Logic and Constraint Programming

2- Backtracking

A.A. 2021/2022

Lorenzo Rossi lorenzo.rossi@unicam.it

University of Camerino

EXERCISE SGRAPH COLOURING PROBLEM

What about central Italy?

Backtracking

BACKTRACKING >BACKTRACKING SEARCH

A possible efficient and simple method.

- Variables are instantiated sequentially.
- After the variables of a constraint are instantiated, the constraint is checked
- If a (partial) instantiation violates a constraint, backtracking is performed to the most recently instantiated variable that still has alternative values

Backtracking eliminates a subspace from the Cartesian product of all variable domains.

Essentially a depth-first search variant.

Consider the following CSP:

• Variables:

A, B, C

- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 - $A > B; B \neq C;$ $A \neq C;$

Consider the following CSP:

- Variables: A, B, C
- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 - $A > B; B \neq C;$ $A \neq C;$

• *A* = 1

Consider the following CSP:

- Variables: A, B, C
- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 - $A > B; B \neq C;$ $A \neq C;$

• A = 1, B = 1

Consider the following CSP:

- Variables: A, B, C
- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 - $A > B; B \neq C;$ $A \neq C;$

• *A* = 1 , *B* = 1 not ok

Consider the following CSP:

- Variables: A, B, C
- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$

 $A \neq C;$

• *A* = 1 , *B* = 1 not ok

Consider the following CSP:

- Variables: A, B, C
- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$

 $A \neq C;$

• *A* = 1 , *B* = 1 not ok

•
$$A = 1, B = 2$$

- Variables: A, B, C
- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 - $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 A ≠ *C*;

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 A ≠ *C*;

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok

•
$$A = 1, B = 3$$

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 A ≠ *C*;

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 A ≠ *C*;

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- A = 1, B = 3 not ok
- *A* = 2

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 A ≠ *C*;

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- *A* = 2, *B* = 1

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 A ≠ *C*;

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok

Consider the following CSP:

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok

• *A* = 2

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok
- A = 2, B = 1

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok
- A = 2, B = 1, C = 2

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok
- A = 2, B = 1, C = 2 not ok

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok
- A = 2, B = 1, C = 2 not ok
- *A* = 2

Consider the following CSP:

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$ represent it?

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- *A* = 2 , *B* = 1 , *C* = 1 not ok
- *A* = 2 , *B* = 1 , *C* = 2 not ok
- *A* = 2 , *B* = 1

How

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok
- A = 2, B = 1, C = 2 not ok
- A = 2, B = 1, C = 3

- Variables: A, B, C
- Domains: D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints: $A > B; B \neq C;$ $A \neq C;$

- *A* = 1 , *B* = 1 not ok
- *A* = 1 , *B* = 2 not ok
- *A* = 1 , *B* = 3 not ok
- A = 2, B = 1, C = 1 not ok
- A = 2, B = 1, C = 2 not ok
- *A* = 2 , *B* = 1 , *C* = 3 ok

Backtracking

BACKTRACKING >EXAMPLE

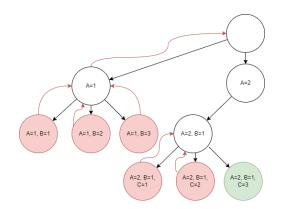
Consider the following CSP:

- Variables: A, B, C
- Domains:
 - D(A) = D(B) = $D(C) = \{1, 2, 3\}$
- Constraints:
 A > *B*; *B* ≠ *C*;
 - $A \neq C;$

How we can represent the state space?

Backtracking

BACKTRACKING



BACKTRACKING

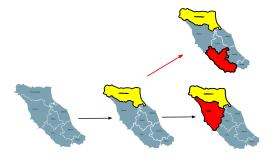
General-purpose methods can give huge gains in speed:

- · Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

HEURISTICS »Variable ordering

Minimum remaining values heuristic

Pick the most constrained variable

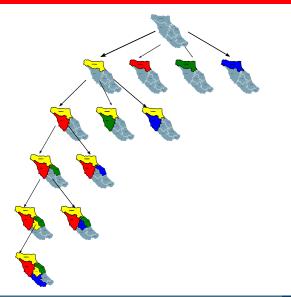


Backtracking

Least constraining value heuristic

the one that rules out the fewest values in the remaining variables

BACKTRACKING SGRAPH COLOURING



FORWARD CHECKING

Forward checking

prevents assignments that guarantee later failure

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

er	to	um	ma	la	ab	mo