
Introduction to
Google OR-Tools

PROS Lab Members

and…
● Morena Barboni
● Vincenzo Nucci
● Ahmad Ronaghikhameneh
● Umair Qureshi

• Business Process Management
• BPMN
• BP & IoT modeling and enactment

Ivan Compagnucci

Interests

https://www.linkedin.com/in/
ivan-compagnucci/

• Ph.D. student at UNICAM
• PROS Lab Member

ivan.compagnucci@studenti.unicam.it

Research Topics

Network of interconnected devices
that collect and exchange data to monitor,

control or transfer relevant information
so as to be able to perform consequent

intelligent actions

Internet of Things Business Process

A set of activities, tasks or actions to carry
out a specific organizational goal such as

a service or a product

Business Process
Meet
Internet of Things
• Design and monitoring of the smart

environment for a better execution, safety
and less complexity

• Bridging the gap between the high level of the
Business Process and the low level of the IoT
technologies

• Programming of "dependencies between
independent devices“ in a process-oriented
vision

…Constraint programming can improve IoT systems?

However, there is no a well-established and mature
approach that fully meet the requirements to
represent an IoT scenario.

Findings

There isn’t a standard de facto for modeling smart
scenarios in a process- oriented way. Existing solutions
(86%) mainly use BPMN or an extension of it

Constraint Programming

Constraint programming is a powerful paradigm for solving combinatorial
search problems that draws on a wide range of techniques from artificial
intelligence (AI), operations research, algorithms, and graph theory.

The basic idea in constraint programming is that the user states the
constraints, and a general-purpose ”constraint solver” is used to solve them.

Constraint Programming: Everyday-life example

Sudoku
- Rules for inserting numbers in the table

Gaming: Procedural Dungeon Simulation
- Procedural dungeon generation

in an open world/universe context

CPU’s Job Scheduling
- Constraints on determing which process should be

executed

What is OR Tools?

OR-Tools is an open source software suite for optimization, for solve
problems in vehicle routing, network flows, integer and linear
programming, and constraint programming.

OR Tools: Identify the type of Solvers
There are many different types of optimization problems in the world. For each
type of problem, there are different approaches and algorithms for finding an
optimal solution. Before you can start writing a program to solve an optimization
problem, you need to identify what type of problem you are dealing with, and
then choose an appropriate solver — an algorithm for finding an optimal solution.

These are the types of problems that OR-Tools solves:
• Linear optimization
• Mixed-Integer optimization
• Constraint optimization
• Network flows/ Routing
• Assignment
• Scheduling

OR Tools: Installation
Download the following resources:

• “Constraints”:
• You must have the Microsoft Visual C++ Redistributable for Visual Studio 2019.

https://visualstudio.microsoft.com/downloads/?q=Visual+C%2B%2B+Redistributable+for+Visual+Studio
• You must also have a Java JDK 64 bit, version 8.0 or later installed. https://java.com/en/download/help/download_options.html
• You must also have a Maven 64 bit installed. https://maven.apache.org/download.cgi

• Visual Studio Code 2022: As IDE.
• OR-Tools Binary Distribution:

1. Visit: https://developers.google.com/optimization/install
2. Select the distribution depending on your Operating System.
3. Unzip

https://maven.apache.org/download.cgi
https://developers.google.com/optimization/install

OR Tools: Installation

Testing the installation (Inside the unzipped folder):

You should be able to have this output:

Possible errors
Make sure you:

• Defined environmental variables (PATH):
• For JDK, Maven, cmd view, …

• Microsoft Visual C++ Redistributable is up to date!

• Install MinGW (If “make” command doesn’t work)

• …

OR Tools: What is an optimization problem?

The goal of optimization is to find the best solution to a problem out of a large set of possible
solutions. (Sometimes you'll be satisfied with finding any feasible solution; OR-Tools can do that
as well.)

A typical optimization problem:

Here's a typical optimization problem. Suppose that a shipping company delivers
packages to its customers using a fleet of trucks. Every day, the company must
assign packages to trucks, and then choose a route for each truck to deliver its
packages. Each possible assignment of packages and routes has a cost, based on the
total travel distance for the trucks, and possibly other factors as well. The problem is to
choose the assignments of packages and routes that has the least cost.

OR Tools: What is an optimization problem?

Like all optimization problems, this problem has the following 2 elements:

• The Objective: The quantity you want to optimize. Here, the objective is to minimize cost. To set up an
optimization problem, you need to define a function that calculates the value of the objective for
any possible solution. This is called the objective function. In the preceding example, the objective
function would calculate the total cost of any assignment of packages and routes.

An optimal solution is one for which the value of the objective function is the best.

• The Constraints: Restrictions on the set of possible solutions, based on the specific requirements of
the problem. For example, if the shipping company can't assign packages above a given weight to trucks,
this would impose a constraint on the solutions.

A feasible solution is one that satisfies all the given constraints for the problem, without necessarily being optimal.

Another linear optimization problem in Java

A linear optimization example:
- Maximize 3x + 4y subject to the following constraints:

- Both the objective function and the constraints are given

by linear expressions, which makes this a linear problem.

The constraints define the feasible region, which is
the triangle shown below, including its interior.

The dashed green line is defined by
setting the objective function equal to
its optimal value of 34.

Any line whose equation has the form 3x +
4y = c is parallel to the dashed line, and 34
is the largest value of c for which the line
intersects the feasible region

Solving a linear optimization problem in Java

The optimal value of the
objective function is 23,
which occurs at the point
x = 3, y = 2.

Mixed-Integer optimization problem in Java

Comparing Linear and Integer Optimization

Let's compare the solution to the integer optimization problem, with the solution to the
corresponding linear optimization problem, in which integer constraints are removed.

1. Replace the MIP Solver with LP Solver; (SCIP -> GLOP)
2. Replace Integer Variables with Continuous Variables; (makeIntVar -> makeNumVar)
3. Check differences!

!"#$%&'(")

Results:

The integer solution is not close to the linear
solution. The solutions to a linear optimization
problem and the corresponding integer
optimization problems can be far apart.
Because of this, the two types of problems
require different methods for their solution.

MIP:

LP:

OR-Tools: Constraints Programming

Constraint optimization, or constraint programming (CP), is the name given to identifying feasible
solutions out of a very large set of candidates, where the problem can be modeled in terms of
arbitrary constraints.

CP is based on:
- Feasibility (finding a feasible solution) rather than Optimization (finding an optimal solution)
- Focuses on constraints and variables rather than the objective function

A CP Problem may not have an objective function! Because the idea is to find a vary large set of
possible solutions to a more manageable subset by adding constraints to the problem.

OR-Tools: Constraints Programming

Employee Scheduling example:
The problem arises when companies that operate continuously — such as factories — need to create
weekly schedules for their employees.
The company runs three 8-hour shifts per day and assigns three of its four employees to different
shifts each day, while giving the fourth the day off.

Actors:
- Company
- 3 runs every day (8-hours)

- 4 Employees
- Every day a different employee has a day off

OR-Tools: Constraints Programming

Even in such a small case, the number of possible schedules is huge:

- On each day there are 4! = 4 · 3 · 2 · 1 = 24 possible employee assignments;
- The number of possible weekly schedules is 247, which is over 4.5 billion.

Note that, usually, there will be other constraints that reduce the number of feasible solutions:

- In example: Each employee should work at least a minimum number of days per week

However, the CP method keeps track of which solutions remain feasible when you add new
constraints, making it a powerful tool for solving large, real-world scheduling problems.

OR-Tools: Constraints Programming

Even in such a small case, the number of possible schedules is huge:

- On each day there are 4! = 4 · 3 · 2 · 1 = 24 possible employee assignments;
- The number of possible weekly schedules is 247, which is over 4.5 billion.

Note that, usually, there will be other constraints that reduce the number of feasible solutions:

- In example: Each employee should work at least a minimum number of days per week

However, the CP method keeps track of which solutions remain feasible when you add new
constraints, making it a powerful tool for solving large, real-world scheduling problems.

The Employee Scheduling problem

Organizations whose employees work multiple shifts need to schedule sufficient workers for each
daily shift. Typically, the schedules will have constraints, such as:

“No employee should work two shifts in a row“

Finding a schedule that satisfies all constraints can be computationally difficult.

OR-Tools provide the CP-SAT Solver for solve such problems:

The Employee Scheduling problem:CP-SAT Solver

The CP-SAT Solver returns one of the status values shown in the table below:

The Employee Scheduling problem

In particular the example is about a nurse scheduling problem. A hospital supervisor needs to
create a schedule for four nurses over a three-day period, subject to the following
conditions:

• Each day is divided into three 8-hour shifts
• Every day, each shift is assigned to a single nurse, and no nurse works more than one shift.

• Each nurse is assigned to at least two shifts during the three-day period.

The Employee Scheduling problem: step by step

1. Import the required libraries:

2. Create Variables

The Employee Scheduling problem: step by step

3. Create the CP Model:

4. Create an array of variables:

The array defines assignments for shifts to nurses as follows:
shifts[(n, d, s)] equals 1 if shift s is assigned to nurse n on day d, and 0 otherwise.

The Employee Scheduling problem: step by step

5. Next, we assign nurses to shifts subject to the following constraints:
• Each shift is assigned to a single nurse per day

• Each nurse works at most one shift per day

For each nurse, the sum of shifts
assigned to that nurse is at most 1 ("at
most" because a nurse might have the
day off).

The last line says that for each shift,
the sum of the nurses assigned to
that shift is 1.

The Employee Scheduling problem: step by step

Next, we need to assign shifts to nurses as evenly as possible:

Since there are nine shifts over the three-day period, we can assign two shifts to each
of the four nurses. After that there will be one shift left over, which can be assigned to
any nurse.

minShiftsPerNurse: used to
distribute the shifts evenly.

Note: If this is not possible,
because the total
number of shifts is not divisible
by the number of nurses, some
nurses will be assigned one
more shift.

The Employee Scheduling problem: step by step
Since there are num_shifts * num_days total shifts in the schedule period, you can assign at least

Shifts to each nurse, but some shifts may be left over. For the given values of:

num_nurses = 4,
num_shifts = 3,
num_days = 3,

The expression min_shifts_per_nurse has the value (3 * 3 / 4) = 2, so you can assign at least two
shifts to each nurse. This is guaranteed by the constraint.

The extra shift can be assigned to any nurse:
(Ensures that no nurse is assigned more than one extra shift. The constraint isn't necessary in this
case, because there's only one extra shift)

The Employee Scheduling problem: step by step

6. Update the solver parameters:

7. Invoke the solver and display solution:

OR-Tools has found 5184 possible solutions!! But… how?

The Employee Scheduling problem: Solutions

There are 4 choices for the one nurse who works an extra shift. Having chosen that nurse,
there are 3 shifts the nurse can be assigned to on each of the 3 days, so the number of
possible ways to assign the nurse with the extra shift is 4 · 33 = 108. After assigning this
nurse, there are two remaining unassigned shifts on each day..

The Employee Scheduling problem: Solutions

Of the remaining three nurses, one works days 0 and 1, one works days 0 and 2, and one works
days 1 and 2. There are 3! = 6 ways to assign the nurses to these days:

(The three nurses are labeled A, B, and C, and we have not yet assigned them to shifts.)

For each row in the above diagram, there are 23 = 8 possible ways to assign the remaining shifts to the
nurses (two choices on each day). So the total number of possible assignments is 108·6·8 = 5184.

The Job Shop problem

One common scheduling problem is the job shop, in which multiple jobs are processed on
several machines. Each job consists of a sequence of tasks, which must be performed in
a given order, and each task must be processed on a specific machine.
The problem is to schedule the tasks on the machines so as to minimize the length of the
schedule—the time it takes for all the jobs to be completed.

There are several constraints for the job shop problem:
• No task for a job can be started until the previous task for that job is completed;
• A machine can only work on one task at a time;

• A task, once started, must run to completion.

The Job Shop problem

Each task is labeled by a pair of numbers (m,p) where:
• m is the number of the machine the task must be processed on;

• p is the processing time of the task (the amount of time it requires).

In the example, job 0 has three tasks. The first, (0, 3), must be processed on machine 0 in 3 units of
time. The second, (1, 2), must be processed on machine 1 in 2 units of time, and so on.

Altogether, there are eight tasks:

The Job Shop problem: A solution for the problem

A solution to the job shop problem is an assignment of a start time for each task, which meets the constraints
given above. The diagram below shows one possible solution for the problem:

All the tasks for each job are scheduled at non-overlapping time intervals, in the order given by the problem.

The length of this solution is 12, which is the first time when all three jobs are complete.
However, as you will see below, this is not the optimal solution to the problem!!

The Job Shop problem: Variables and constraints for the problem

First, let task(i, j) denote the jth task in the sequence for job i.
For example, task(0, 2) denotes the second task for job 0, which corresponds to the pair (1, 2) in the
problem description.
Next, define ti, j to be the start time for task(i,j). The ti,j are the variables in the job shop problem. Finding
a solution involves determining values for these variables that meet the requirement of the problem.
There are two types of constraints for the job shop problem:

• Precedence constraints: These arise from the condition that for any two consecutive tasks in
the same job, the first must be completed before the second can be started.

For example, task(0, 2) and task(0, 3) are consecutive tasks for job 0. Since the processing time for
task(0, 2) is 2, the start time for task(0, 3) must be at least 2 units of time after the start time for
task 2. (Perhaps task 2 is painting a door, and it takes two hours for the paint to dry.) As a result,
you get the following constraint:

t 0,2 + 2 ≤ t0,3

The Job Shop problem: Variables and constraints for the problem

• No overlap constraints: These arise from the restriction that a machine can't work on two tasks
at the same time. For example, task(0, 2) and task(2, 1) are both processed on machine 1. Since
their processing times are 2 and 4, respectively, one of the following constraints must hold:

t 0,2 + 2 ≤ t2,1 if(task(0,2) is scheduled before task(2,1)) OR
t 2,1 + 4 ≤ t0,2 if(task(2,1) is scheduled before task(0,2))

Objective for the problem:
The objective of the job shop problem is to minimize the makespan: the length of time from
the earliest start time of the jobs to the latest end time.

The Employee Scheduling problem: step by step

1. Import the required libraries: 2. Define the data

3. Declare the model

The Employee Scheduling problem: step by step

4. Define the variables:

For each job and task, the program
uses the solver's NewIntVar method
to create the variables:

• Start_var: Start time of the task;

• End_var: End time of the task.

The Employee Scheduling problem: step by step

5. Define the constraints:

The program uses the solver's
AddNoOverlap method to create
the no overlap constraints,
which prevent tasks for the
same machine from overlapping
in time.

Next, the program adds the
precedence constraints, which
prevent consecutive tasks for
the same job from overlapping
in time.

For each job, the line requires
the end time of a task to occur
before the start time of the next
task in the job.

The Employee Scheduling problem: step by step

6. Define the objective:

7. Invoke the solver:
The expression creates a variable obj_var
whose values is the maximum of the end times
for all jobs (that is the makespan)

The Employee Scheduling problem: Result

8. Display the results:

Machine 1 might wonder why job_1_2 was scheduled at time 7 instead of time 6. Both are valid
solutions, but the objective is to minimize the makespan. Moving job_1_2 earlier wouldn't
reduce the makespan, so the two solutions are equal from the solver's perspective.

