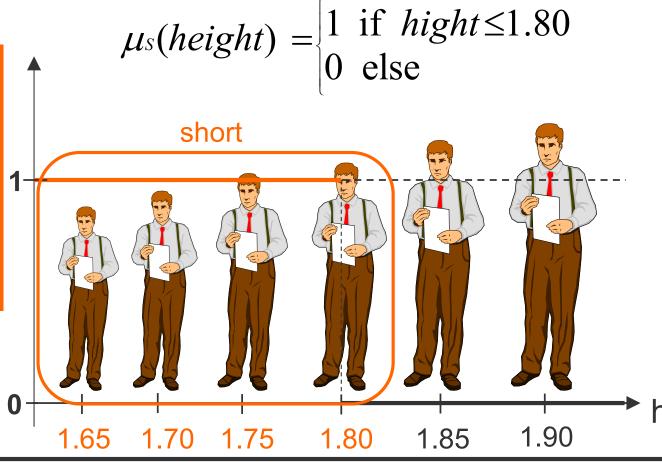
height

Dr. Gwendolin Wilke

MSc BIS/

11

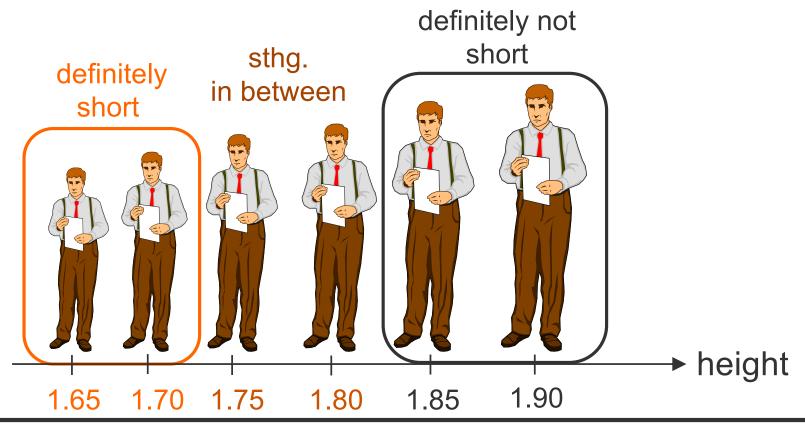
Classical sets, e.g.: set of short men S= {m|height(m) ≤ 1.80}



height	short?
1.65	1
1.70	1
1.75	1
1.80	1
1.85	0
1.90	0

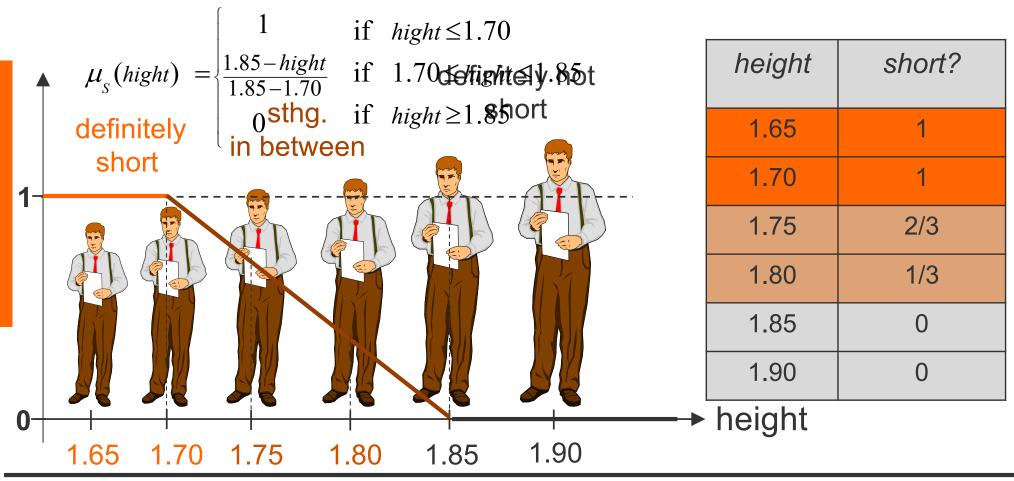
height

Fuzzy sets, e.g.: fuzzy set of short men



Dr. Gwendolin Wilke MSc BIS/ 13

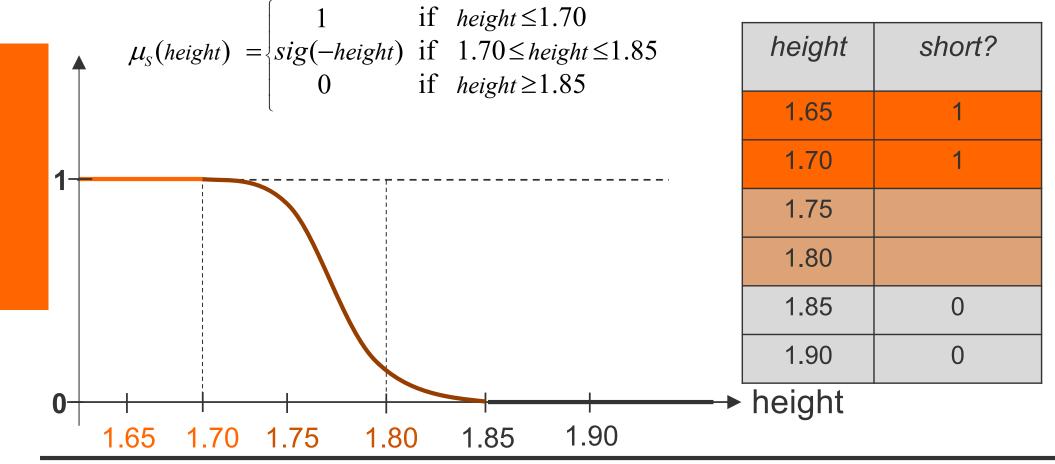
Fuzzy sets, e.g.: fuzzy set of short men



Dr. Gwendolin Wilke

MSc BIS/ 14

Fuzzy sets, e.g.: fuzzy set of short men



Exercise: Fuzzy Sets for Size of People

- Draw fuzzy sets for short, medium and tall men; use trapezoidal membership functions.
- Here are the restrictions:
 - Men below 1.60 are definitely short
 - Men taller than 175 are definitely not short
 - Men taller than 190 are definitely tall
 - Men smaller than 180 are not tall
 - Men between 170 and 185 are medium
 - Men below 165 are not medium
 - Men taller than 190 are not medium

FUZZY SET THEORY

Fuzzy Set Theory

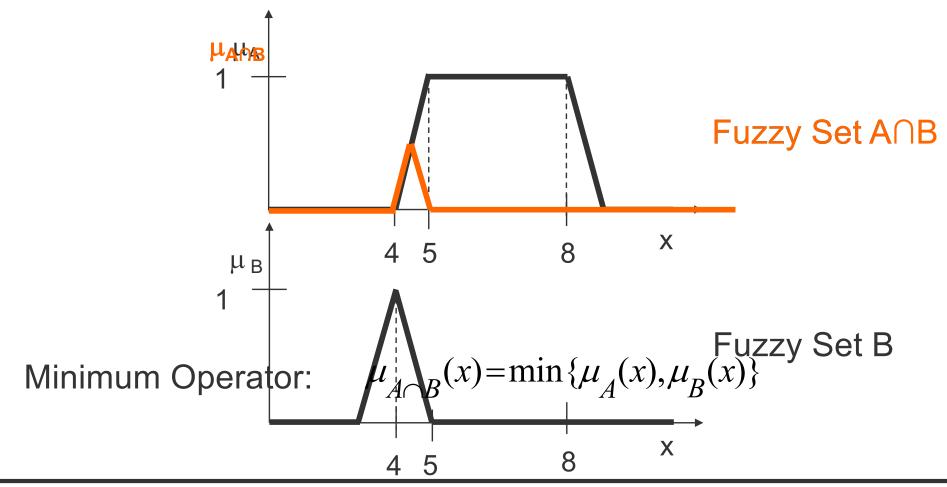
Operations on Fuzzy Sets:

For Fuzzy Sets we can define operations

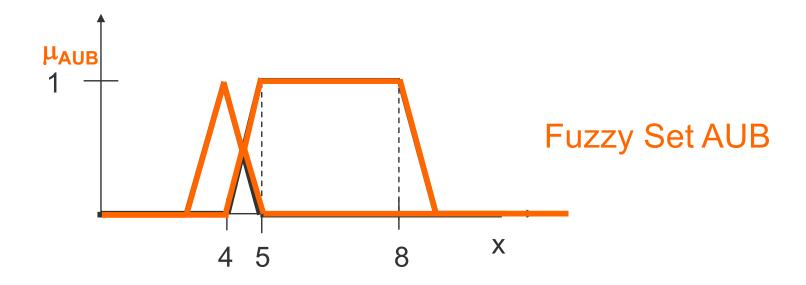
- intersection,
- union
- negation

... analogue to classical sets.

Intersection:

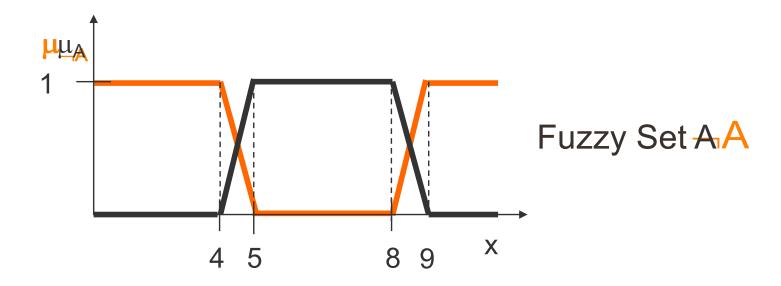


Union:



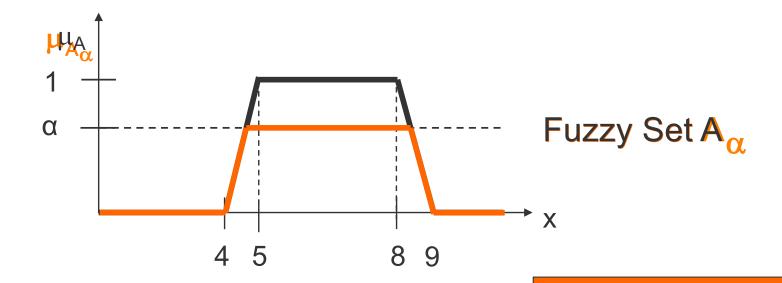
Maximum Operator: $\mu_{A \cup B}(x) = \max \{ \mu_A(x), \mu_B(x) \}$

Negation:



Complement Operator: $\mu_{\neg A}(x) = 1 - \mu_A(x)$

Alpha-cut:



α-Cut Operator:

$$\mu_{A_{\alpha}}(x) = \min\{\mu_{A}(x), \alpha\}$$

Exercise 2

FUZZY LOGIC

Fuzzy Logical Operators

- They modify or combine fuzzy logical statements.
 - E.g.: AND, OR, IMPLIES, NOT, ...
- They are operations on membership degrees:

• AND: minimum,
$$\mu_{A \wedge B}(x, y) = \min\{\mu_A(x), \mu_B(y)\}$$

- OR: maximum, $\mu_{A\vee B}(x,y) = \max\{\mu_A(x),\mu_B(y)\}$ Mamdani Implicatio
- NOT: complement
- $\mu_{A \rightarrow R}(x, y) = \min\{\mu_A(x), \mu_R(y)\}$ IMPLIES: minimum,

Note: There are serveral possibilities to define fuzzy logic operators! We use the above.

Implication

Fuzzy Logic "Paradox"

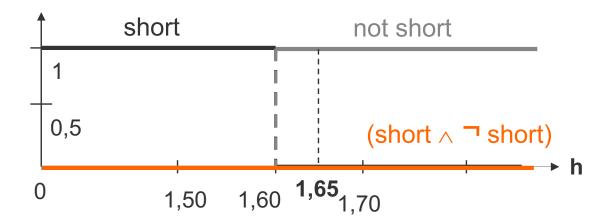
In classical logic, a statement and its negation cannot be true at the same time:

 $(s ^ T S) = 0$

"Tertium non datur" (law of the excluded middle)

22

Example: Classical statement s=,Bob is short*, where *short* is specified by the following crisp set:

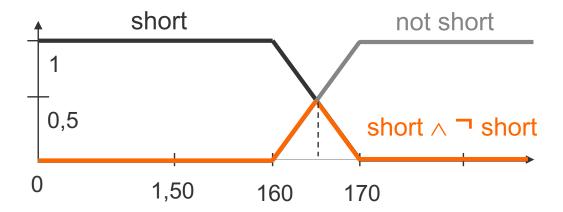


If height(Bob)=1.65, then $(s ^ ¬ s) = min\{0,1\}=0$.

Fuzzy Logic "Paradox"

In fuzzy logic, a statement and ist negation can both be (partially) true at the same time: $(s ^ \ \ \ s) \neq 0$ for some s

Example: Fuzzy statement s= "Bob is short",
where short is specified by the following fuzzy set:



If height(Bob)=1.65, then (s $^{ }$ $^{ }$ s) = min{0.5,0.5}=0.5

Dr. Gwendolin Wilke

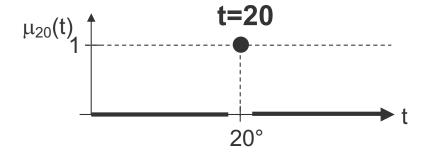
MSc BIS/

28

Classical vs. Linguistic Variables

Example: Classical variable «temperature» (t).

t takes exact values in the interval [-50,50],e.g., t=20:

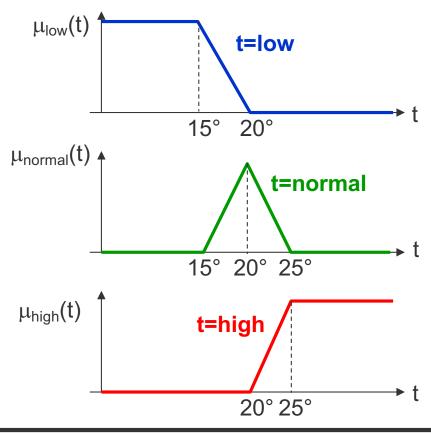


Classical vs. Linguistic Variables

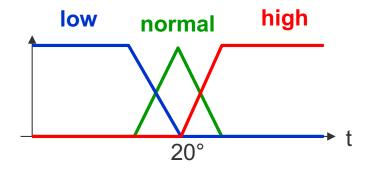
Example: Linguistic variable «temperature» (t).

t takes the fuzzy values low, normal, high, e.g., t=low.

Fuzzy values are defined as Fuzzy Sets:



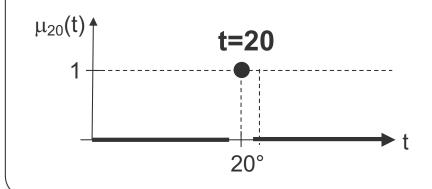
In one graphic:



Fuzzy Logical Statements

The possible truth values of an exact statement are: 1 (True) or 0 (False).

Example: Exact statement s=«The temperature is 20°C.»



«Temperature» is a classical variable (t). Takes the value t=20.

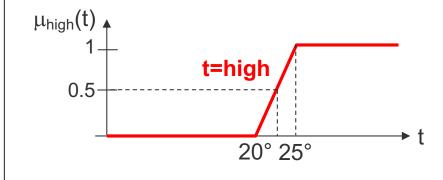
Assume the temperature is 22.5°C.

Then the truth value of s is 0.

Fuzzy Logical Statements

The possible truth values of a fuzzy statement are 1 (True), 0 (False), and every value in between.

Example: Fuzzy statement s=«The temperature is high.»



«Temperature» is a linguistic valriable (t). Takes the value t=high.

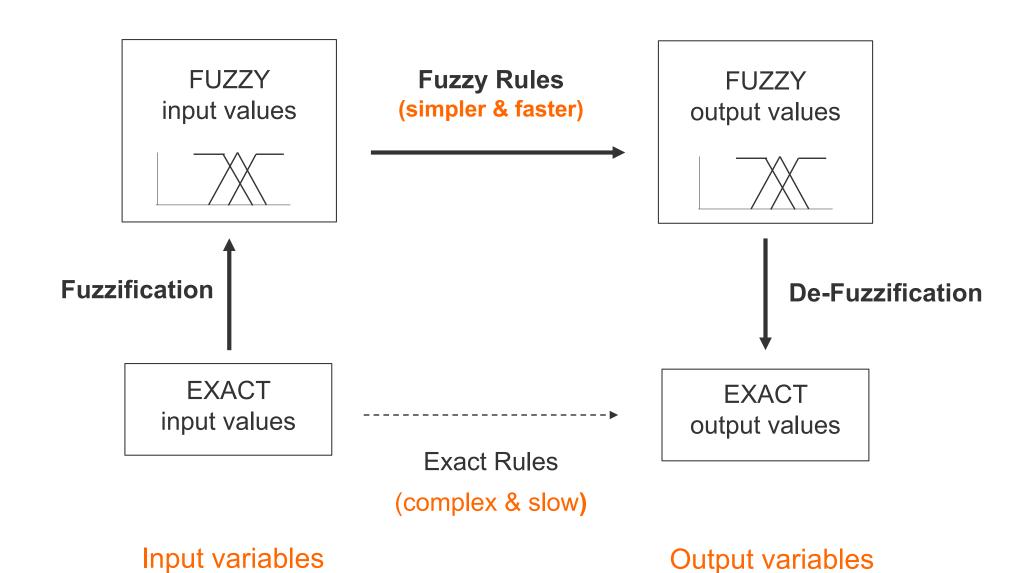
Assume the temperature is 22.5°C.

Then the truth value of s is 0.5.

The truth value of a fuzzy statement is also called truth degree. The truth degree indicates the degree of compatibility of the exact value 22.5°C with the fuzzy statements s.

FUZZY CONTROLLER

Designing a Fuzzy Controller (Procedure)



Dr. Gwendolin Wilke

34

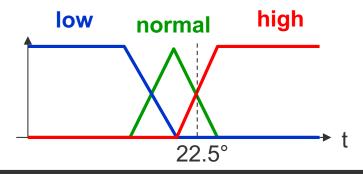
Fuzzification

- Transformation of exact variables to linguistic variables, and
- Transformation of exact values to fuzzy values (fuzzy sets).

Example: Fuzzification of variable «temperature»:

$$t \in [-50,50] \rightarrow t \in \{low, normal, high\}$$

 $t = 22.5^{\circ}C \rightarrow \{\mu_{low}(t) = 0, \mu_{normal}(t) = 0.5, \mu_{high}(t) = 0.5\}$



Dr. Gwendolin Wilke

MSc BIS/

35

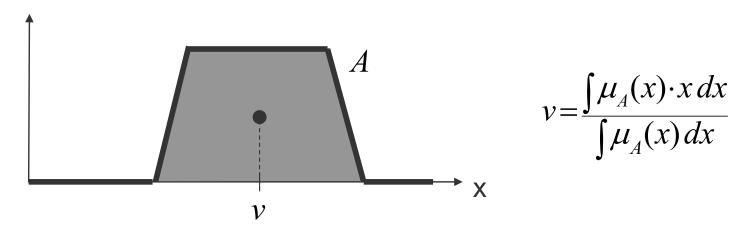
Defuzzification

= Transformation of a fuzzy set to an exact value (number).

Different possible methods, e.g.,

- Center of gravity method
- Maximum method
- Weighted average method

Example: Centre of gravity method (Sugeno 1985, most commonly used):



Disadvantage: Computationally difficult for complex membership functions.

36

Fuzzy Logic Controller: "Car heating system"

- Problem: Car heating system
 - The heating systems of a car should keep the temperature constant.
 - The heating power that is necessary depends on the temperature and the air humidity in the car:
 - The higher the temperature, the lower must be the heating power.
 - The lower the temperature, the higher must be the heating power.

37

- The humidity interacts with temperature.
- Sensors show the current temperature and humidity.

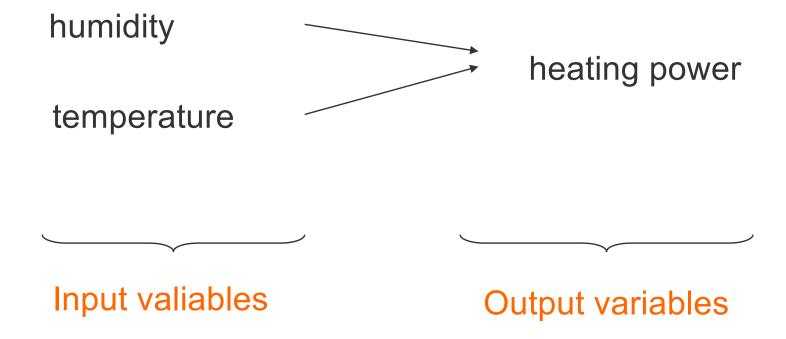
Fuzzy Logic Controller "Car heating system"

Steps to build the fuzzy controller

- 1. Specify Input and Output variables
- 2. Fuzzification of variables and values
- 3. Define fuzzy rules
- 4. Choose defuzzification method

Fuzzy Logic Controller "Car heating system"

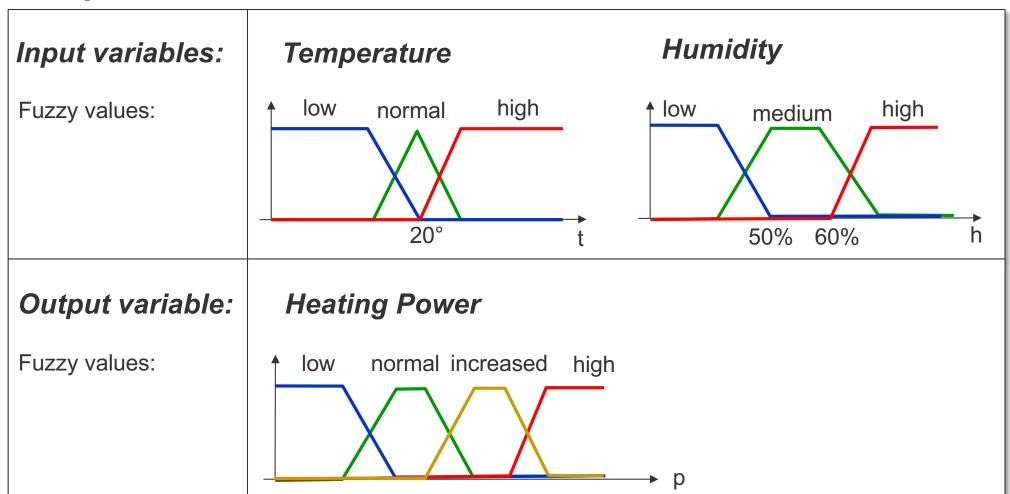
Step 1: Specify Input and Output variables



Step 2: Fuzzification of variables and values:

- Transform exact variables in linguistic variables:
 - Humidity: {low, medium, high}
 - Temperature: {low, normal, high}
 - Heating power: {low, normal, increased, high}
- Specify the fuzzy values of the linguistic variables as fuzzy sets:
 - see next slide!

Step 2: Fuzzification of variables and values:



Step 3: Define fuzzy IF-THEN rules

- A fuzzy IF-THEN rule is NOT a logical implication, but can be thought of as a command.
- A set of Fuzzy IF-THEN rules maps linguistic variables to linguistic variables (fuzzy function).
- Fuzzy IF-THEN rule describes the control of the system. They are similar to the experiences of an expert, who would formulate their knowledge in natural language terms.

Step 3: Define fuzzy IF-THEN rules

- Rule 1:
 - ◆ IF Temperature = low THEN heating power is increased
- Rule 2:
 - ◆ IF Temperature = *normal* AND humidity = *low* THEN heating power is *normal*
- Rule 3:
 - ◆ IF Temperature = normal AND humidity = high THEN heating power is high
- Rule 4:
 - ◆ IF Temperature = high THEN heating power is low

Step 3: Define fuzzy IF-THEN rules ... as decision table

Temperature

Humidity

AND	low	medium	high
low	increased	increased	increased
normal	normal	1	high
high	low	low	low

White fields contain irrelevant cases

Step 4: Choose defuzzification method

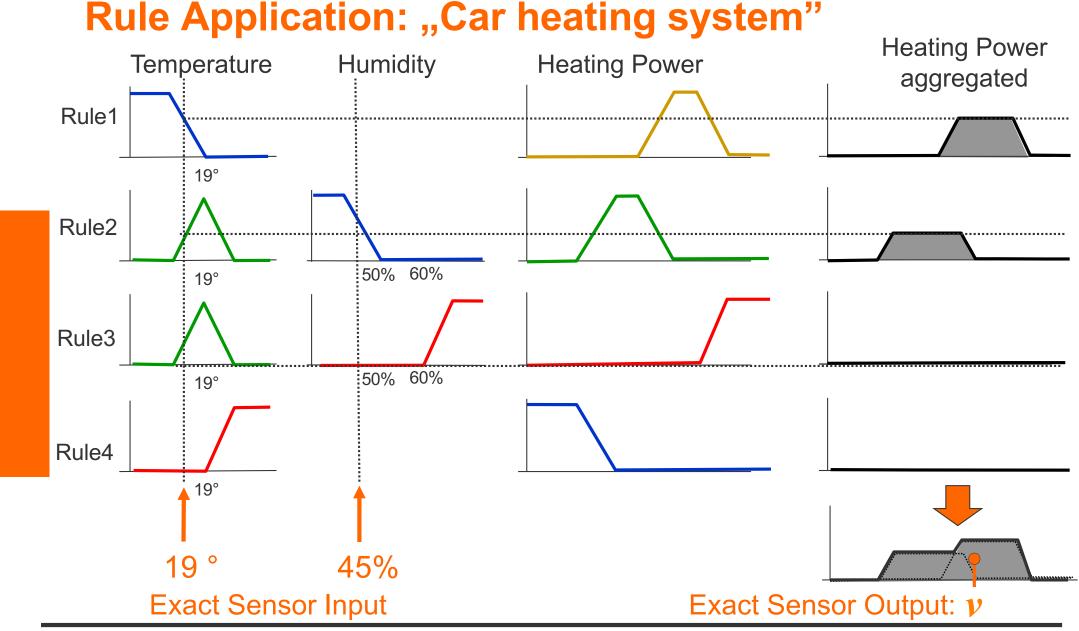
- The output of the fuzzy IF-THEN rules is a fuzzy value, i.e., a fuzzy set.
- The fuzzy output value must be mapped to an exact value in order to control the machine (the heating power engine).
- E.g., choose the centroid method (commonly used for fuzzy control systems).

Rule Application is performed in four steps:

- Evaluate Antecedents:
 - For an exact input value, determine to which degree each antecedent is satisfied
 - Combine the degrees using the logical operators (AND in our example)
- 2. Evaluate Consequents:
 - The degree to wich an input variables A_i is satisfied determines the degree to which the corresponding output variable B_i holds (because IF-THEN rules are fuzzy functions). The result is the alpha cut of the output variable.
- 3. Aggregate Consequents:
 - Each rule gives one fuzzy set as a fuzzy output. Since all rules are valid, the fuzzy outputs may overlap (law of the excluded middle does not hold in general!). Combine them by OR to obtain a single fuzzy output value («aggregated output»).
- 4. Defuzzify Aggregated Output

Dr. Gwendolin Wilke

MSc BIS/



Dr. Gwendolin Wilke

MSc BIS/

Step 1: Evaluate Antecedents

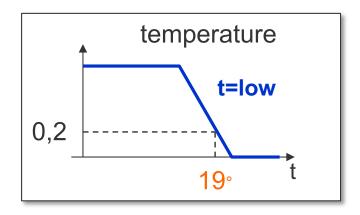
Assume the sensors have measured the following exact input values:

Temperature: t=19°

Humidity: h=45%

Step 1: Evaluate Antecedents

Rule 1: IF temperature = *low*THEN heating power is *increased*



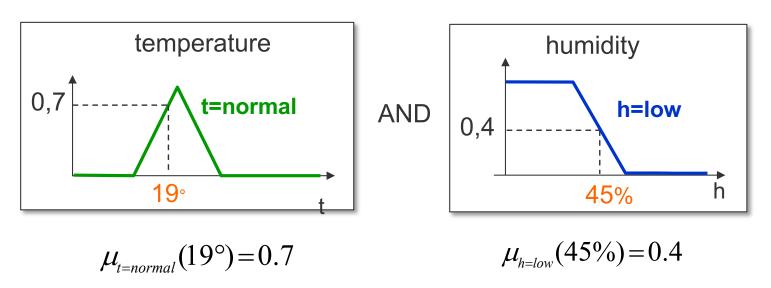
$$\mu_{t=low}(19^{\circ}) = 0.2$$

Dr. Gwendolin Wilke

49

Step 1: Evaluate Antecedents

Rule 2: IF temperature = *normal* AND humidity = *low* THEN heating power is *normal*

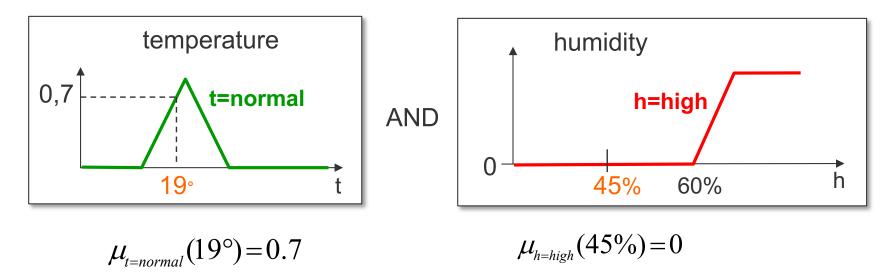


50

Min-Operator for AND: $\mu_{t=normal \land h=low}(19^{\circ},45\%) = \min\{0.7, 0.4\} = 0.4$

Step 1: Evaluate Antecedents

Rule 3: IF Temperature = *normal* AND humidity = *high* THEN heating power is *high*



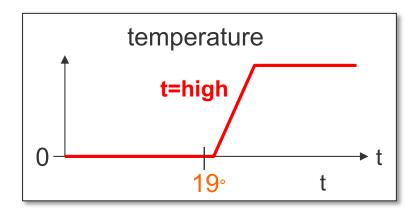
Min-Operator for AND:

$$\mu_{t=normal \land h=high}(19^{\circ},45\%) = \min\{0.7, 0\} = 0$$

51

Step 1: Evaluate Antecedents

Rule 4: IF Temperature = *high*THEN heating power is *low*



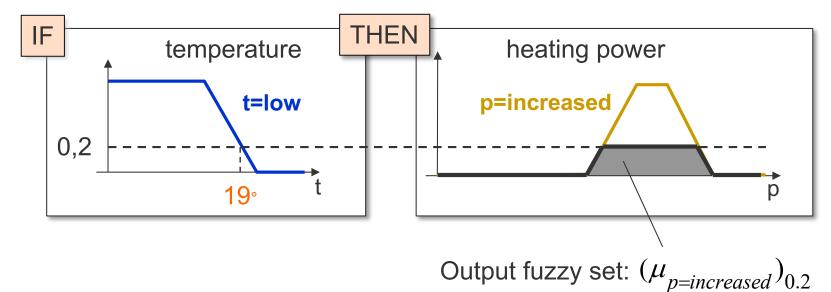
$$\mu_{t=high}(19^{\circ})=0$$

Dr. Gwendolin Wilke

52

Step 2: Evaluate Consequents

Rule 1: IF temperature = *low*THEN heating power is *increased*

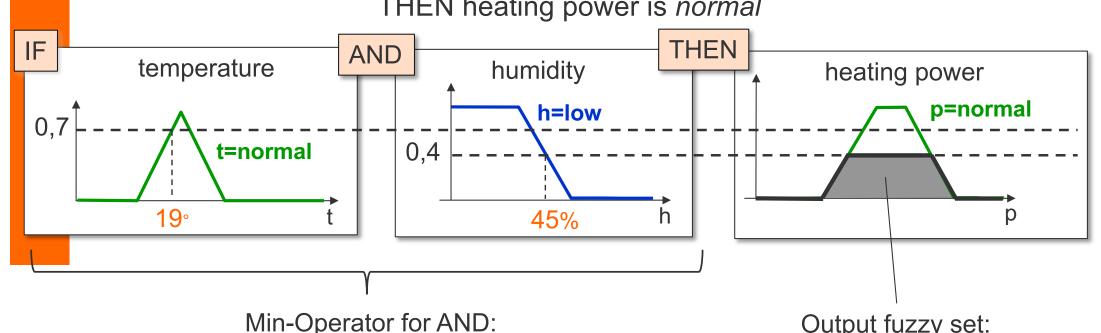


(α -cut of $\mu_{p=increased}$ with α = 0.2 .)

Dr. Gwendolin Wilke MSc BIS/ 53

Step 2: Evaluate Consequents

Rule 2: IF temperature = *normal* AND humidity = *low* THEN heating power is *normal*



Min-Operator for AND:

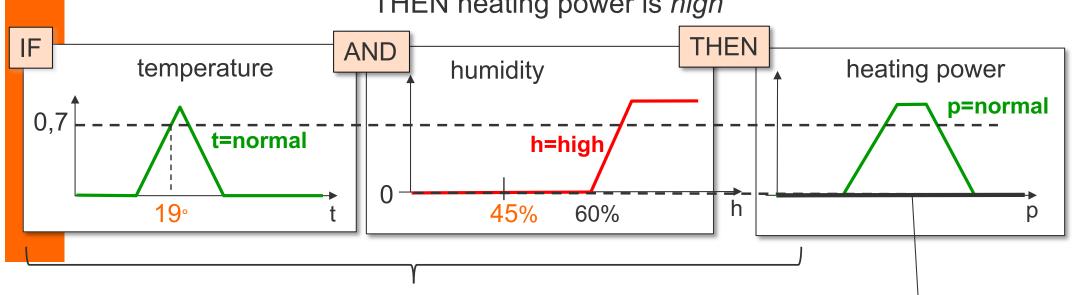
$$\mu_{t=normal \land h=low}(19^{\circ},45\%) = 0.4$$

Output fuzzy set:

$$(\mu_{p=normal})_{0.4}$$

Step 2: Evaluate Consequents

Rule 3: IF Temperature = *normal* AND humidity = *high* THEN heating power is *high*



Min-Operator for AND:

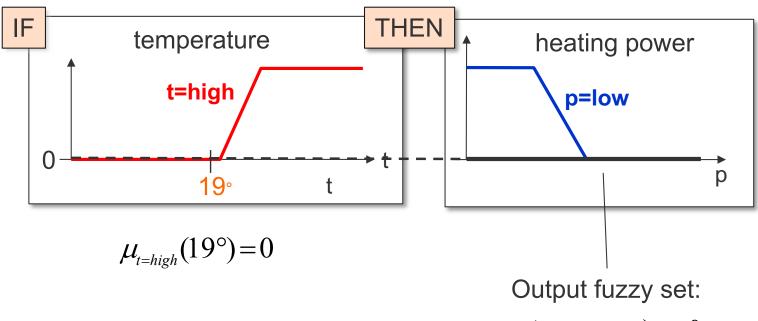
$$\mu_{t=normal \land h=high} (19^{\circ}, 45\%) = 0$$

Output fuzzy set:

$$(\mu_{p=normal})_0 \equiv 0$$

Step 2: Evaluate Consequents

Rule 4: IF Temperature = *high*THEN heating power is *low*



$$(\mu_{p=normal})_0 \equiv 0$$

Dr. Gwendolin Wilke MSc BIS/ 56

Step 3: Aggregate Evaluated Consequents: Output Rule 1:

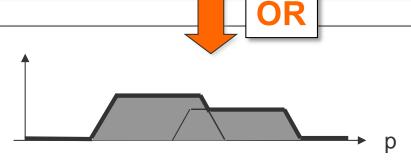
Output Rule 2:

Output Rule 3:

Output Rule 4:

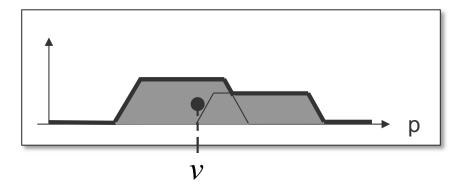
heating power

Aggregated Output:



Step 4: Defuzzify aggregated output

Center of gravity method:



$$v = \frac{\int \mu_A(x) \cdot x \, dx}{\int \mu_A(x) \, dx}$$

Main difference to exact reasoning:

Several rules can be active at the same time! (Usually with different strengths.)

Dr. Gwendolin Wilke

59