
Logic and Constraint
Programming

May 20, 2022

PROLOG
Prof. Fabrizio Fornari

How Prolog answers questions
An execution trace
has the form of a tree.

The top goal is satisfied
when a path is found from
the root node (top goal) to
a leaf node labelled ‘yes’
(a goal that is satisfied).

The execution of Prolog
programs is the
searching for such paths.

How Prolog answers questions
During the search Prolog may
enter an unsuccessful branch.

When Prolog discovers that a
branch fails it automatically
backtracks to previous node
and tries to apply an alternative
clause at that node.

Automatic backtracking is one of the
distinguishing features of Prolog.

Syntax and Semantics of Prolog’s concepts

Atoms

1. Strings of letters, digits, and the
underscore character, ‘_’, starting with
lower-case letter:

anna x_
nil x___y
X25 alpha_beta_procedure
X_25 miss_Jones
X_25AB

Atoms

2. Strings of special characters:

<--->
======>
+
…
.:.
::=

But some strings of special characters
already have a predefined meaning. E.b., ‘:-’

Atoms

3. Strings of characters enclosed in single quotes:

‘Tom’
‘South_America’
‘Sarah Jones’

Numbers

Integer numbers:
1 1313 0 -97

Real numbers:
3.14 -0.0035 100.2. 7.15E-9

Variables

Variables are strings of letters, digits, and
underscore characters.

They start with an upper-case letter or an
underscore character:

X
Result
Object2
Participant_list
ShoppingList
_A
_x23
_23

Structures

Structures can be used to represent geometric objects
What defines a point?

Two coordinates

What defines a segment?

P1 = point(1,1)
P2 = point(2,3)

Two points
S = seg(P1, P2) = seg(point(1,1), point(2,3))

T = triangle(point(4,2), point(6,4), point(7,1))
A triangle can be defined by three points

Structures

Structures can be used to represent geometric objects
What defines a point?

Two coordinates

What defines a segment?

P1 = point(1,1)
P2 = point(2,3)

Two points
S = seg(P1, P2) = seg(point(1,1), point(2,3))

T = triangle(point(4,2), point(6,4), point(7,1))
A triangle can be defined by three points

Prolog and Electric Circuits
Simple electric circuits

The atoms r1, r2, r3 and r4 are the names
of the resistors.

The functor par and seq denote the parallel
and the sequential compositions of
resistors respectively. The corresponding
Prolog terms are:

seq(r1, r2)
par(r1, r2)
par(r1, par(r2, r3))
par(r1, seq(par(r2, r3), r4))

Prolog and Electric Circuits

R1 = 7 Ω R2 = 5 Ω R3 = 11 Ω R4 = 8.67 Ω R5 = 5 Ω R6 = 7 Ω R7 = 35 Ω

In parallel e.g., 𝑅6 ∗ 𝑅7
𝑅6 + 𝑅7

In series e.g., R2+R3

Finding Equivalent Resistance of a Resistive Circuit

Matching

Matching

The most important operation on terms is matching.

Given two terms, we say that they match if:

1. They are identical, or
2. The variables in both terms can be instantiated to objects in
such a way that after the substitution of variables by these objects
the terms become identical.

Matching

Matching takes as input two terms and checks whether they match.

E.g., we can ask Prolog: ?- date(D, M, 2001) = date(D1, may, Y1).

D = D1, D is instantiated to D1
M = may, M is instantiated to may
Y1 = 2001. Y1 is instantiated to 2001

Matching

Matching takes as input two terms and checks whether they match.

E.g., we can ask Prolog: ?- date(D, M, 2001) = date(D1, may, Y1).

D = 1 D = third
D1 = 1 D1 = third
M = may M = may
Y1 = 2001 Y1 = 2001

These instantiations also make both terms identical. But they are less general.

Prolog always results in the most general instantiation.

Matching

?- date(D, M, 2001) = date(D1, may, Y1),
date(D, M, 2001) = date(15, M, Y).

To satisfy the first goal, Prolog
instantiates the variables as follows:

D = D1
M = may
Y1 = 2001

After having satisfied the second
goal, the instantiation becomes more
specific as follows:
D = 15
D1 = 15
M = may
Y1 = 2001
Y = 2001

Consider the following question:

Matching

The general rules to decide whether two terms, S and T, match are as follows:

1. If S and T are constants then S and T match only if they are the same object.

2. If S is a variable and T is anything, then they match,and S is instantiated to
T. Conversely, if T is a variable then T is instantiated to S.

3. If S and T are structures then they match only if
(a) S and T have the same principal functor, and
(b) All their corresponding components match.
The resulting instantiation is determined by the matching of the components

Matching

Matching
triangle(point(1,1), A, point(2,3)) = triangle(X, point(4,Y), point(2,Z))

We can visualize rule n°3

triangle = triangle,
point(1,1) = X,
A = point(4,Y),
point(2,3) = point(2,Z).

1

1

The result is:
X = point(1,1)
A = point(4,Y)
Z = 3

Matching

Geometric objects

point(1,1).
point(2,3).
seg(point(1,1), point(2,3)).
triangle(point(4,2), point(6,4), point(7,1)).

Let us define a piece of program for recognizing horizontal and vertical line segments.

Matching

Let us define a piece of program for recognizing horizontal and vertical line segments.

‘Vertical’ is a property of segments, so it
can be formalized as a unary relation.
vertical(seg(point(X1,Y1), point(X1,Y2))).

‘Horizontal’ is a property of segments, so
it can be formalized as a unary relation.
horizontal(seg(point(X1,Y1), point(X2,Y1))).

?- vertical(seg(point(1,1), point(1,2))).
?- vertical(seg(point(1,1), point(2,Y))).
?- horizontal(seg(point(1,1), point(2,Y))).

Matching

Let us define a piece of program for recognizing horizontal and vertical line segments.

?- vertical(seg(point(1,1), point(1,2))).
?- vertical(seg(point(1,1), point(2,Y))).
?- horizontal(seg(point(1,1), point(2,Y))).

?- vertical(seg(point(2,3), P)).

What are we asking?
Are there any vertical segments that start
at the point(2,3)?

P = point(2, _).

Matching

Let us define a piece of program for recognizing horizontal and vertical line segments.

?- vertical(seg(point(1,1), point(1,2))).
?- vertical(seg(point(1,1), point(2,Y))).
?- horizontal(seg(point(1,1), point(2,Y))).

?- vertical(S), horizontal(S).

What are we asking?
Is there a segment that is both vertical
and horizontal?

S = seg(point(_A, _B), point(_A, _B)). A single point

Declarative and Procedural meaning of
Prolog programs
P :- Q, R.

Alternative procedural readings:

To solve problem P, first solve the subproblem Q and then the subproblem R.
To satisfy P, first satisy Q and then R.

Declarative readings: P is true if Q and R are ture.
From Q and R follows P.

The difference is that the latter also defines the order in which the goals are
processed.

Declarative meaning of Prolog programs

Determines whether a given goal is true, and if so, for what values of variables
it is true.

Given a program and a goal G, the declarative meaning says the following.

A goal G is true (that is, satisfiable, or logically follows from the program)
if and only if:
(1) there is a clause C in the pogram such that
(2) there is a clause instance I of C such that

(a) the head of I is identical to G, and
(b) all the goals in the body of I are true.

Declarative meaning of Prolog programs

A goal G is true (that is, satisfiable, or logically follows from the program) if
and only if:
(1) there is a clause C in the pogram such that
(2) there is a clause instance I of C such that

(a) the head of I is identical to G, and
(b) all the goals in the body of I are true.

ancestor(X, Y) :- parent(X, Y).

Instances of this clause are:

ancestor(pam, Z) :- parent(pam, Z).
ancestor(pam, bob) :- parent(pam, bob).

Declarative meaning of Prolog programs

Define the relatives relation

Two people are relatives if

(a) one is an ancestor of the other, or
(b) they have a common ancestor, or
(c) they have a common successor.

Declarative meaning of Prolog programs

Two people are relatives if

(a) one is an ancestor of the other, or
(b) they have a common ancestor, or
(c) they have a common successor.

?- relatives(pam, bob).
?- relatives(pam, tom).
?- relatives(pam, liz).

Declarative meaning of Prolog programs

Two people are relatives if

(a) one is an ancestor of the other, or
(b) they have a common ancestor, or
(c) they have a common successor.

relatives(X, Y) :- % X is ancestor of Y
ancestor(X, Y).

relatives(X, Y) :- % Y is an ancestor of X
ancestor(Y, X).

relatives(X, Y) :- % X and Y have a common ancestor
ancestor(Z, X),
ancestor(Z, Y).

relatives(X, Y) :- % X and Y have a common successor
ancestor(X, Z),
ancestor(Y, Z).

?- relatives(pam, bob).
?- relatives(pam, tom).
?- relatives(pam, liz).

Declarative meaning of Prolog programs

A comma between goals denotes the conjunction of goals:
they all have to be true.

Prolog also accepts the disjunction of goals:
any one of the goals in a disjunction has to be true. Disjunction is indicated by
a semicolon “;”.

P :- Q; R.

Is read: P is true if Q is true or R is true.

P :- Q.
P :- R.

Declarative meaning of Prolog programs

Simplify the relative relation by using ‘‘;’’

(a) one is an ancestor of the other, or
(b) they have a common ancestor, or
(c) they have a common successor.

relatives(X, Y) :- % X is ancestor of Y
ancestor(X, Y).

relatives(X, Y) :- % Y is an ancestor of X
ancestor(Y, X).

relatives(X, Y) :- % X and Y have a common ancestor
ancestor(Z, X),
ancestor(Z, Y).

relatives(X, Y) :- % X and Y have a common successor
ancestor(X, Z),
ancestor(Y, Z).

?- relatives(pam, bob).
?- relatives(pam, tom).
?- relatives(pam, liz).

Declarative meaning of Prolog programs

The relative relation by using ‘‘;’’

relatives(X, Y) :-
ancestor(X, Y) % X is ancestor of Y
;
ancestor(Y, X) % Y is an ancestor of X
;
ancestor(Z, X), % X and Y have a common ancestor
ancestor(Z, Y)
;
ancestor(X, Z), % X and Y have a common successor
ancestor(Y, Z).

?- relatives(pam, bob).
?- relatives(pam, tom).
?- relatives(pam, liz).

Procedural meaning of Prolog programs

The procedural meaning specifies how Prolog answers questions.
To answer a questions means to try to satisfy a list of goals. Thus the
porcedural meaning of Prolog is a procedure for executing a list of goals with
respect to a given program. To «execute goals» means: try to satisfy them.

Let us write a program

Write a program that describes the following.

bears, and elephants are big, cats are small.

bears are brown, cats are black and elephants are gray.

Anything black is dark; anything brown is dark.

Who is dark and big?

Let us write a program

Our program

bears, and elephants are big, cats are small.

bears are brown, cats are black and elephants are gray.

brown(bears).
black(cats).
gray(elephants).

big(bears).
big(elephants).
small(cats).

Let us write a program

Anything black is dark; anything brown is dark.

Who is dark and big?

dark(Z) :-
black(Z).

dark(Z) :-
brown(Z).

?- dark(X), big(X). X = bears.

Let us write a program

Our Program

big(bears). % Clause 1
big(elephants). % Clause 2
small(cats). % Clause 3

brown(bears). % Clause 4
black(cats). % Clause 5
gray(elephants). % Clause 6

dark(Z) :- % Clause 7: Anything black is dark
black(Z).

dark(Z) :- % Clause 8: Anything brown is dark
brown(Z).

?- dark(X), big(X). Which is the execution trace for answering such a question?

Execution Trace
1. Initial goal list: dark(X), big(X).

2. Scan the program from top to bottom looking for a clause whose head
matches the first goal dark(X). Found clause 7:

dark(Z) :- black(Z).
Replace the first goal by the instantiated body of clause 7

black(X), big(X)

3. Scan the program to find a match with black(X). Clause 5 found: black(
cats). This clause has no body, so the goal list, properly instantiated,
shrinks to:

big(cats)

4. Scan the program for the goal big(cats). No clause found. Therefore
backtrack to step 3 and undo the istantiation X = cats. Now the goal list is
again:

black(X), big(X)

Execution Trace

Continue scanning the prgram below clause 5. No clause found.
Therefore backtrack to step 2 and continue scanning below clause 7.
Clause 8 is found:

dark(Z) :- brown(Z).

Replace the first goal in the goal list by brown(X), giving:
brown(X), big(X)

5. Scan the program to match brown(X), finding brown(bear). This clause
has no body, so the goal list shrinks to:

big(bears)

Execution Trace

6 Scan the program and find clause big(bear). It has no body so the goa
list shrinks to empty. This indicates successful termination, and the
corresponding variable instantiation is:

X = bear

Execution Procedure

Order of clauses and goals

p :- p. “p is true if p is true” It is declaratively correct.

Write a program with the following clause.

ask the following question.

?- p.

Which is the answer?

Open task manager or activity monitor

Infinite loop

p :- p. “p is true if p is true” Is is procedurally useless
It results in an infinite loop

Write a program with the following clause.

Infinite loops are not unusual in other programming languages.

A Prolog program may be declaratively correct, but at the same time
be procedurally incorrect.

Prolog might choose a wrong path and the path could be infinite.

It may be not able to produce an answer to a question although the
answer exists.

Infinite Loop

ancestor(X, Z) :- % Rule a1: X is ancestor of Z
parent(X, Z).

ancestor(X, Z) :- % Rule a2: X is ancestor of Z
parent(X, Y),
ancestor(Y, Z).

Infinite Loop

ancestor(X, Z) :- % Rule a2: X is ancestor of Z
parent(X, Z).

ancestor(X, Z) :- % Rule a1: X is ancestor of Z
ancestor(Y, Z),
parent(X, Y).

Which is the execution trace of ancestor(tom, pat)?

Try to graphically design the execution trace.

Infinite Loop

ancestor(X, Z) :-
parent(X, Z).

ancestor(X, Z) :-
ancestor(Y, Z),
parent(X, Y).

ancestor(tom, pat) execution trace.

ancestor(tom, pat)

ancestor(tom, Y’)
parent(Y’, pat)

ancestor(tom, Y’’)
parent(Y’’, Y’)
parent(Y’, pat)

ancestor(tom, Y’’’)
parent(Y’’’, Y’’)
parent(Y’’, Y’)
parent(Y’, pat)

etc.

Infinite Loop

ancestor(X, Z) :-
parent(X, Z).

ancestor(X, Z) :-
ancestor(Y, Z),
parent(X, Y).

What if we ask ancestor(tom, pat) to Prolog?

?- ancestor(tom, pat)

A general heuristic in problem solving

It is usually best to try the simplest idea first.

1. the simpler idea is to check whether the two arguments of the
ancestor relation satisfy the parent relation;

ancestor(X, Z) :- % Rule a1: X is ancestor of Z
parent(X, Z).

ancestor(X, Z) :- % Rule a2: X is ancestor of Z
parent(X, Y),
ancestor(Y, Z).

2. the more complicated idea is to find somebody “between” both people
(somebody who is related to them by the parent and ancestor relations).

Summary

What we covered until now is called “pure Prolog” since it corresponds
cosely to formal logic.

We will cover extensions for tailoring the language toward practical needs
in the upcoming lectures.

Simple objects in Prologs are: atoms, variables, and numbers. Structured
objects are used to represent objects that have several components.

Structures are constructed by means of functors. Each functor is defined by
its name and arity (e.g., point(X1, Y1) and point(X, Y, Z))

Summary

The type of object is recognized by its syntactic form.

The lexical scope of variables is one clause. Thus the same variable name
in two clauses means two different variables.

Structures can be naturally pictured as trees. Prolog can be viewed as a
language for processing trees.

The matching operation takes two terms and tries to make them identical
by instantiating the variables in both terms.

Matching, if it succeeds, results in the most general instantiation of
variables.

Summary

The declarative semantics of Prolog defines whether a goal is true with
respect to a given program, and if it is true, for what instantiation of
variables it is true.

A comma between goals means the conjunction of goals. A semicolon
between goals means the disjunction of goals.

The procedural semantics of Prolog is a procedure for satisfying a list of
goals in the context of a given program. The procedure outputs the truth or
falsity of the goal list and the corresponding instantiations of variables. The
procedure automatically backtracks to examine alternatives.

Summary

The declarative meaning of programs in «pure Prolog» does not depend on
the order of clauses and the order of goals in clauses.

The procedural meaning does depend on the order of goals and clauses.
Thus the order can affect the efficiency of the program; an unsuitable order
may even lead to infinite recursive calls

Given a declarative correct program, changing the order of clauses and
goals can improve the program’s efficiency while retaining its declarative
correctness. Reordering is one method of preventing indefinite looping.

Representation of lists

The list is a simple data structure widely used in non-numeric
programming.

A sequence list is a sequence of any number of items, such as:
[ann, tennis, tom, skiing]

Remember: all structured objects in Prolog are trees. Lists are no
exception to this.

Representation of lists

A list can be empty or non-empty.

Empty: [] .

Non-Empty:

1. the first items is called the head of the list;
2. the remaining part of the list is called the tail.

[ann, tennis, tom, skiing]

Head Tail

Representation of lists

The tail has to be a list. The head and the tail are combined into a
structure by the functor “.”:

.(Head, Tail)

[ann, tennis, tom, skiing]

Head Tail

Since Tails is in turn a list, it is either empty or it has its own head and tail

Representation of lists

[ann, tennis, tom, skiing]

Head Tail

Which is the graphical representation of the tree structure?

Remember the examples we made:
date(1, may, 2001)

.(Head, Tail)

Representation of lists

[ann, tennis, tom, skiing]

Head Tail

Which is the graphical representation of the tree structure?

.(Head, Tail)

*(+(a, b),-(c,5))
Remember the examples we made:

Representation of lists

[ann, tennis, tom, skiing]

Head Tail

.(Head, Tail)

.(ann, .(tennis, .(tom, .(skiing, []))))

Empty list

Representation of lists

Which one do you prefer?

[ann, tennis, tom, skiing]

.(ann, .(tennis, .(tom, .(skiing, []))))

Operations on lists

Checking whether some object is an element of a list

Concatenation of two lists, obtaining a third one

Adding a new object to a list, or deleting an object from it.

Membership

Let us implement the membership relation as:

member(X, L)

where X is an object and L is a list. The goal member(X, L) is
true if X occurs in L.

Some examples:
member(b, [a,b,c]) is true
member(b, [a,[b,c]]) is true
member([b,c], [a,[b,c]]) is true

Membership

The program for the membership relation can be based on the observation:

X is a member of L if either:
(1) X is the head of L, or
(2) X is a member of the tail of L.

This can be written in two clauses:
member(X, [X | Tail]).

member(X, [Head | Tail]) : -
member(X, Tail).

Membership

member(X, [X | Tail]).

member(X, [Head | Tail]) : -
member(X, Tail).

What if we ask the following? What do we obtain?

?- member(b, [a, b, c]). % Check whether b is in [a,b,c]

We can generate through backtracking all the members of a given list

?- member(X, [a, b, c]).

Let us aks whether b is in [a,b,c]

Membership

We may also reverse the question: Find lists that contain a given
item, e.g., “apple”

?- member(apple, L).

L = [apple | _A]; % Any list that has “apple” as the head
L = [_A, apple | _B]; %First item is anything, second is “apple”
L = [_A, _B, apple | _C];

Membership

Find lists that contain a, b, and c:

?- member(a, L), member(b, L), member(c, L).

L = [a, b, c | _A];
L = [a, b, _A, c | _B];
L = [a, b, _A, _B, c | _C];
L = [a, b, _A, _B, _C, c | _D];

List with any length

Membership

Permutations of a, b, and c. % L is any list with exactly three elements

?- L = [_, _, _], member(a, L), member(b, L), member(c, L).

L = [a, b, c];
L = [a, c, b];
L = [b, a, c];
L = [c, a, b];
L = [b, c, a];
L = [c, b, a];
false.

