
Logic and Constraint
Programming

May 25, 2022

PROLOG
Prof. Fabrizio Fornari

Declarative and Procedural meaning of
Prolog programs
P :- Q, R.

Alternative procedural readings:

To solve problem P, first solve the subproblem Q and then the subproblem R.
To satisfy P, first satisy Q and then R.

Declarative readings: P is true if Q and R are ture.
From Q and R follows P.

The difference is that the latter also defines the order in which the goals are
processed.

Declarative meaning of Prolog programs

Determines whether a given goal is true, and if so, for what values of variables
it is true.

Given a program and a goal G, the declarative meaning says the following.

A goal G is true (that is, satisfiable, or logically follows from the program)
if and only if:
(1) there is a clause C in the pogram such that
(2) there is a clause instance I of C such that

(a) the head of I is identical to G, and
(b) all the goals in the body of I are true.

Procedural meaning of Prolog programs

The procedural meaning specifies how Prolog answers questions.
To answer a questions means to try to satisfy a list of goals. Thus the
porcedural meaning of Prolog is a procedure for executing a list of goals with
respect to a given program. To «execute goals» means: try to satisfy them.

Infinite loop

p :- p. “p is true if p is true” It is declaratively correct.

Write a program with the following clause.

ask the following question.

?- p.

Which is the answer?

Open task manager or activity monitor

Infinite loop

p :- p. “p is true if p is true” Is is procedurally useless
It results in an infinite loop

Write a program with the following clause.

Infinite loops are not unusual in other programming languages.

A Prolog program may be declaratively correct, but at the same time
be procedurally incorrect.

Prolog might choose a wrong path and the path could be infinite.

It may be not able to produce an answer to a question although the
answer exists.

Order of clauses and goals

ancestor(X, Z) :- % Rule a1: X is ancestor of Z
parent(X, Z).

ancestor(X, Z) :- % Rule a2: X is ancestor of Z
parent(X, Y),
ancestor(Y, Z).

Order of clauses and goals

ancestor(X, Z) :- % Rule a2: X is ancestor of Z
parent(X, Z).

ancestor(X, Z) :- % Rule a1: X is ancestor of Z
ancestor(Y, Z),
parent(X, Y).

Which is the execution trace of ancestor(tom, pat)?

Try to graphically design the execution trace.

Order of clauses and goals

ancestor(X, Z) :-
parent(X, Z).

ancestor(X, Z) :-
ancestor(Y, Z),
parent(X, Y).

ancestor(tom, pat) execution trace.

ancestor(tom, pat)

ancestor(tom, Y’)
parent(Y’, pat)

ancestor(tom, Y’’)
parent(Y’’, Y’)
parent(Y’, pat)

ancestor(tom, Y’’’)
parent(Y’’’, Y’’)
parent(Y’’, Y’)
parent(Y’, pat)

etc.

Order of clauses and goals

ancestor(X, Z) :-
parent(X, Z).

ancestor(X, Z) :-
ancestor(Y, Z),
parent(X, Y).

What if we ask ancestor(tom, pat) to Prolog?

?- ancestor(tom, pat)

A general heuristic in problem solving

It is usually best to try the simplest idea first.

1. the simpler idea is to check whether the two arguments of the
ancestor relation satisfy the parent relation;

ancestor(X, Z) :- % Rule a1: X is ancestor of Z
parent(X, Z).

ancestor(X, Z) :- % Rule a2: X is ancestor of Z
parent(X, Y),
ancestor(Y, Z).

2. the more complicated idea is to find somebody “between” both people
(somebody who is related to them by the parent and ancestor relations).

Representation of lists

The list is a simple data structure widely used in non-numeric
programming.

A sequence list is a sequence of any number of items, such as:
[ann, tennis, tom, skiing]

Remember: all structured objects in Prolog are trees. Lists are no
exception to this.

Representation of lists

A list can be empty or non-empty.

Empty: [] .

Non-Empty:

1. the first items is called the head of the list;
2. the remaining part of the list is called the tail.

[ann, tennis, tom, skiing]

Head Tail

Representation of lists

The tail has to be a list. The head and the tail are combined into a
structure by the functor “.”:

.(Head, Tail)

[ann, tennis, tom, skiing]

Head Tail

Since Tails is in turn a list, it is either empty or it has its own head and tail

Representation of lists

[ann, tennis, tom, skiing]

Head Tail

Which is the graphical representation of the tree structure?

.(Head, Tail)

*(+(a, b),-(c,5))
Remember the examples we made:

How Prolog interprets a List

Representation of lists

[ann, tennis, tom, skiing]

Head Tail

.(Head, Tail)

.(ann, .(tennis, .(tom, .(skiing, []))))

Empty list

How Prolog interprets a List

Representation of lists

Which one do you prefer?

[ann, tennis, tom, skiing]

.(ann, .(tennis, .(tom, .(skiing, []))))

Operations on lists

Checking whether some object is an element of a list

Concatenation of two lists, obtaining a third one

Adding a new object to a list, or deleting an object from it.

Membership

Let us implement the membership relation as:

member(X, L)

where X is an object and L is a list. The goal member(X, L) is
true if X occurs in L.

Some examples:
member(b, [a,b,c]) is true
member(b, [a,[b,c]]) is true
member([b,c], [a,[b,c]]) is true

Membership

The program for the membership relation can be based on the observation:

X is a member of L if either:
(1) X is the head of L, or
(2) X is a member of the tail of L.

This can be written in two clauses:
member(X, [X | Tail]).

member(X, [Head | Tail]) : -
member(X, Tail).

Membership

member(X, [X | Tail]).

member(X, [Head | Tail]) : -
member(X, Tail).

What if we ask the following? What do we obtain?

?- member(b, [a, b, c]). % Check whether b is in [a,b,c]

We can generate through backtracking all the members of a given list

?- member(X, [a, b, c]).

Let us aks whether b is in [a,b,c]

Membership

We may also reverse the question: Find lists that contain a given
item, e.g., “apple”

?- member(apple, L).

L = [apple | _A]; % Any list that has “apple” as the head
L = [_A, apple | _B]; %First item is anything, second is “apple”
L = [_A, _B, apple | _C];

Membership

Find lists that contain a, b, and c:

?- member(a, L), member(b, L), member(c, L).

L = [a, b, c | _A];
L = [a, b, _A, c | _B];
L = [a, b, _A, _B, c | _C];
L = [a, b, _A, _B, _C, c | _D];

List with any length

Membership

Permutations of a, b, and c. % L is any list with exactly three elements

?- L = [_, _, _], member(a, L), member(b, L), member(c, L).

L = [a, b, c];
L = [a, c, b];
L = [b, a, c];
L = [c, a, b];
L = [b, c, a];
L = [c, b, a];
false.

Concatenation

For concatenating lists we will define the relation:
conc(L1, L2, L3)

L1 and L2 are lists, and L3 is their concatenation.

conc([a,b], [c,d], [a,b,c,d])

is false.

conc([a,b], [c,d], [a,b,a,c,d])
is true, but

Concatenation

1. If the first argument is the empty list then the second and the third
arguments must be the same list (call it L); this is expressed by the
following Prolog fact:

conc([], L, L).

Let us define the concatenation relation.

2. If the first argument of conc is a non-empty list then it has a head and
a tail and must look like this:

[X | L1]

Concatenation

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

In Prolog:

?- conc([a,b,c], [1,2,3], L).

Concatenation of [X | L1] and some list L2. The result is the list [X | L3]
where L3 is the concatenation of L1 and L2.

L = [a,b,c,1,2,3]

?- conc([a,[b,c],d], [a,[], b], L).
L = [a, [b,c], d, a, [], b]

Concatenation

We can use conc in the inverse direction for
decomposing a given list into two lists
?- conc(L1, L2, [a,b,c]).

L1 = []
L2 = [a,b,c];

L1 = [a]
L2 =[b,c];

L1 = [a,b]
L2 = [c];

L1 = [a,b,c]
L2 = [];

false

In which way can we decompose the list
[a,b,c] into two lists?

Pattern in a List

?- conc(Before, [may | After],
[jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec]).

We can also look for certain pattern in a list.

Before = [jan,feb,mar,apr]
After = [jun,jul,aug,sep,oct,nov,dec].

?- conc(_, [Month1, may, Month2 | _],
[jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec]).

Month1 = apr
Month2 = jun

Pattern in a List

?- L1 = [a,b,z,z,c,z,z,z,d,e], conc(L2, [z,z,z | _], L1).

What are we requesting?

Pattern in a List

L1 = [a,b,z,z,c,z,z,z,d,e]
L2 = [a,b,z,z,c]

?- L1 = [a,b,z,z,c,z,z,z,d,e], conc(L2, [z,z,z | _], L1).

Delete from L1, everything that follows three successive occurrences of z

Concatenation
How can we improve the implementation of the membership relation?

We defined it in this way:
member(X, [X | Tail]).

member(X, [Head | Tail]) :-
member(X, Tail).

member1(X, L) :-
conc(L1, [X |L2], L).

conc([], L, L).

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

X is a member of list L if L can be decomposed into
two lists so that the second one has X as its head.

member2(X, L) :-
conc(_, [X |_], L). member(apple, [peach,ananas,apple,mango,lemon]).

Execution Traces

We defined it in this way:

member1(X, L) :-
conc(L1, [X |L2], L).

Concatentation is provided as built-in predicates in
Prolog systems under the name append.
?- append([a,b],[c],X).

Which is the execution trace of
member1(b, [a,b,c])?

conc([], L, L).
conc([X | L1], L2, [X | L3]) :-

conc(L1, L2, L3).

Other Operations on Lists

Deleting an item, X, from a list, L.
del(X, L, L1)

where L1 is equal to L with the item X removed.

It can be defined similarly to the membership relation.
1. If X is the head of the list then the result after the deletion is the tail of the list.
2. If X is in the tail then it is deleted from there.

del(X, [X | Tail], Tail).
del(X, [Y | Tail], [Y | Tail1]) :-

del(X, Tail, Tail1).

Other Operations on Lists
del(X, [X | Tail], Tail).
del(X, [Y | Tail], [Y | Tail1]) :-

del(X, Tail, Tail1).

?- del(a, [a,b,a,a], L).

L = [b, a, a] ;
L = [a, b, a] ;
L = [a, b, a] ;

Can we use del to insert a in the list [1,2,3]?

?- del(a, L, [1,2,3]).
L = [a, 1, 2, 3] ;
L = [1, a, 2, 3] ;
L = [1, 2, a, 3] ;
L = [1, 2, 3, a] ;

Other Operations on Lists

Generally inserting X at any place in some List giving BiggerList can be
defined by the clause:

insert(X, List, BiggerList) :-
del(X, BiggerList, List).

In member1 we implemeneted the membership relation by using conc.

We can also use del to test for membership. The idea is simple: some
X is a member of List if X can be deleted from List:

member2(X, List) :-
del(X, List, _).

Sublist

Let us define the sublist relation such that:

sublist([c,d,e], [a,b,c,d,e,f])
sublist([c,e], [a,b,c,d,e,f])

is true
is false

S is a sublist of L if:
1. L can be decomposed into two lists, L1 and L2, and
2. L2 can be decomposed into two lists, S and some L3.

sublist(S, L) :-
conc(L1, L2, L),
conc(S, L3, L2).

What if we ask sublist(S, [a,b,c])?

Permutation

We can generate permutations of a list through backtracking using the
permutation procedure, as in the following:

?- permutation([a,b,c], P).

P = [a, b, c] ;
P = [a, c, b] ;
P = [b, a, c] ;
P = [b, c, a] ;
P = [c, a, b] ;
P = [c, b, a] ;
false.

?- random_permutation([a,b,c], P).

List length

Let us count the elements in a list List and instantiate N to thein number.

1. If the list is empty then its length is 0
2. If the list is not empty then List = [Head | Tail]; then its length is equal to
1 plus the length of the tail Tail

length([], 0).

length([_ | Tail], N) :-
length(Tails, N1),
N is 1 + N1.

?- length([a,b, [c,d], e], N).
N = 4

SWI-Prolog library

https://www.swi-prolog.org/pldoc/man?section=libpl

