Logic and Constraint Programming

2- Backtracking
A.A. 2021/2022

Lorenzo Rossi
lorenzo.rossi@unicam.it

University of Camerino

ExERCISE

$>$ GRAPH COLOURING PROBLEM

What about central Italy?

Backtracking

BACKTRACKING
 >BACKTRACKING SEARCH

A possible efficient and simple method.

- Variables are instantiated sequentially.
- After the variables of a constraint are instantiated, the constraint is checked
- If a (partial) instantiation violates a constraint, backtracking is performed to the most recently instantiated variable that still has alternative values

Backtracking eliminates a subspace from the Cartesian product of all variable domains.

Essentially a depth-first search variant.

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:
$A>B ; B \neq C$;
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
- $A=1$
A, B, C
- Domains:

$$
\begin{aligned}
& D(A)=D(B)= \\
& D(C)=\{1,2,3\}
\end{aligned}
$$

- Constraints:
$A>B ; B \neq C ;$
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
- $A=1, B=1$
A, B, C
- Domains:

$$
\begin{aligned}
& D(A)=D(B)= \\
& D(C)=\{1,2,3\}
\end{aligned}
$$

- Constraints:
$A>B ; B \neq C ;$
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
- $A=1, B=1$ not ok
A, B, C
- Domains:

$$
\begin{aligned}
& D(A)=D(B)= \\
& D(C)=\{1,2,3\}
\end{aligned}
$$

- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- $A=1, B=1$ not ok
- $A=1$
- Domains:

$$
\begin{aligned}
& D(A)=D(B)= \\
& D(C)=\{1,2,3\}
\end{aligned}
$$

- Constraints:
$A>B ; B \neq C$;
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:
$A>B ; B \neq C ;$
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:
$A>B ; B \neq C ;$
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:

$$
\begin{aligned}
& D(A)=D(B)= \\
& D(C)=\{1,2,3\}
\end{aligned}
$$

- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C ; \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:

$$
\begin{aligned}
& D(A)=D(B)= \\
& D(C)=\{1,2,3\}
\end{aligned}
$$

- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C ; \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:

$$
\begin{aligned}
& D(A)=D(B)= \\
& D(C)=\{1,2,3\}
\end{aligned}
$$

- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C ; \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$
$D(C)=\{1,2,3\}$
- Constraints:
$A>B ; B \neq C ;$
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:
$A>B ; B \neq C ;$
$A \neq C$;

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- $A=2$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- $A=2, B=1$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- $A=2, B=1, C=2$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- $A=2, B=1, C=2$ not ok

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C ; \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- $A=2, B=1, C=2$ not ok
- $A=2$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:
$A>B ; B \neq C$; $A \neq C ;$
represent it?

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- $A=2, B=1, C=2$ not ok
- $A=2, B=1, C=3$

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:

$$
\begin{aligned}
& A>B ; B \neq C \\
& A \neq C
\end{aligned}
$$

- $A=1, B=1$ not ok
- $A=1, B=2$ not ok
- $A=1, B=3$ not ok
- $A=2, B=1, C=1$ not ok
- $A=2, B=1, C=2$ not ok
- $A=2, B=1, C=3$ ok

BACKTRACKING

>EXAMPLE

Consider the following CSP:

- Variables:
A, B, C
- Domains:
$D(A)=D(B)=$ $D(C)=\{1,2,3\}$
- Constraints:
$A>B ; B \neq C ;$
$A \neq C$;

How we can represent the state space?

BACKTRACKING

>EXAMPLE

BACKTRACKING

General-purpose methods can give huge gains in speed:

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Heuristics
 >VARIABLE ORDERING

Minimum remaining values heuristic
Pick the most constrained variable

HeURIStics
\gg VALUE SELECTION

Least constraining value heuristic
the one that rules out the fewest values in the remaining variables

BACKTRACKING
 $>$ GRAPH COLOURING

FORWARD CHECKING

Forward checking

prevents assignments that guarantee later failure

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

er	to	um	ma	la	ab	mo	
							1

