
Logic and Constraint
Programming

May 13, 2022

PROLOG
Prof. Fabrizio Fornari

Extend the “family” program

Let us add one more relation to our family program, the ancestor relation.

1st rule:
ancestor(X, Z) :-

parent(X, Z).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
parent(Y, Z).

Let us add one more relation to our family program, the ancestor relation.

1st rule:
ancestor(X, Z) :-

parent(X, Z).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
parent(Y, Z).

3rd rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Z).

Extend the “family” program

1st rule:
ancestor(X, Z) :-

parent(X, Z).
2nd rule:
ancestor(X, Z) :-

parent(X, Y),
parent(Y, Z).

3rd rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Z).

Extend the “family” program

4th rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Y3),
parent(Y3, Z).

Nth rule:
…

This program is lengthy and it only works to some extent.

Recursive rules

Formulation of the ancestor relation.

For all X and Z,
X is an ancestor of Z if
there is a Y such that
(1) X is a parent of Y and
(2) Y is an ancestor of Z.

ancestor(X, Z) :-
parent(X, Y),
ancestor(Y, Z).

Recursive rules

Ancestor relation program

1st rule:
ancestor(X, Z) :-

parent(X, Z).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
ancestor(Y, Z).

The key is the use of ancestor itself in its definition.
Such a definition is called recursive definition.

Recursive rules

Are logically correct and understandable.

Prolog can easily use recursive definitions.

Recursive programming is, one of the fundamental principles of programming
in Prolog.

It is necessary for solving task of significant complexity.

Ancestor program

Let us ask Prolog: Who are Pam’s successors?

How can we formulate such a question?

Ancestor program

Let us ask Prolog: Who are Pam’s successors?

?- ancestor(pam, X).

Prolog’s answers are correct and they logically
follow from our definition of the ancestor and
the parent relation.

X = bob;
X = ann;
X = jim

Ancestor program
parent(pam,bob). % Pam is a parent of Bob
parent(tom,bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

female(pam). % Pam is female
female(liz).
female(pat).
female(ann).

male(tom). % Tom is male
male(bob).
male(jim).

mother(X, Y) :- % X is the mother of Y if
parent(X,Y), % X is a parent of Y and
female(X). % X is female

grandparent(X, Z) :- % X is grandparent of Z if
parent(X,Y), %X is parent of Y and
parent(Y,Z). % Y is parent of Z

sister(X, Y):- % X is sister of Y if
parent(Z, X),
parent(Z, Y), % X and Y have the same parent and
female(X), % X is female and
X \= Y. % X and Y are different

ancestor(X, Z):- % Rule a1: X is ancestor of Z
parent(X, Z).

ancestor(X, Z):- % Rule a2: X is ancestor of Z
parent(X, Y),
ancestor(Y, Z).

Comments in Prolog:
/* This is a comment */
% This is also a comment

The whole set of clauses about the same
relation is called a procedure.

The ancestor
procedure

Comments

How Prolog answers questions

To answer a question, Prolog tries to satisfy all the goals.

To satisfy a goal means to to demonstrate that the goal is true, assuming that the
relations in the program are true.

In other words, it means to demonstrate that the goal logically follows from the facts and
rules in the program.

If the question contains variables, Prolog also has to find what are the particular objects (in
place of the variables) for which the goals are satisfied.

If Prolog cannot demonstrate for any instantiation of variables that the goals logically follow
from the program, then Prolog’s answer to the question will be ‘false’.

How Prolog answers questions

In mathematical terms:

- facts and rules as a set of axioms,

- user’s question as a conjectured theorem;

Prolog tries to prove this theorem – that is, to demonstrate that it can be logically
derived from the axioms.

How Prolog answers questions

A classical example about Socrates and fallible men.

The axioms are:
All men are fallible
Socrates is a man.

A theorem is:
Socrates is fallible.

The first axiom can be rewritten as:
For all X, if X is a man then X is fallibe.

fallible(X) :- man(X). % All men are fallible
man(sorates). % Socrates is a man

?- fallible(socrates). % Socrates is fallible?

How Prolog answers questions
A more complicated example from the family program:
?-ancestor(tom, pat).

1st rule:
ancestor(X, Z) :-

parent(X, Z).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
ancestor(Y, Z).

X = tom, Z = pat

How Prolog answers questions
A more complicated example from the family program:
?-ancestor(tom, pat).

1st rule:
ancestor(X, Z) :-

parent(X, Z).

X = tom, Z = pat

The goal ancestor is replaced with parent(tom, pat)

No clause in the program matches the goal parent(tom,pat)

How Prolog answers questions
A more complicated example from the family program:
?-ancestor(tom, pat).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
ancestor(Y, Z).

X = tom, Z = pat

Prolog tries the 2nd rule.

parent(tom, Y),
ancestor(Y, pat).

How Prolog answers questions
A more complicated example from the family program:
?-ancestor(tom, pat).

Prolog tries the 2nd rule.

parent(tom, Y),
ancestor(Y, pat).

The first goal matches two facts:
parent(tom,bob) and parent(tom,liz).

How Prolog answers questions
A more complicated example from the family program:
?-ancestor(tom, pat).

Prolog tries the 2nd rule.

parent(tom, Y),
ancestor(Y, pat).

The first goal matches two facts:
parent(tom,bob) and parent(tom,liz).

NOTE: Prolog first tries to use the fact that appears first in the program.

This forces Y to become instantiated to bob. The second goal becomes:
ancestor(bob, pat).

How Prolog answers questions
A more complicated example from the family program:
?-ancestor(tom, pat).

Prolog tries to apply the first rule over:
ancestor(bob, pat).

1st rule:
ancestor(X’, Z’) :-

parent(X’, Z’).

The current goal is replaced by:
parent(bob, pat).

Note the ’

X’ = bob,
Z’ = pat

How Prolog answers questions
An execution trace
has the form of a tree.

The top goal is satisfied
when a path is found from
the root node (top goal) to
a leaf node labelled ‘yes’
(a goal that is satisfied).

The execution of Prolog
programs is the
searching for such paths.

How Prolog answers questions
During the search Prolog may
enter an unsuccessful branch.

When Prolog discovers that a
branch fails it automatically
backtracks to previous node
and tries to apply an alternative
clause at that node.

Automatic backtracking is one of the
distinguishing features of Prolog.

How Prolog answers questions
Try to understand how Prolog derives to the following questions, using
our “family” program.

Try to draw the corresponding derivation diagram of:

1. ?- parent(pam, bob).

2. ?- mother(pam, bob).

3. ?- grandparent(pam, ann).

4. ?- grandparent(bob, jim).

How Prolog answers questions
Try to understand how Prolog derives to the following questions, using
our “family” program.

Try to draw the corresponding derivation diagram of:

1. ?- parent(pam, bob).
parent(pam, bob)

Yes, by fact parent(pam, bob)

How Prolog answers questions
Try to understand how Prolog derives to the following questions, using
our “family” program.

Try to draw the corresponding derivation diagram of:

1. ?- parent(pam, bob).

2. ?- mother(pam, bob).
mother(pam, bob)

by facts:
parent(pam, bob) is true
and
female(pam) is true

parent(pam, bob),
female(pam)

How Prolog answers questions
Try to understand how Prolog derives to the following questions, using
our “family” program.

Try to draw the corresponding derivation diagram of:

1. ?- parent(pam, bob).

2. ?- mother(pam, bob).

3. ?- grandparent(pam, ann).

grandparent(pam, ann)

by facts:
parent(pam, bob) is true
and
parent(bob, ann) is true

parent(pam, Y),
parent(Y, ann)

parent(pam, bob),
parent(bob, ann)

Select a value for Y: bob

How Prolog answers questions
Try to understand how Prolog derives to the following questions, using
our “family” program.

Try to draw the corresponding derivation diagram of:

1. ?- parent(pam, bob).

2. ?- mother(pam, bob).

3. ?- grandparent(pam, ann).

4. ?- grandparent(bob, jim).

grandparent(bob, jim)

by facts:
parent(bob, ann) is true
and
no facts about
parent(ann, jim)
so it is false

parent(bob, Y),
parent(Y, jim)

parent(bob, ann),
parent(ann, jim)

Select a value for Y: ann
(the first one to appear)

How Prolog answers questions
Try to understand how Prolog derives to the following questions, using
our “family” program.

Try to draw the corresponding derivation diagram of:

1. ?- parent(pam, bob).

2. ?- mother(pam, bob).

3. ?- grandparent(pam, ann).

4. ?- grandparent(bob, jim).

grandparent(bob, jim)

Select another value for
Y: pat (the secon one to
appear)

parent(bob, Y),
parent(Y, jim)

parent(bob, ann),
parent(ann, jim) by facts:

parent(bob, pat) is true
parent(bob, pat),
parent(pat, jim)

and
parent(pat, jim) is true

Syntax and Semantics of Prolog’s concepts

Atoms

1. Strings of letters, digits, and the
underscore character, ‘_’, starting with
lower-case letter:

anna x_
nil x___y
X25 alpha_beta_procedure
X_25 miss_Jones
X_25AB

Atoms

2. Strings of special characters:

<--->
======>
+
…
.:.
::=

But some strings of special characters
already have a predefined meaning. E.b., ‘:-’

Atoms

3. Strings of characters enclosed in single quotes:

‘Tom’
‘South_America’
‘Sarah Jones’

Numbers

Integer numbers:
1 1313 0 -97

Real numbers:
3.14 -0.0035 100.2. 7.15E-9

Variables

Variables are strings of letters, digits, and
underscore characters.

They start with an upper-case letter or an
underscore character:

X
Result
Object2
Participant_list
ShoppingList
_A
_x23
_23

Variables

Define the relation has_a_child()

has_a_child(X) :- parent(X, Y).

Variables are strings of letters, digits, and
underscore characters.

Variables

Define the relation has_a_child()

has_a_child(X) :- parent(X, _).

Variables are strings of letters, digits, and
underscore characters.

When a variable appears in a clause once only
we don’t neet to give it a name. We can use the
‘anonymous’ variable written as a single
underscore ‘_’

Variables

Variables are strings of letters, digits, and
underscore characters.

When a variable appears in a clause once only
we don’t neet to give it a name. We can use the
‘anonymous’ variable written as a single
underscore ‘_’

If an anonymous variable appears in a
question its value is not output when
Prolog answers the question.

?- parent(X, _).

Variables

Variables are strings of letters, digits, and
underscore characters.

The lexical scope of variable names is
one clause.

If X12 occurs in two clauses, it signifies
two different variables. But each
occurrence of X12 within the same
caluse means the same variable.

Structures

Structures are objects that have several components.

date(1, may, 2001)

All the components in this example are
constants (two integers and one atom).

Components can also be variables or other structures.
Any day in May can be represented by the structure:

date(Day, may, 2001)

Structures

Structures can be used to represent geometric objects
What defines a point?

Two coordinates

What defines a segment?

P1 = point(1,1)
P2 = point(2,3)

Two points
S = seg(P1, P2) = seg(point(1,1), point(2,3))

T = triangle(point(4,2), point(6,4), point(7,1))
A triangle can be defined by three points

Structures

Structures can be used to represent geometric objects
What defines a point?

Two coordinates

What defines a segment?

P1 = point(1,1)
P2 = point(2,3)

Two points
S = seg(P1, P2) = seg(point(1,1), point(2,3))

T = triangle(point(4,2), point(6,4), point(7,1))
A triangle can be defined by three points

Structures

If we add points in 3D space we can use another functor:

point3(X, Y, Z)

Or we can use the same name, point, for both
2D and 3D

point(X1, Y1) and point(X, Y, Z)

Prolog will recognize the difference by the
number of arguments. Each functor is defined
by two things:
1. The name, whose syntax is that of atoms;
2. The arity – that is, the number of arguments.

Structures

All structured objects in Prolog are trees, represented in
the program by terms.

The tree structure of the arithmetic expression: (a + b) * (c – 5)

It can be writte using symbols ‘*’, ‘+’ and ‘-’ as functors:
*(+(a, b),-(c,5))

Prolog also allows to use the prefiz, infix and
postfix notation

Prolog and Electric Circuits
Simple electric circuits

The atoms r1, r2, r3 and r4 are the names
of the resistors.

The functor par and seq denote the parallel
and the sequential compositions of
resistors respectively. The corresponding
Prolog terms are:

seq(r1, r2)
par(r1, r2)
par(r1, par(r2, r3))
par(r1, seq(par(r2, r3), r4))

Prolog and Electric Circuits

We can construct, a circuit of any complexity.
E.g., a sequential circuit of 10 resistors:

We view circuits as sentences, and their elements as words. The electrical behavior and functions are
the meaning of the sentences. Circuit structures are defined by a logic grammar. A set of grammar
rules, when converted into Prolog clauses, forms a logic program which perform top-down parsing.
When an unknown circuit is given, this logic program will analyze the circuit and derive a parse tree
for the circuit.
...
After a circuit is parsed, not only its syntactic structure, but also its electrical behavior and functions
can be derived as the meaning of the circuit structure.

ANALYZING CIRCUIT STRUCTURES AS LANGUAGE http://www.fit.ac.jp/~tanaka/paper/nova-chapter5.pdf

seq(r1, seq(r2, seq(r3, seq(r3, seq(r5, seq(r6, seq(r7, seq(r8, seq(r9, r10)))))))))

Prolog and Electric Circuits

R1 = 7 Ω R2 = 5 Ω R3 = 11 Ω R4 = 8.67 Ω R5 = 5 Ω R6 = 7 Ω R7 = 35 Ω

In parallel e.g., 𝑅6 ∗ 𝑅7
𝑅6 + 𝑅7

In series e.g., R2+R3

Finding Equivalent Resistance of a Resistive Circuit

