
Logic and Constraint
Programming

June 1, 2022

PROLOG
Prof. Fabrizio Fornari

Programming Examples

Directed graph

The most common type of question
concerning a graph is:

Is there a path from node X to node
Y? And if there is, show the path.

Graph structures are useful abstract
representation for many problems.

Programming Examples

Concrete practical questions are:
- How can I travel from Camerino to Rome?

- How can a user navigate from web page X to page Y?

- How many links of the type ‘P1 knows P2’ in a social
network are needed to get from any person in the world
to any other person, by following a chain of ‘knows’
links between people?

Milgram, S. (1967). The small world
problem. Psychology today, 2(1), 60-67.
The average path length for social networks of
people in the United States.

All these concrete questions can be answered by the same
algorithms that work on abstract graphs where nodes and
links have no concrete meaning

https://en.wikipedia.org/wiki/Average_path_length
https://en.wikipedia.org/wiki/Social_network

Programming Examples

link(a,b).
link(a,c).
link(b,d).
link(c,d).
link(c,f).
link(d,e).
link(d,f).
link(f,a).

Graph structures are useful abstract
representation for many problems.

Programming Examples
path(StartNode, EndNode)

it is true if there exists a path from StartNode to EndNote in the given graph.

A path exists if
1. StartNode and EndNode are both the same node, or

How can we write these two rules in Prolog?

path(Node, Node). % StartNode and EndNode are both the same node

path(StartNode, EndNode) :-
link(StartNode, NextNode),
path(NextNode, EndNode).

When does a path exists from StartNode to EndNote?

2. there is a link from StartNode to NextNode, and there is a path from NextNode to EndNode

Programming Examples

?- path(a,e).

path(Node, Node). % StartNode and EndNode are both the same node

path(StartNode, EndNode) :-
link(StartNode, NextNode),
path(NextNode, EndNode).

true

?- path(a,X).

Which are the nodes X reachable from a?

Programming Examples

?- path(a,X).

Which are the nodes X reachable from a?

X = a ;
X = b ;
X = d ;
X = e ;
X = f ;
X = a ;
X = b ;
…

Prolog has found that a
is connected to a itself,
b, d, e, f. Then it is back
to a restarting the cycle.

It will never find that a is
linked to c, link(a,c).

Let us ask
?- path(a,c).

Why does it happen?

What happens?

Programming Examples

Which is the execution trace?

?- path(a,c).

link(a,b).
link(a,c).
link(b,d).
link(c,d).
link(c,f).
link(d,e).
link(d,f).
link(f,a).

path(Node, Node).

path(StartNode, EndNode) :-
link(StartNode, NextNode),
path(NextNode, EndNode).

Programming Examples
The execution trace of ?- path(a,c).

Programming Examples

Programming Examples

Programming Examples

The style in which our program searches a graph is called depht-first.
Whenever there is a choice between alternatives where to continue the search,
the program chooses a current deepest alternative.

Each recursive call takes some memory, that is why Prolog eventually runs
out of memory. Because Prolog has to remember where to return in the
event that backtracking occurs.

Our simple program with DFS (Depth-First Search), has a problem. The
problem does not occur when the graph to be searched is finite and has
no cyclical path.

The problem can be fixed in many ways, for example by limiting the depth of
search, or by checking for node repetition on the currently expanded path.

Programming Examples

Let us consider a more interesting version of the path predicate with a third
argument added:

path(Start, End, Path)

This is true if Path is a path between nodes Start and End in the graph. Path is
represented as a list of nodes.

?- path(a, e, Path).
Path = [a, b, d, e]

Programming Examples

This new path predicate can be defined by adding a third argument to our
previous path program:

?- path(a, e, Path).
Path = [a, b, d, e]
How can we define this new path predicate?

From

path(Node, Node).

path(StartNode, EndNode) :-
link(StartNode, NextNode),
path(NextNode, EndNode).

To

path(Node, Node, [Node]).

path(StartNode, EndNode, [StartNode | Rest]) :-
link(StartNode, NextNode),
path(NextNode, EndNode, Rest).

Remember, there is no confusion between the tow path predicates. Why?

Programming Examples
path(Node, Node, [Node]).

path(StartNode, EndNode, [StartNode | Rest]) :-
link(StartNode, NextNode),
path(NextNode, EndNode, Rest).

Let us try the question, what are all the nodes reachable from node a?

?- path(a, End, Path).
End = a, Path = [a] ;
End = b, Path = [a, b] ;
End = d, Path = [a, b, d] ;
End = e, Path = [a, b, d, e] ;
End = f, Path = [a, b, d, f] ;
End = a, Path = [a, b, d, f, a] ;

End = b, Path = [a, b, d, f, a, b] ;
End = d, Path = [a, b, d, f, a, b, d] ;
End = e, Path = [a, b, d, f, a, b, d, e] ;
End = f, Path = [a, b, d, f, a, b, d, f] ;
End = a, Path = [a, b, d, f, a, b, d, f, a] ;
End = b, Path = [a, b, d, f, a, b, d, f, a|...] ;
…

Programming Examples
path(Node, Node, [Node]).

path(StartNode, EndNode, [StartNode | Rest]) :-
link(StartNode, NextNode),
path(NextNode, EndNode, Rest).

Let us try the question, what are all the nodes reachable from node a?

?- path(a, c, Path).

Programming Examples
This time we can apply a trick to avoid getting stack into a loop.

What can we do?

We can limit the length of the searched path so that when the length has been
reached, the search does not continue.

We can do this by means of the conc predicate that we previously defined

conc([], L, L).

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

?- conc(L, _, _). Prolog generates through
backtracking general lists
of increasing length.

L = [];
L = [_];
L = [_, _];
L = [_, _, _];
…

Programming Examples
This time we can apply a trick to avoid getting stack into a loop.

What can we do?

We can limit the length of the searched path so that when the length has been
reached, the search does not continue.

We can do this by means of the conc predicate that we previously defined

conc([], L, L).

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

?- conc(Path, _, _), path(a, c, Path).

The trick is to first construct a general path (with
all the elements uninstantiated) and then ask
Prolog to find a path according to this template.

Programming Examples

?- conc(Path, _, _), path(a, c, Path).

The trick is to first construct a general path (with all the elements uninstantiated)
and then ask Prolog to find a path according to this template.

?- conc(Path, _, _), path(a, c, Path).
Path = [a, c];
Path = [a, c, f, a, c];
Path = [a, c, d, f, a, c];
…

This trick forces Prolog to search the
graph in breadth-first manner.

Prolog tries all the ways of finding a path
of length 1, then all the paths of lengths
2, etc., until a path between the given
nodes is found.

Programming Examples

?- conc(Path, _, _), path(a, c, Path).

We used conc since we have already defined it.

A more elegant way of achievieng the same effect would be to define a
special predicate list(L), which is true if its argument L is a list. It can also be
used to generate general lists of increasing length:

list([]). % Empty list is a list

list([_ | L]) :- % This is also a list if
list(L). % L is a list

?- list(Path, _, _), path(a, c, Path).

Robot Task Planning

Let us consider a mobile robot that has the task of cleaning a room.

We assume the robot knows how to
execute basic commands such as:
go(door,middle)
pick up %pick up the rubbish
drop %drop whatever the robot is
holding into the basket
push %push the basket

The robot is at the door, and there
is a piece of rubbbish in the
middle of the room and a waste
basket in one of the corners of the
room.

Robot Task Planning

Let us consider a mobile robot that has the task of cleaning a room.

A concrete task for the robot is
specified by goals the robots is to
achieve. A goal may be: rubbish in
the basket.

The robot, to execute commands
may use its vision system, which
recognizes objects and their
locations.

The task planning problem is to find
a sqeunce of robot actions such that
the goal is achieved after executing
this sequence.

Robot Task Planning

Let us consider a mobile robot that has the task of cleaning a room.

A plan could be:
go to the middle of the room,
pick up rubbish,
go to corner 2,
drop rubbish into basket

To develop such a planning
program, we first have to design a
representation of the robot’s world,
and define the possible actions the
robot can perform.

Which can be a plan to clean the
room?

Robot Task Planning

Let us consider a mobile robot that has the task of cleaning a room.

What does define the current state
of the robot’s world?

Three things:
the position of the robot,
the position of the rubbish,
the position of the basket.

In our case:
1. Robot at door.
2. Basket in corner 2.
3. Rubbish in the middle of room.

Robot Task Planning

The location of the rubbish can be in_basket or
held (when the robot holds it).

The rubbish is at floor(middle) and not just middle.
This will allow the robot only to pick up rubbish from
the floor and not from the basket.

What about the rubbish? Where can it be?

We can also explicitly state that some locations are
on the floor.

Robot Task Planning

We can combine all the three pieces of location
information into one structured object.

state(door, corner2, floor(middle))

The goal ‘rubbish in basket’ can be specified
by stating that the robot’s plan has to bring the
world into a state of the form:

state(_, _, in_basket)

How can we specify the goal of our robot?

robot basket rubbish

Robot Task Planning
Now we specify the possible actions the robot can
perform. These actions change the world from one
state to another.

Four actions:
pickup, pick up rubbish from floor
drop, drop rubbish into basket
push(Pos1, Pos2), push basket from position Pos1 to Pos2
go(Pos1, Pos2), go from Pos1 to Pos2

We will assume a ‘well-behaved’ robot that never
drops rubbish on the floor, and never pushes
rubbish around.

Robot Task Planning

Not all actions are possible in every state of the world.
The action ‘drop’ is only possible if the robot is holding rubbish next to the basket.

Four actions:
pickup, pick up rubbish from floor
drop, drop rubbish into basket
push(Pos1, Pos2), push basket from position Pos1 to Pos2
go(Pos1, Pos2), go from Pos1 to Pos2

Such rules can be formalized in Prolog as a three-place relation named action:
action(State1, Action, State2)

The three arguments of the relation specify an action thus:

State1 State2
Action

State1 is the state before the action is executed
State2 is the state after the action.

Robot Task Planning
Based on the action(State1, Action, State2) relation, how can we define the
action drop?

This clause says that after the action, both the robot and the basket remained at
position Pos, and rubbish ended in_basket.

The action drop can be defined by the following Prolog fact:

action(state(Pos, Pos, held), % Robot and basket both at Pos, rubbish held by robot
drop, % Action drop
state(Pos, Pos, in_basket)). % After action: rubbish in basket

The defined action is applicable to any situation that matches the specified
state before the action. Such a specification is also called an action schema.

Robot Task Planning
In the same way we defined drop we can define that the robot can move from any
position Pos1 to any position Pos2 by the action go:

What happens to the robot?
What happens to the basket?
What happens to the rubbish?

action(state(Pos1, Pos2, Pos3),
go(Pos1, NewPos1), % Go from Pos1 to NewPos1
state(NewPos1, Pos2, Pos3)).

- the robot goes from some position Pos1 to NewPos1
- the locations of basket and rubbish Pos2 and Pos3 remain unchanged.

Robot Task Planning
When does the robot can pick the rubbish? How can we defien the pickup action?

What happens to the robot?
What happens to the basket?
What happens to the rubbish?

action(state(Pos1, Pos2, floor(Pos1)),
pickup,
state(Pos1, Pos2, held)).

- the location of robot and basket remains the same, respectively Pos1, and Pos2
- the locations of the rubbish changes from floor(Pos1) to held

Robot Task Planning
How can we specify the move ‘push’?

Now that we defined several action. Which are the questions that our program can
aswer?

action(state(Pos1, Pos1, Pos2), % Robot and basket both at Pos1
push(Pos1, NewPos), % Push basket from Pos1 to NewPos
state(NewPos, NewPos, Pos2)). % Robot and basket now at NewPos

Can the robot, starting from some initial state, clean rubbish into basket? And if
yes, what is the plan, i.e. sequence of actions, to do that.

Robot Task Planning
How can we formulate a predicate to express such a question?

plan(StartState, GoalState, Plan) such a predicate is true if there exists a sequence
of possible actions Plan that change StartState
into GoalState.

?- plan(state(door, corner2, floor(middle)), state(_, _, in_basket), Plan).

Our program should answer with:

Plan = [go(door,middle), pickup, go(middle,corner2), drop]

This is like finding a path in a graph (as we have seen before).

Robot Task Planning

In the case of the robot, what are nodes and links?

Nodes are states and links are actions

We said robot task planning is like finding a path in a graph (with nodes and links)

Robot Task Planning

Analogously to our program path(StartNde, GoalNode, Path) the definition of
predicate plan can be based on two observations:

1. If goal state is equal to the start state then the goal is trivially achieved, no
action is needed. We say this in Prolog by the clause:

plan(State, State, []). %Start state and goal state are equal, nothing to do

2. In other cases, one or more actions are necessary. The robot can achieve the
goal state from any state State1, if there is some action Action1 from State1 to
some further actions RestOfPlan.

Try to define the second observation by yourself, taking inspiration from the second
observation we specified for path

Robot Task Planning

Analogously to our program path(StartNde, GoalNode, Path) the definition of
predicate plan can be based on two observations:

1. If goal state is equal to the start state then the goal is trivially achieved, no
action is needed. We say this in Prolog by the clause:

plan(State, State, []). %Start state and goal state are equal, nothing to do

2. In other cases, one or more actions are necessary. The robot can achieve the
goal state from any state State1, if there is some action Action1 from State1 to
some further actions RestOfPlan.

plan(State1, GoalState, [Action1 | RestOfPlan]) :-
action(State1, Action1, State2), % Make first action resulting in State2
plan(State2, GoalState, RestOfPlan). % Find rest of plan from State2

Robot Task Planning

plan(State, GoalState, [Action1 | RestOfPlan]) :-
action(State1, Action1, State2), % Make first action resulting in State2
plan(State2, GoalState, RestOfPlan). % Find rest of plan from State2

?- plan(state(door, corner2, floor(middle)), state(Rob, Bas, in_basket), Plan).

This question specifies completely the initial state, and partially the goal state. In
the goal state, we insist that the location of the rubbish is in_basket, but we leave
the position Rob of the robot and Bas of the basket unspecified.

Rob = Bas, Bas = corner2,
Plan = [go(door, middle), pickup, go(middle, corner2), drop]

Recursive formulation of plan.

Robot Task Planning
How does the planning program finds such plans?

How can the robot grasp the rubbish?

?- S0 = state(door, corner2, floor(middle)), plan(S0, state(_, _, held), Plan).
Plan = [go(door,middle), pickup]

The only action possible in the initial state is go, which brings the robot to the new
position Pos, where Pos is a variable. This means that the robot can go anywhere.

After go the state is: state(Pos, corner2, floor(middle))

Let us use the example situation where the robot can grasp the rubbish

Robot Task Planning
The desired position for the robot is simply found through matching between the
current goal and the Prolog fact about action pickup:
action(state(Pos, corner2, floor(middle)), Action1, SecondState) =
action(state(Pos1, Pos2, floor(Pos1)), pickup, state(Pos1, Pos2, held)).

This matching requires, among other things, that:
Pos = Pos1, floor(middle) = floor(Pos1) What does it mean?
The rule requires that both the robot and the rubbish are at the same position. This
causes the matching Pos = middle.
It is like if we ask Prolog
?- S1 = state(Pos, corner2, floor(middle)), plan(S1, state(_, _, held), Plan).

SecondState = state(middle, corner2, held).

So which is the second resulting state?

Robot Task Planning

Plan = [go(door, middle), pickup, go(middle, corner2), drop] ;
Plan = [go(door, middle), pickup, go(middle, corner2), drop, push(corner2, _)] ;
Plan = [go(door, middle), pickup, go(middle, corner2), drop, push(corner2, _A), push(_A, _)] ;
Plan = [go(door, middle), pickup, go(middle, corner2), drop, push(corner2, _A), push(_A, _B), push(_B, _)]

?- S0 = state(door, corner2, floor(middle)), plan(S0, state(_, _, in_basket), Plan).

The alternative plans are generated by simply appending to the first plan increasingly
many pushing actions.
This is the same depth-first search we have introduced precendently.

How can we find alternative plans for cleaning the room?

Execution Trace

Robot Task Planning

At the beginning we have
two possibilities:

- picking up the rubbish
- pushing the basket

Robot Task Planning

We can use the same simple tachnique that we used precedently.

Can we make Prolog generate alternative solutions so that all alternative shorter
plans are generated before the longer ones?

Using conc as such a generator

Plan = [go(door, middle), pickup, go(middle, corner2), drop] ;
Plan = [go(door, corner2), push(corner2, middle), pickup, drop] ;
Plan = [go(door, middle), pickup, go(middle, corner2), drop, push(corner2, _)]
...

?- S0 = state(door, corner2, floor(middle)),
conc(Plan, _, _),
plan(S0, state(_, _, in_basket), Plan).

How can we formulate the question?

% Initial state
% Generate plan templates, short first

Robot Task Planning

Suppose that we wanted to work with numerical x-y coordinates in cm. Let the
middle be at the point (300,200).

We denoted locations in our program by symbols like middle for ‘the middle of the
room’.

Can we use our planning program also with locations represented this way?

point(300,200)

point(600,400)

point(0,200)

How will be the question?

?- S0 = state(point(0,200), point(600,400),
floor(point(300,200))),
plan(S0, state(_, _, in_basket), Plan).

Plan = [go(point(0, 200), point(300, 200)), pickup, go(point(300, 200), point(600, 400)), drop] ;

Questionnaire

You can start filling the course evaluation questionnaire.

It is mandatory to fill the questionnaire before registering to an exam.

https://www.unicam.it/studente/didattica/questionari-sulla-didattica

Assignment
A variation of the Robot Task Planning

I will upload it on the wiki in the next days.

