
Drools exercises

Lorenzo Rossi

LCP

❑ Create new Drools project

❑ Create the classes Main and
Person

com.sample

Person

- age: Integer

- name: String

- ...

+ ...

Mail

- sender: Person

- recipient: Person

- body: String

+ ... *

❑ Create a new rule file

❑ Populate the WM with some
person

Person p1 = new Person("Bob", 35);

Person p2 = new Person("Molly", 22);

Person p3 = new Person("Bob", 8);

Person p4 = new Person("Anna", 15);

Person p5 = new Person("Bob", 25);

Person p6 = new Person("Sandra", 40);

ksession.insert(p1);

ksession.insert(p2);

ksession.insert(p3);

ksession.insert(p4);

ksession.insert(p5);

ksession.insert(p6);

ksession.insert(new Mail(p1, p4,

"Do your homeworks!"));

ksession.insert(new Mail(p5, p5,

"Remember to do the homeworks!"));

...

ksession.fireAllRules();

❑ Write a rule that prints out
every mail content

❑ Write a rule that prints out
every person information

❑ Write a rule that prints out
every mail content

❑ Write a rule that prints out
every person information

package com.sample

import com.sample.Mail;

import com.sample.Person;

rule "Rule 1"

when

$m: Mail()

then

System.out.println("r1-Mail: " + $m);

end

rule "Rule 2"

when

$p: Person()

then

System.out.println("r2-Person: " + $p);

end

❑ Finds all person named "Bob" with
less than ten years old, or between
the ages of 18 and 35 years old

❑ Finds all person named "Bob" with
less than ten years old, or between
the ages of 18 and 35 years old

package com.sample

import com.sample.Mail;

import com.sample.Person;

rule "Rule 3"

when

$p: Person(name == "Bob",

age < 10 ||

(age >= 18 && age <= 35)

)

then

System.out.println("r3-Person: " + $p);

end

❑ Write a rule that finds all the
couples of people

❑ Write a rule that finds all the
couples of people

rule "Rule 4"

when

$p1: Person()

$p2: Person()

then

System.out.println("r4: " + $p1 +
" vs. " + $p2);

end

❑ Write a rule that finds all the
couples of people

❑ Write a rule that finds all the
couples of people avoiding to
couple people with themselves

❑ Write a rule that finds all the
couples of people

❑ Write a rule that finds all the
couples of people avoiding to
couple people with themselves

rule "Rule 4"

when

$p1: Person()

$p2: Person()

then

System.out.println("r4: " + $p1 +
" vs. " + $p2);

end

rule "Rule 5"

when

$p1: Person()

$p2: Person(this != $p1)

then

System.out.println("r5: " + $p1 +
" vs. " + $p2);

end

❑ Write a rule that finds all the
couples of homonym people
avoiding to couple people with
themselves

❑ Write a rule that finds all the
couples of homonym people
avoiding to couple people with
themselves

rule "Rule 6"

when

$p1: Person($n: name)

$p2: Person(this != $p1,
name == $n)

then

System.out.println("r6: " + $p1 +
" vs. " + $p2);

end

❑ Write a rule that finds all the
couples of homonym people
avoiding to couple people with
themselves and to repeat
reverse coupling (p1,p2 but
not p2,p1)

❑ Write a rule that finds all the
couples of homonym people
avoiding to couple people with
themselves and to repeat
reverse coupling (p1,p2 but
not p2,p1)

rule "Rule 7"

when

$p1: Person($n: name)

$p2: Person(this != $p1, $p1 < $p2,
name == $n)

then

System.out.println("r7: " + $p1 +
" vs. " + $p2);

end

❑ Write a rule printing the
content of mails sent by
person named "Bob", that are
at least 20, to himself

❑ Write a rule printing the
content of mails sent by
person named "Bob", that are
at least 20, to himself

rule "Rule 8"

when

$p: Person(age >= 20,
name == "Bob")

$pp: Person(this == $p)

$m: Mail (sender == $p,

recipient == $pp,

$b: body)

then

System.out.println("r8: " + $b);

end

❑ Write a rule printing the
content of mails sent by
person named "Bob", that are
at least 20, to himself

❑ Write a rule printing the
content of mails sent by
person named "Bob", that are
at least 20, to himself

rule "Rule 9"

when

Mail ($p: sender,

sender.name == "Bob",

sender.age >= 20,

recipient == $p,

$t: body.toString())

then

System.out.println("r9: " + $t);

end

Drools supports advanced operators like ∃ and ∀

❑ exists P(…)
the WM contains at least one fact matching

❑ not P(…)
the WM does not contain any matching fact

❑ forall P(…)
all the objects of type P in the WM match

❑ Write a rule printing person
❑ Who received at least one mail

rule "Rule 10"

when

$p: Person($n: name)

exists Mail(recipient == $p)

then

System.out.println("r10: " + $n
+ " received a mail");

end

❑ Write a rule printing person
❑ Who received at least one mail
❑ Who had not received any mail

rule "Rule 10"

when

$p: Person($n: name)

exists Mail(receiver == $p)

then

System.out.println("r10: " + $n
+ " received a mail");

end

rule "Rule 11"

when

$p: Person($n: name)

not Mail(recipient == $p)

then

System.out.println("r11: " + $n
+ " did not received mail");

end

❑ Write a rule printing person
❑ Who received at least one mail

❑ Who had not received any mail

❑ Who received mail only from
Bob

rule "Rule 12"

when

$p: Person($n: name)

forall (

Mail($s: sender, recipient == $p)

Person(this == $s, name == "Bob")

)

then

System.out.println("r12: " + $n
+ " received mail only from Bob");

end

❑ Keyword from permits to access object in a Collection

rule "Example of FROM"

when

$l: List()

$p: Person() from $l

then

System.out.println($l + "/" + $p);

end

❑ Keyword collect is dual to form it produces a
collection of facts on the basis of the selection
rule "Example of COLLECT"

when

$c: collect (Person())

$p: Person() from $c

then

System.out.println($c + "/" + $p);

end

❑ Keywork accumulateworks similarly to collect

❑ It performs operation on collection of facts

❑ Exist specific operators for: min, max, count, ecc.

rule "Esempio di Funzioni notevoli"
when

accumulate(Person($a: age),
$max: max($a),
$min: min($a),
$avg: average($a)

)
then
System.out.println(

"M:" + $max + " m:" + $min + " a:" + $avg);
end

❑ Drools permits to query
the WM without
affecting it

❑ Query are used tofilter
facts without applying
any action

5 Giugno 2013 Introduzione a Drools 27

query "Query: Q1"
$p: Person(age > 18)

end

query "Query: Q2" (int $a)
Person($n: name, age == $a)

end

query "Query: Q3" (String $n, int $a)
Person($n := name, $a := age)

end

