
Logic and Constraint
Programming

May 11, 2022

PROLOG
Prof. Fabrizio Fornari

SWI-Prolog

SWI-Prolog is a versatile implementation of the Prolog language. Although
SWI-Prolog gained its popularity primarily in education, its development is
mostly driven by the needs for application development.

SWI-Prolog aims at scalability. Its robust support for multi-threading
exploits multi-core hardware efficiently and simplifies embedding in
concurrent applications.

SWI-Prolog unifies many extensions of the core language that have been
developed in the Prolog community such as tabling, constraints, global
variables, destructive assignment, delimited continuations and interactors.

Let us download SWI Prolog

Stable version:
https://www.swi-prolog.org/download/stable

SWI Prolog documentation:
https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-8.4.2.pdf

SWI Prolog Editor

SWI Prolog Editor

apt-get install –y swi-prolog

swipl -s fileName.pl
working_directory(D,D).

swipl

[fileName].

Load multiple file:

/* File: load.pl
Purpose: Load my program */

:- [file1,
file2,
file3

].

SWI Prolog Editor
https://swish.swi-prolog.org/example/examples.swinb

VSC-Prolog

VSC-Prolog

VSC-Prolog

Ubuntu:
/use/bin/swipl

Windows:
C:\Program Files\swipl\bin\swipl.exe

Mac:
/Applications/SWI-Prolog.app/Contents/MacOS/swipl

VSC-Prolog

parent(pam,bob).
parent(tom,bob).

VSC-Prolog

Prolog

parent(pam,bob).
parent(tom,bob).

Let us ask questions:

?- parent(bob,pam).
?- parent(pam,bob)

Prolog

parent(pam,bob).
parent(tom,bob).
…?

Prolog
parent(pam,bob).
parent(tom,bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

Prolog

Let us ask questions:

?- parent(liz,pat).
?- parent(tom,ben).

?- parent(X,liz).

?- parent(bob,X). How many results?

Let us write a semicolon ;
to display other results

Who is a parent of liz?

Prolog

Let us ask questions:

Who is a parent of whom?
?- parent(X,Y).

Who is the grandparent of jim?
?- parent(Y,jim),parent(X,Y).

Who are tom’s grandchildren?
?- parent(tom,X),parent(X,Y).

?- parent(X,Y),parent(Y,jim).

Prolog

Let us ask questions:

Do Ann and Pat have a common parent?

(1) Who is a parent, X, of Ann?
(2) Is X also a parent of Pat?

?-parent(X,ann),parent(X,pat).

Prolog - Recap

It is easy in Prolog to define a relation, such as the parent relation, by
stating the n-tuples of objects that satisfy the relation.

The user can easily query the Prolog system about relations defined in the
program.

A Prolog program consists of clauses. Each clause terminates with a full stop.

The arguments of relations can (among other things) be: concrete objects, or
constants, or general objects such as X and Y.

Prolog - Recap

Questions to Prolog consist of one or more goals. A sequence of goals, such as:
parent(X,ann),parent(X,pat)

Means the conjunction of the goals:

X is a parent of Ann, and
X is a parent of Pat.

The word ‘goals’ is used because Prolog interprets questions as goals that are to be
satisfied. To ‘satisfy a goal’ means to logically deduce the goal from the program.

In the case of a positive answer we say that the corresponding goal was satisfiable
and that the goal succeded. Otherwise the goal was unsatisfiable and it failed.

Prolog ISO/IEC 13211-1

The ISO Prolog standard: ISO/IEC 13211-1 was published in 1995.
https://www.iso.org/standard/21413.html

The original intention of the standards process was, to standardize the
existing practices of the many implementations of Prolog.

https://en.wikipedia.org/wiki/Comparison_of_Prolog_implementations

http://www.iso.ch/
https://www.iso.org/standard/21413.html

Defining relations by rules

Extend the program specifying female()
and male() relations.

female(pam).
male(tom).
male(bob).
..

Defining relations by rules

Extend the program specifying female()
and male() relations.

female(pam).
male(tom).
male(bob).
female(liz).
female(pat).
female(ann).
male(jim).

Defining relations by rules

female(pam).
male(tom).
male(bob).
female(liz).
female(pat).
female(ann).
male(jim).

Warning to enforce best practices, which is to put all related clauses together in the source file.

Defining relations by rules

female and male are unary relations.

female(ann).
male(jim).

MF

M

M

F

F F
parent is a binary relation.

parent(bob, ann).
parent(pat,jim).

parentparent

Defining relations by rules

female and male are unary relations.

female(ann).
male(jim).

As an alternative, we could define sex as
a binary relation.

sex(pam, feminine).
sex(tom, masculine).
…

MF

M

M

F

F F

Defining relations by rules

Introduce the binary relation mother.

MF

M

M

F

F F

mother(pam,bob).
mother(pat,jim).

mother

motherHow did you figure out who is the mother of bob?

Defining relations by rules

Introduce the binary relation mother.

What defines a mother? (in our environment)

For all X and Y,
X is the mother of Y if

X is a parent of Y, and X is female.

mother(X, Y) :- parent(X,Y),female(X).

In Prolog

MF

M

M

F

F F

mother

mother

Defining relations by rules

Introduce the binary relation mother.

MF

M

M

F

F F

mother

mother

mother(X, Y) :- parent(X,Y),female(X).

In Prolog

The Prolog symbol ‘:-’ is read as ‘if’.

For all X and Y,
if X is a parent of Y and X is female then
X is the mother of Y.

rule

Rules vs Facts

mother(X, Y) :- parent(X,Y),female(X).

Rules specify things that are true if some
condition is satisfied.

Rule Fact

parent(tom, liz).

Something always true

Rules

Rules have:
• a condition part (the right-hand side of the rule). Also called the body of a clause.
• a conclusion part (the left-side of the rule). Also called the head of a clause.

mother(X, Y) :- parent(X,Y),female(X).

head body

goal goal

If the condition part ‘parent(X, Y), female(X)’ is true then a logical consequence
of this is mother(X, Y).

Rules

Extend the program with:

mother(X, Y) :- parent(X,Y),female(X).

Ask whether Pam is mother of Bob:

?- mother(pam, bob).

Note: there is no fact about mother in the program.

Rules

mother(X, Y) :- parent(X,Y),female(X).

?- mother(pam, bob).

When we specify pam and bob we are instantiating the variables X and Y.
X = pam and Y = bob

After the instantiation we have obtained a special case of our general rule.
The special case is:

mother(pam, bob) :- parent(pam, bob), female(pam).

Rules

mother(X, Y) :- parent(X,Y),female(X).

?- mother(pam, bob).

When we specify pam and bob we are instantiating the variables X and Y.
X = pam and Y = bob

After the instantiation we have obtained a special case of our general rule.
The special case is:

head body

mother(pam, bob) :- parent(pam, bob), female(pam).

goal goal

Rules

head

mother(pam, bob) :- parent(pam, bob), female(pam).

goal goal

body

The two goals are trivial. They can be found as facts in the program.

This means that the conclusion part of the rule is also true,
and Prolog will answer the question with true.

Graphically see relations

How? (We already anticipated that..)

mother and grandparent relations

Graphically see relations

mother and grandparent relations

- Nodes in the graphs correspond to objects (arguments of the relations).

- Arcs between nodes correspond to binary
relations.

- Arcs are oriented to point from the first
argument of the relation to the second
argument.

- Defined relations (by rules) are represented
by dashed arcs.

- Unary relations are indicated by simply
labelling the object with the name of the relation

Graphically see relations

mother and grandparent relations

If the relations shown by solid arcs
hold, then the relation shown by a
dashed arc also holds.

Extend the program adding the
grandparent relation

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

Ask Prolog: ?- grandparent(X, Z).

What does Prolog answer?

Convention

From:

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

To:

grandparent(X, Z) :-
parent(X, Y),
parent(Y, Z).

The head and the goals each on a separate line.

Exercise

Define the relation sister.

Exercise

Define the relation sister.

sister(X, Y):-
parent(Z, X),
parent(Z, Y),
female(X).

Some Z must be a parent of X, and this same Z must be a parent of Y

Exercise

Ask:
?- sister(ann, pat).

Ask:
?- sister(X, pat).

Is Anything weird about the answers?
?- sister(X, pat).
X = ann ;
X = pat ;

Pat is a sister to herself!

Exercise

sister(X, Y):-
parent(Z, X),
parent(Z, Y),
female(X),
X \= Y.

We can state X \= Y to express that X and Y must be different.

Recap

• Prolog programs can be extended by simply adding new clauses.
• Prolog clauses are of three types: facts, rules and questions.
• Facts declare things that are always, unconditionally, true.
• Rules declare things that are true depending on a given condition.
• By means of questions the user can ask the program what things are true.
• A Prolog clause consists of the head and the body. The body is a list of

goals separated by commas. Commas between goals are understood as
conjunctions.

• A fact is a clause that just has the head and no body. Questions only have
the body. Rules consist of the head and the (non-empty) body.

• In the course of computation, a variable can be substituted by another
object. We say that a variable becomes instantiated.

• Variables are assumed to be universally quantified and are read as ‘for all’.

Extend the “family” program

Let us add one more relation to our family program, the ancestor relation.

1st rule:
ancestor(X, Z) :-

parent(X, Z).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
parent(Y, Z).

Let us add one more relation to our family program, the ancestor relation.

1st rule:
ancestor(X, Z) :-

parent(X, Z).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
parent(Y, Z).

3rd rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Z).

Extend the “family” program

Let us add one more relation to our family program, the ancestor relation.
1st rule:
ancestor(X, Z) :-

parent(X, Z).
2nd rule:
ancestor(X, Z) :-

parent(X, Y),
parent(Y, Z).

3rd rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Z).

Extend the “family” program

4th rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Y3),
parent(Y3, Z).

Nth rule:
…

Let us add one more relation to our family program, the ancestor relation.
1st rule:
ancestor(X, Z) :-

parent(X, Z).
2nd rule:
ancestor(X, Z) :-

parent(X, Y),
parent(Y, Z).

3rd rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Z).

Extend the “family” program

4th rule:
ancestor(X, Z) :-

parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Y3),
parent(Y3, Z).

Nth rule:
… This program is lengthy and it only works to some extent.

Recursive rules

There is a much more elegant and correct formulation of the ancestor
relation.

Recursive rules

There is a much more elegant and correct formulation of the ancestor
relation.

For all X and Z,
X is an ancestor of Z if
there is a Y such that
(1) X is a parent of Y and
(2) Y is an ancestor of Z.

ancestor(X, Z) :-
parent(X, Y),
ancestor(Y, Z).

Recursive rules

Ancestor relation program

1st rule:
ancestor(X, Z) :-

parent(X, Z).

2nd rule:
ancestor(X, Z) :-

parent(X, Y),
ancestor(Y, Z).

The key is the use of ancestor itself in its definition.
Such a definition is called recursive definition.

Recursive rules

Are logically correct and understandable.

Prolog can easily use recursive definitions.

Recursive programming is, one of the fundamental principles of programming
in Prolog.

It is necessary for solving task of significant complexity.

Ancestor program

Let us ask Prolog: Who are Pam’s successors?

How can we formulate such a question?

Ancestor program

Let us ask Prolog: Who are Pam’s successors?

?- ancestor(pam, X).

X = bob;
X = ann;
X = jim

Prolog’s answers are correct and they logically
follow from our definition of the ancestor and
the parent relation.

