
Logic and Constraint Programming

4- CSP Conclusions
A.A. 2021/2022

Lorenzo Rossi
lorenzo.rossi@unicam.it

University of Camerino



Constraints Programming: History and Applications

MINIZINC
≫BAKERY 2.0

Can we enhance the bakery model to be more generic by using arrays, sets,
enumerations, aggregation, comprehension?

% Products to be produced
enum Products;
% profit per unit for each product
array[Products] of int: profit;
% Resources to be used
enum Resources;
% amount of each resource available
array[Resources] of int: capacity;
% units of each resource required to produce 1 unit of

product
array[Products, Resources] of int: consumption;

constraint assert(forall (r in Resources, p in Products)
(consumption[p,r] >= 0), ”Error: negative

consumption”);

= {banana, chocolate}

= [400,500]

= {flour, bananas, sugar, butter,

cocoa}

= [4000, 6, 2000, 500, 500]

= [|250, 2, 75, 100, 0, | 200, 0,

150, 150, 75|]

L. Rossi LCP - CSP Conclusions 1 / 17



Constraints Programming: History and Applications

MINIZINC
≫BAKERY 2.0

% bound on number of Products
int: mproducts = max ([(min ([capacity[r] div consumption[p,r] | r

in Resources where consumption[p,r] > 0])) | p in
Products]);

% Variables: how much should we make of each product
array[Products] of var 0..mproducts: produce;
array[Resources] of var 0..max(capacity): used;

maximum amount of any product that

Bob can produce

= max { min {4000 div 250, 6 div 2,

...}, min {4000 div 200, 2000 div

150, ...}}

L. Rossi LCP - CSP Conclusions 2 / 17



Constraints Programming: History and Applications

MINIZINC
≫BAKERY 2.0

% Production cannot use more than the available Resources:
constraint forall (r in Resources) (used[r] = sum (p in Products)(

consumption[p, r] * produce[p]) );
constraint forall (r in Resources) (used[r] <= capacity[r]);

% Maximize profit
solve maximize sum (p in Products) (profit[p]*produce[p]);

output [ ”\(p) = \(produce[p]);\n” | p in Products ] ++
[ ”\(r) = \(used[r]);\n” | r in Resources ];

L. Rossi LCP - CSP Conclusions 3 / 17



Constraints Programming: History and Applications

MINIZINC
≫ALLDIFFERENT

Minizinc provides global constraints to use for defining models. (see
the handbook for an exhaustive list)

The alldifferent constraint requires its argument to be pairwise
different.

alldifferent(set/list/range X)

∀xi, xj ∈ X, with i ̸= j, then xi ̸= xj

L. Rossi LCP - CSP Conclusions 4 / 17



Constraints Programming: History and Applications

MINIZINC
≫CRYPTARITHMETIC

include ”alldifferent.mzn”;
var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: R;
var 0..9: Y;
constraint 1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * R + E
= 10000 * M + 1000 * O + 100 * N + 10 * E + Y;
constraint alldifferent([S,E,N,D,M,O,R,Y]);
solve satisfy;
output [show(S),show(E),show(N),show(D),”+ \n”,

show(M),show(O),show(R),show(E),”= \n”,
show(M),show(O),show(N),show(E),show(Y),”\n”,];

L. Rossi LCP - CSP Conclusions 5 / 17



Constraints Programming: History and Applications

CONDITIONAL EXPRESSIONS

MiniZinc provides a conditional if-then-else-endif expression.
An example which sets r to x divided by y unless y is zero in which
case it sets it to zero, is the following

int: r = if y != 0 then x div y else 0 endif;

L. Rossi LCP - CSP Conclusions 6 / 17



Constraints Programming: History and Applications

SUDOKU

Exercise
Implement a model for solving Sudoku puzzles. The model receives a 9x9
array of integer representing the initial schema, and gives as output the
solved puzzle.

L. Rossi LCP - CSP Conclusions 7 / 17



Constraints Programming: History and Applications

SUDOKU
≫SOLUTION

include ”alldifferent.mzn”;

int: S;
int: N = S * S;

set of int: PuzzleRange = 1..N;
set of int: SubSquareRange = 1..S;

array[1..N,1..N] of 0..N: start; % initial board 0 = empty
array[1..N,1..N] of var PuzzleRange: puzzle;

L. Rossi LCP - CSP Conclusions 8 / 17



Constraints Programming: History and Applications

SUDOKU
≫SOLUTION

% fill initial board
constraint forall(i,j in PuzzleRange)(
if start[i,j] > 0 then puzzle[i,j] = start[i,j] else true endif );

% All different in rows
constraint forall (i in PuzzleRange) (
alldifferent( [ puzzle[i,j] | j in PuzzleRange ]) );

% All different in columns.
constraint forall (j in PuzzleRange) (
alldifferent( [ puzzle[i,j] | i in PuzzleRange ]) );

% All different in sub−squares:
constraint
forall (a, o in SubSquareRange)(
alldifferent( [ puzzle[(a−1) *S + a1, (o−1)*S + o1] | a1, o1 in SubSquareRange ] ) );

L. Rossi LCP - CSP Conclusions 9 / 17



Constraints Programming: History and Applications

SUDOKU
≫SOLUTION

solve satisfy;
output [ show(puzzle[i,j]) ++ ” ” ++
if j mod S == 0 then ” ” else ”” endif ++
if j == N then
if i != N then
if i mod S == 0 then ”\n\n” else ”\n” endif
else ”” endif else ”” endif
| i,j in PuzzleRange ] ++ [”\n”];

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

L. Rossi LCP - CSP Conclusions 10 / 17



Constraints Programming:
History and Applications



Constraints Programming: History and Applications

CONSTRAINT PROGRAMMING
≫HISTORY

Constraint Programming has a long tradition, the initial ideas leading
to CP appeared in 1960s and 1970s.

In early 1960, Ivan Sutherland (1988
Turing award) developed, the first ap-
plication for interactive graphics, i.e.,
Sketchpad. The application allows
users to draw and manipulate con-
strained geometric figures on com-
puter’s display, at that time, a con-
straint language for graphical inter-
action was introduced
https://www.youtube.com/watch?v=6orsmFndx_o

L. Rossi LCP - CSP Conclusions 11 / 17

https://www.youtube.com/watch?v=6orsmFndx_o


Constraints Programming: History and Applications

CONSTRAINT PROGRAMMING
≫HISTORY

Since 1980s, no robust academic or commercial constraint systems
were available ready to be used in industrial applications

In the 1990s, the first constraint programming systems emerged, and
practical application of constraint programming, like circuit
verification, scheduling, or resource allocation, arose

L. Rossi LCP - CSP Conclusions 12 / 17



Constraints Programming: History and Applications

CONSTRAINT PROGRAMMING
≫HISTORY

The ILOG Solver was one of the first CSP solvers delivered as a C++
library. It is now part of the IBM ILOG CPLEX Studio

In the first decade of 2000, constraint systems like Choco, JaCoP,
Gecode, Minion, or Google CP Solver turned up and became more
and more mature

In the last years, constraint systems are available as libraries and
can read constraint models specified in quasi standard languages
like MiniZinc or the Java Constraint Programming API.

L. Rossi LCP - CSP Conclusions 13 / 17



Constraints Programming: History and Applications

CONSTRAINT PROGRAMMING APPLICATIONS
≫RAILWAY INTERLOCKING SYSTEMS

In railway signaling, an interlocking system is an arrangement of
signals and other equipment that prevents conflicting movements of
trains in a network of tracks, switches, and crossings

L. Rossi LCP - CSP Conclusions 14 / 17



Constraints Programming: History and Applications

CONSTRAINT PROGRAMMING APPLICATIONS
≫VEHICLE ROUTING

The Vehicle Routing Problem optimizes the routes of delivery trucks,
cargo lorries, public transportation (buses, taxis and airplanes) or
technicians on the road, by improving the order of the visits

https://goo.gl/maps/chxSsZQzLP8fx6qQ9

L. Rossi LCP - CSP Conclusions 15 / 17

https://goo.gl/maps/chxSsZQzLP8fx6qQ9


Constraints Programming: History and Applications

CONSTRAINT PROGRAMMING APPLICATIONS
≫SCHOOL TIMETABLING

In universities, schools, and other similar contexts, the timetabling
problem is to provide timetables for lessons respecting constraints
such as room capacity and availability, professors availability, lessons
overlapping avoidance, and so on.

L. Rossi LCP - CSP Conclusions 16 / 17



Constraints Programming: History and Applications

FIRST ASSIGNMENT

Bob is a fan of retro games. He
is intended to program a CSP
model generating minesweeper
mazes form a distribution of
mines.

L. Rossi LCP - CSP Conclusions 17 / 17


	Constraints Programming: History and Applications

