oo

(vemn)
Vil

1336

Logic and Constraint
Programming

PROLOG

Prof. Fabrizio Fornari

May 11, 2022

SWI-Prolog

SWI-Prolog is a versatile implementation of the Prolog language. Although
SWI-Prolog gained its popularity primarily in education, its development is
mostly driven by the needs for application development.

SWI-Prolog aims at scalability. Its robust support for multi-threading Q)
exploits multi-core hardware efficiently and simplifies embedding in
concurrent applications. SWI Prolog

SWI-Prolog unifies many extensions of the core language that have been
developed in the Prolog community such as tabling, constraints, global
variables, destructive assignment, delimited continuations and interactors.

Let us download SWI Prolog

Stable version:
https://www.swi-prolog.org/download/stable

SWI Prolog documentation:
https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-8.4.2.pdf

Universita di Camerino

SWI Prolog Editor

Welcome to SWI-Prolog (threaded, 64 bits, version 8.4.2)

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.
Please run ?- license. for legal details.

For online help and background, visit https://www.swi-prolog.org
For built-in help, use ?- help(Topic). or ?- apropos(Word).

- |

Universita di Camerino

SWI Prolog Editor

o @
Welcome to SWI-Prolog (threaded, 64 bits, version 8.4.2)

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.

Please run ?- license. for legal details.

For online help and background, visit https://www.swi-prolog.org
For built-in help, use ?- help(Topic). or ?- apropos(Word).

- |

apt-get install —y swi-prolog
swipl

working_directory(D,D).
swipl -s fileName.pl

[fileName].

Load multiple file:

[* File: load.pl
Purpose: Load my program */

- [file1,

]

file2,
file3

SWI Prolo g Editor

https://swish.swi-prolog.org/example/examples.swinb
SW|SH Flev Edit~ Examples~ Help~ W " | search Q B A

344 users online -

@ examples L

a3 B AV uf
Welcome to SWISH

You are reading a SWISH notebook. A notebook is a mixture of text, programs and

queries. This notebook only contains text and gives an overview of example programs
shipped with SWISH.

LX)
Ny

¢ First steps
o Knowledge bases provides a really simple knowledge base with example
queries.
o Lists defines a couple of really simple list operations and illustrates
timing naive reverse.
» Classics
o Movie database provides a couple of thousands of facts about movies
for you to query. o
o Expert system illustrates simple meta-interpretation of rules and asking Qi o QUaEy” [Joay HExel .

VSC-Prolog

@ Extension: VSC-Prolog — PROGRAMS l:] E D 08

EXTENSION.. ¥ O = family.pl = Extension: VSC-Prolog X D

prolog
VSC-Prolog ve.s.23

Prolog D 94K * 5
Prolog language suppor... arthurwang | < 96,623 * %k %k > (14)
Rondioy s Support for Prolog language

— VSC-Prolog © 75ms ————

8= : :
Support for Prolog lang... Disable v Uninstall v <}
arthurwang £ This extension is enabled globally.

PROLOG lan... <®6K * 5
PROLOG language supp...
AlanizPalomera... | Install

Details Feature Contributions Changelog Runtime Status

@ Better Prolo... © 2K % 5

Jeff Hykin Install VSC_PrOIOg

Categories

Programming

‘ swi-Isp P 208 Languages
A language server for S... A VS Code extension which provides language support for Prolog
lilr Install (mainly for SWI-Prolog and some features for ECLiPSe). golnatiors

. Elpi lang P 1K Snippets | Linters

VSC-Prolog

Untitled-1 — PROGRAMS

pro
= log (prolog) this again.
perties (properties)
R (r)

$ Shell Script (shellscript)
XML (xml)

Ln1, Col1 Spaces:4 UTF-8 LF Prolog & [

VSC-Prolog

Ubuntu:
/use/bin/swipl

Windows:
C:\Program Files\swipl\bin\swipl.exe

Mac:
/Applications/SWI-Prolog.app/Contents/MacOS/swipl

prolog

User W
. > SWL OWIFFITOL04, eCL ELLiraeiecupsecip).
v Extensions - s

VSC-Prolog (9) SWi
Prolog: Executable Path
Points to the Prolog executable.

Jusr/bin/swipl

Prolog » Format: Enabled

v/ Enable formatting s

BL 4 UTF s L TERMINAL

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.
Please run ?- license. for legal details.

For online help and background, visit https://www.swi-prolog.org
For built-in help, use ?- help(Topic). or ?- apropos(Word).

?- ['/home/fabrizio/Documents/PROLOG/parent(bob,pam)..pl'].
true.

Universita di Camerino

1336

9 Settings Found = 57

Turn on Settings Sync

VSC-Prolog

parent(pam,bob).
parent(tom,bob).

= family-1.pl X

= family-1.pl

parent(pam,bob).
parent(tom,bob).

Go to Definition
Go to References
Peek

Find All References

Change All Occurrences
Format Document
Format Document With...

Cut
Copy
Paste

Command Palette...

Prolog: export predicate under cursor [\XX X]
Prolog: Goto next error line F8
Prolog: Goto previous error line 1+ F8

Prolog: load document ["CX L]

Prolog: query goal under cursor [\XX Q]

Prolog: refactor predicate under cursor

Universita di Camerino

1336

VSC-Prolog

= family-1.pl X

family-1.pl
parent(pam,bob).
parent(tom,bob).

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE [>]Prolog +~ [W ~»~ X
Please run ?- license. for legal details.

For online help and background, visit https://www.swi-prolog.org
For built-in help, use ?- help(Topic). or ?- apropos(Word).

?- ['/Users/fabriziofornari/Desktop/LCP - Fabrizio Fornari/SWI-Prolog/PROGRAMS/family-1.pl'].
true.

(o | No Notifications

Ln3,Col1 Spaces:4 UTF-8 LF Prolog & 0

Prolog

parent(pam,bob).
parent(tom,bob).

Let us ask questions:

?- parent(bob,pam).
?- parent(pam,bob)

?7- parent(bob,pam).

?7- parent(pam,bob).
true.

Universita di Camerino

Prolog

parent(pam,bob).

parent(tom,bob). @ @
L7

Universita di Camerino

Prolog

parent(pam,bob).

parent(tom,bob).

parent(tom, liz).

parent(bob, ann). @ @
parent(bob, pat).

parent(pat, jim).

Prolog

Let us ask questions:

?- parent(liz,pat).
?- parent(tom,ben).

?- parent(X,liz). Who is a parent of liz?
?- parent(bob,X). How many results?

Let us write a semicolon ;
to display other results

Prolog

Let us ask questions:

Who is a parent of whom?
?- parent(X,Y).

Who is the grandparent of jim?
?- parent(Y,jim),parent(X,Y).
?- parent(X,Y),parent(Y,jim).

Who are tom’s grandchildren?
?- parent(tom,X),parent(X,Y).

parent

o : grandparent
!

parent

(e

\

\

\
\

/
/

Prolog

Let us ask questions: @ @

Do Ann and Pat have a common parent?

(1) Who is a parent, X, of Ann?
(2) Is X also a parent of Pat?

?-parent(X,ann),parent(X,pat). @ @

Prolog - Recap

It is easy in Prolog to define a relation, such as the parent relation, by
stating the n-tuples of objects that satisfy the relation.

The user can easily query the Prolog system about relations defined in the
program.

A Prolog program consists of clauses. Each clause terminates with a full stop.

The arguments of relations can (among other things) be: concrete objects, or
constants, or general objects such as X and Y.

Prolog - Recap

Questions to Prolog consist of one or more goals. A sequence of goals, such as:
parent(X,ann),parent(X,pat)

Means the conjunction of the goals:

X is a parent of Ann, and
X is a parent of Pat.

The word ‘goals’ is used because Prolog interprets questions as goals that are to be
satisfied. To ‘satisfy a goal’ means to logically deduce the goal from the program.

In the case of a positive answer we say that the corresponding goal was satfisfiable
and that the goal succeded. Otherwise the goal was unsatisfiable and it failed.

Prolog ISO/IEC 13211-1

The |ISO Prolog standard: ISO/IEC 13211-1 was published in 1995.
https.//www.iso.org/standard/21413.html

The original intention of the standards process was, to standardize the
existing practices of the many implementations of Prolog.

https://en.wikipedia.org/wiki/Comparison_of Prolog implementations

http://www.iso.ch/
https://www.iso.org/standard/21413.html

Defining relations by rules

Extend the program specifying female()
and male() relations.

female(pam).
male(tom).
male(bob).

Defining relations by rules

Extend the program specifying female()
and male() relations.

female(pam).
male(tom).
male(bob).
female(liz).
female(pat).
female(ann).
male(jim).

Defining relations by rules

?- ['/Users/fabriziofornari/Desktop/LCP - Fabrizio Fornari/SWI-Prolog/PROGRAMS/family.pl'].
female(pam). LUDEUR ALV AE IR O e L s - Fabrizio Fornari/s ‘ s oy

male(tom).
male(bob).
female(liz).
female(pat).
female(ann).
male(jim).

Warning to enforce best practices, which is to put all related clauses together in the source file.

Defining relations by rules

female and male are unary relations.

female(ann).
male(jim).
parent is a binary relation.

parent(bob, ann).
parent(pat,jim).

Defining relations by rules

female and male are unary relations.

female(ann).
male(jim).

As an alternative, we could define sex as
a binary relation.

sex(pam, feminine).
sex(tom, masculine).

Defining relations by rules F |

Introduce the binary relation mother.

mother(pam,bob).
mother(pat,jim).

. mother

How did you figure out who is the mother of bob?

Defining relations by rules F |

Introduce the binary relation mother.

What defines a mother? (in our environment)

Forall Xand,
X is the mother of Y if
X is a parent of Y, and X is female.

. mother

In Prolog
mother(X, Y) :- parent(X,Y),female(X).

Defining relations by rules

Introduce the binary relation mother.

In Prolog /rule

mother(X, Y) :- parent(X,Y),female(X).

The Prolog symbol “:-" is read as ‘if'.

Forall Xand,
if X is a parent of Y and X is female then

X is the mother of .

. mother

Rules vs Facts

Rule Fact
mother(X, Y) :- parent(X,Y),female(X). parent(tom, liz).
Rules specify things that are true if some Something always true

condition is satisfied.

Rules

Rules have:
 a condition part (the right-hand side of the rule). Also called the body of a clause.
 a conclusion part (the left-side of the rule). Also called the head of a clause.

mother(X, Y) :-\parent(X,Y?,\femaIe(X)}.
f |
\) goal goal

| |
head body

If the condition part ‘parent(X, Y), female(X)' is frue then a logical consequence
of this is mother(X, Y).

Rules

Extend the program with:

mother(X, Y) :- parent(X,Y),female(X).
Ask whether Pam is mother of Bob:

?- mother(pam, bob).

Note: there is no fact about mother in the program.

Rules

mother(X, Y) :- parent(X,Y),female(X).

?- mother(pam, bob).

When we specify pam and bob we are instantiating the variables X and Y.
X=pamand Y = bob

After the instantiation we have obtained a special case of our general rule.
The special case is:

mother(pam, bob) :- parent(pam, bob), female(pam).

Rules

mother(X, Y) :- parent(X,Y),female(X).

?- mother(pam, bob).

When we specify pam and bob we are instantiating the variables X and Y.
X=pamand Y = bob

After the instantiation we have obtained a special case of our general rule.
The special case is:

mother(pam, bob) :- parent(pam, bob), female(pam).

\ J)
I !
\ || goal goal]

f
head body

Rules

mother(pam, bob) :- parent(pam, bob), female(pam).
\ Y) | Y)
\ || goal goal]

| |
head body

The two goals are trivial. They can be found as facts in the program.

This means that the conclusion part of the rule is also true,
and Prolog will answer the question with true.

Graphically see relations

How? (We already anticipated that..)

female

parent | |, mother parent | °,

--“

grandparent

parent '

mother and grandparent relations

Graphically see relations

- Nodes in the graphs correspond to objects (arguments of the relations).

- Arcs between nodes correspond to binary
relations.

- Arcs are oriented to point from the first

argument of the relation to the second
argument.

- Unary relations are indicated by simply
labelling the object with the name of the relation

- Defined relations (by rules) are represented
by dashed arcs.

female

parent | |, mother parent | °,

--"

grandparent

parent '

mother and grandparent relations

Graphically see relations

If the relations shown by solid arcs
hold, then the relation shown by a female

dashed arc also holds.
parent | |, mother parent | °,

Extend the program adding the
grandparent relation

--"

grandparent

parent '

grandparent(X, Z) :- parent(X, Y), parent(Y, 2Z).

Ask Prolog: ?- grandparent(X, Z). mother and grandparent relations

What does Prolog answer?

Universita di Camerino

Convention

From:

grandparent(X, Z) :- parent(X, Y), parent(Y, 2).

To:

grandparent(X, Z) :-
parent(X, Y),
parent(Y, Z).

The head and the goals each on a separate line.

Universita di Camerino

Exercise

Define the relation sister.

Exercise

Define the relation sister.

sister(X, Y):-
parent(Z, X), parent parent
parent(Z, Y),
female(X).

female (X }—-—-—--—
Sister

Some Z must be a parent of X, and this same Z must be a parent of Y

Exercise

Ask:

?- sister(ann, pat).

Ask:
?- sister(X, pat).

parent

female

Is Anything weird about the answers?

?- sister(X, pat).
X=ann;
X = pat;

Pat is a sister to herself!

sister

parent

Exercise

We can state X \=Y to express that X and Y must be different.

sister(X, Y):-
parent(Z, X),
parent(Z, Y),
female(X),

X\=Y.
female

Recap

Prolog programs can be extended by simply adding new clauses.

Prolog clauses are of three types: facts, rules and questions.

Facts declare things that are always, unconditionally, true.

Rules declare things that are true depending on a given condition.

By means of questions the user can ask the program what things are true.
A Prolog clause consists of the head and the body. The body is a list of
goals separated by commas. Commas between goals are understood as
conjunctions.

A fact is a clause that just has the head and no body. Questions only have

the body. Rules consist of the head and the (non-empty) body.
In the course of computation, a variable can be substituted by another

object. We say that a variable becomes instantiated.
Variables are assumed to be universally quantified and are read as ‘for all'.

Extend the “family” program

Let us add one more relation to our family program, the ancestor relation.

18t rule:
ancestor(X, Z) :- X \
parent(X, 2). parent | - yancestor parent |

2nd rule:

ancestor(X, Z) :-
parent(X, Y),
parent(Y, Z).

parent ancestor

L) -
- -
bl Ko

~»

parent

Se

(a) (b)

Extend the “family” program

Let us add one more relation to our family program, the ancestor relation.

1st rule: e
ancestor(X, Z) :- parent | "\ parent | \
parent(X, Z). : \
| ancestor @ !
2 rule: arent ' arent [
ancestor(X, Z) :- e / P :
parent(X, Y), @ | ancestor
parent(Y, 2). ;
parent !
3" rule: :
ancestor(X, Z) :- @ ,.'
parent(X, Y1),

(parent '
parent(Y1, Y2),]
parent(Y2, 2). e

Extend the “family” program

Let us add one more relation to our family program, the ancestor relation.

1st rule:
ancestor(X, Z) :-
parent(X, Z).

2" rule: parent R

parent |
ancestor(X, Z) :- \ \
parent(X, Y), ' \
oarent(Y, Z). ': ancestor “‘
31 rule: parent | parent 1
ancestor(X, Z) :- 4 '
parent(X, Y1), -
parent(Y1, Y2), : ancestor
]
parent(Y2, Z). — |
4t rule: :
ancestor(X, Z) :- '
parent(X, Y1), @ "
parent(Y1, Y2), '

!
parent(Y2, Y3), parent !
parent(Y3, Z).

Nth rule: e

Extend the “family” program

Let us add one more relation to our family program, the ancestor relation.

1st rule:
ancestor(X, Z) :-
parent(X, Z).

2" rule: parent R

parent |
ancestor(X, Z) :- \ \
parent(X, Y), ' \
oarent(Y, Z). ': ancestor “‘
31 rule: parent | parent 1
ancestor(X, Z) :- 4 '
parent(X, Y1), -
parent(Y1, Y2), : ancestor
]
parent(Y2, Z). — |
4t rule: :
ancestor(X, Z) :- '
parent(X, Y1), @ 'n
parent(Y1, Y2), ':
parent(Y2, Y3), parent !
parent(Y3, Z).
Nt rule:

This program is lengthy and it only works to some extent. e

There is a much more elegant and correct formulation of the ancestor

relation.

rules

parent \‘
\

\
\
)
)
\
)
)
]
|
: ancestor
]
]
ancestor '
]
]
]
[
[}

Recursive rules

There is a much more elegant and correct formulation of the ancestor

relation.

For all X and Z,
X is an ancestor of Z if
there is a Y such that
(1) X'is a parent of Y and
(2) Y is an ancestor of Z.

ancestor(X, Z) :-
parent(X, Y),
ancestor(Y, 2).

parent

ancestor

\
\
\
\

\
\
)
)
\
|
)
]
|
: ancestor
]
]
1
]
]
[}
[
[}

Recursive rules

Ancestor relation program

\
parent |
18t rule:

ancestor(X, Z) :-
parent(X, Z).

2 rule: :lancestor

ancestor(X, Z) :- :
parent(X, Y), ancestor '.'
ancestor(Y, 2). ','

The key is the use of ancestor itself in its definition.
Such a definition is called recursive definition.

Recursive rules

Are logically correct and understandable.

Prolog can easily use recursive definitions.

Recursive programming is, one of the fundamental principles of programming
iIn Prolog.

It is necessary for solving task of significant complexity.

Ancestor program

Let us ask Prolog: Who are Pam’s successors?

How can we formulate such a question? @ @

Ancestor program

Let us ask Prolog: Who are Pam’s successors?

?- ancestor(pam, X).

X = bob;
X =ann;
X =jim

Prolog’'s answers are correct and they logically
follow from our definition of the ancestor and
the parent relation.

