Introduction to

a Google OR-Tools

(\ Google OR-Tools

Universita di Camerino

1336

PROS Lab Members

LY

PROS Lab

pros.unicam.it

Flavio Corradini Andrea Polini Barbara Re - Lorenzo Rossi Marco Piangerelli
Francesco Tiezzt Andrea Morichetta Fabrizio Fornari
i Comi I e POSTDOCTORAL RESEARCHER POSTDOCTORAL RESEARCHER
ASSOCIATE PROFESSOR RESEARCH FELLOW

POSTDOCTORAL RESEARCHER

Morena Barboni

Vincenzo Nucci

Ahmad Ronaghikhameneh
Umair Qureshi

£y

>

Caterina Luciani

Arianna Fedeli

Ivan C . Sara Pettinari
PHD STUDENT PHD STUDENT van (ompagnucct PHD STUDENT

PHD STUDENT
PHD STUDENT

PROS
PROcesses and
Services Lab

lvan Compagnucci Aﬁ'l ‘P o
Pdg . @@ pros@unicam.it

* Ph.D. student at UNICAM

« PROS Lab Member P:FEOI% L,.a..b http://pros.unicam.i

Interests Ivan Compagnucci

+ Business Process Management it

« BPMN

« BP & loT modeling and enactment

3 https://www.linkedin.com/in/
ivan-compagnucci/

M ivan.compagnucci@studenti.unicam.it

Research Topics

Internet of Things Business Process
Network of interconnected devices A set of activities, tasks or actions to carry
that collect and exchange dat.a to monitor, out a specific organizational goal such as
control or transfer relevant information a service or a product

so as to be able to perform consequent
intelligent actions

Business Process
Meet
Internet of Things

« Design and monitoring of the smart
environment for a better execution, safety
and less complexity

- Bridging the gap between the high level of the
Business Process and the low level of the loT
technologies

« Programming of "dependencies between
independent devices” in a process-oriented
vision

Process-Oriented Modelling Notations

Universita di Camerino

for Internet of Things

Universi d amerino Ivan Compagnucci
1336

1336

Findings

ivan.compagnucci@unicam.it

|
PROS Lab

pros unicamit

Computer Science Division, Science and Technology School, University of Camerino

BUSINESS PROCESS MEET INTERNET OF THINGS

The Internet of Things term Internet of Things Business Process The Business Process Manage-

refers to the inter-networking of ment is a well-established disci-
physical objects embedded with Q pline that deals with the analy-
electronics hardware, software, ['/ '—\,:;) sis, design, implementation, ex-
sensors, actuators, and network ecution, monitoring, and evolu-
connectivity. tion of business processes.

There isn’t a standard de facto for modeling smart
scenarios in a process- oriented way. Existing solutions
(86%) mainly use BPMN or an extension of it

SLR Research Questions

® RQI. Which are the relevant modelling
perspectives to consider when modelling
IoT-Aware business processes?

RQ2. What are the IoT requirements
supported by notations used to model
ToT-Aware business processes?

* RQ3. Which are the modelling nota-
tions proposed and adopted to model
ToT-Aware business processes?

\
TRENDS ON THE USAGE OF BPMN 2.0 STANDARD NOTATION
Sequence Fow 1 I —— 100% ;%\\ There isn’t a standard de facto for

modeling smart scenarios in a process-
oriented way. Existing solutions mainly

use BPMN oran extension of t. However, there is no a well-established and mature
86% 2 earsion approach that fully meet the requirements to
Foweven here s o wellstblished represent an loT scenario.

the requirements to represent an IoT
scenario.

8,29%
Start None Event 3] 50,32%
Tasks N 74,15%
Exclusive Gateway 5 - E— 59,46%
Expanded Pool 6 57,57%
Lane 7 I 52,88%
Message Flow s IS 32,23%
Paralll Gateway 9 IR 28,63%
Start Message Event 10 I 23,41%

Frequency Distribution of BPMN Elements

w2 9
o
00 4 s
N s o
o0 Start Eveat Expands — 64
e o 05 3 Intermediate Throw Message Event | Intcrmediate Catch Message Eveat | 0.59
3 30 o sput 0359
b3 3 Expanded Pool Lane 05s
5 oo = B0 Sequence Flow End Event 035
M 3 Exclasive Gateway Task 5
* 00w Mesage How Intermediste Cateh Message Event | 0.53
Expanded Pool Message Flow 052
oo 5006 Expanded Sub.Process 050
Intermodiate Throw Signal Event_| _Intermediate alErent_| 050
000
soo% o o5
D 5005 054
¥ o y, 031
o00% o o % o088 oo 000 00T 86060600
0123 45 67 89 WNRL MY B 12345678 INUDBUBUIEONNRBUBBN BB Comversation [
Haming Distance Value Practical Complxty Vale Collapsed Pool 054
Converstion Colapsed Pool 054
-Process -aChoreography -o-Conversation o Process -8 Choreograpty o Canerston

k Hamming Distance of BPMN Elements Practical Complexity of BPMN Elements BPMN Elements Pairs Correlation eee co n st ra i n t p rog ra m m i ng ca n i m p rove I OT syste m S?

ystematic Literature Review. BPM Workshop,

[1] L Compagnucci, E. Corradini, E. Fornari, A. Polini, B. Re and E Tiezzi. Modelling Notations for loT-Aware Business Process
Vol. 397, 108-121, 2020.

[2] 1 Compagnucci, E. Corradini, E. Fornari, and B. Re. Trends on the Usage of BPMN 2.0 from Publicly Available Repositories. In: Perspectives in Business Informatics Research,
Vol. 430, 84-99, 2021

Constraint Programming

Constraint programming is a powerful paradigm for solving combinatorial
search problems that draws on a wide range of techniques from artificial
intelligence (Al), operations research, algorithms, and graph theory.

The basic idea in constraint programming is that the user states the
constraints, and a general-purpose “constraint solver” is used to solve them.

Sudoku

- Rules for inserting numbers in the table

CPU’s Job Scheduling

Constraints on determing which process should be
executed

Gaming: Procedural Dungeon Simulation
Procedural dungeon generation
in an open world/universe context

-y
¢ SHL TR

What is OR Tools?

OR-Tools is an open source software suite for optimization, for solve
problems in vehicle routing, network flows, integer and linear
programming, and constraint programming.

\ Google OR-Tools

.

OR Tools: Identify the type of Solvers

There are many different types of optimization problems in the world. For each
type of problem, there are different approaches and algorithms for finding an
optimal solution. Before you can start writing a program to solve an optimization
problem, you need to identify what type of problem you are dealing with, and
then choose an appropriate solver — an algorithm for finding an optimal solution.

These are the types of problems that OR-Tools solves:
* Linear optimization

* Mixed-Integer optimization

* Constraint optimization

* Network flows/ Routing

* Assignment

* Scheduling

OR Tools: Installation

Download the following resources:

* “Constraints”:

® You must have the Microsoft Visual C++ Redistributable for Visual Studio 2019.
https://visualstudio.microsoft.com/downloads/?q=Visual+C%2B%2B+Redistributable+for+Visual+Studio

® You must also have a Java JDK 64 bit, version 8.0 or later installed. https://java.com/en/download/help/download_options.html
* You must also have a Maven 64 bit installed. https://maven.apache.org/download.cqi

* Visual Studio Code 2022: As IDE.
* OR-Tools Binary Distribution:
1. Visit: https://developers.google.com/optimization/install

2. Select the distribution depending on your Operating System.
3. Unzip

https://maven.apache.org/download.cgi
https://developers.google.com/optimization/install

OR Tools: Installation

Testing the installation (Inside the unzipped folder):

You should be able to have this output:

Scanning for projects...

(default-cli) @ andalon |
Installing C:\OR-Tools\ortools-win32-x86-64-9.3.10497.jar to C:\Users\User\.m2\rep

| B e o e | e B o b e | o i o |

[

] Total time: ©0.864 s
] Finished at: 2022-04-14T16:07:39+02:00

Possible errors

Make sure you:

Defined environmental variables (PATH):
* For DK, Maven, cmd view, ...

* Microsoft Visual C++ Redistributable is up to date!

Install MinGW (If “make” command doesn’t work)

OR Tools: What is an optimization problem?

The goal of optimization is to find the best solution to a problem out of a large set of possible
solutions. (Sometimes you'll be satisfied with finding any feasible solution; OR-Tools can do that
as well.)

A typical optimization problem:

Here's a typical optimization problem. Suppose that a shipping company delivers
packages to its customers using a fleet of trucks. Every day, the company must
assign packages to trucks, and then choose a route for each truck to deliver its
packages. Each possible assignment of packages and routes has a cost, based on the
total travel distance for the trucks, and possibly other factors as well. The problem is to
choose the assignments of packages and routes that has the least cost.

@ OR Tools: What is an optimization problem?

Like all optimization problems, this problem has the following 2 elements:

® The Objective: The quantity you want to optimize. Here, the objective is to minimize cost. To set up an
optimization problem, you need to define a function that calculates the value of the objective for
any possible solution. This is called the objective function. In the preceding example, the objective
function would calculate the total cost of any assignment of packages and routes.

An optimal solution is one for which the value of the objective function is the best.

® The Constraints: Restrictions on the set of possible solutions, based on the specific requirements of
the problem. For example, if the shipping company can't assign packages above a given weight to trucks,
this would impose a constraint on the solutions.

A feasible solution is one that satisfies all the given constraints for the problem, without necessarily being optimal.

A linear optimization example:

Another linear optimization problem in Java

X+2y s 14

Maximize 3x + 4y subject to the following constraints: 3x -y > 0

Both the objective function and the constraints are given

by linear expressions, which makes this a linear problem.

Maximize 3x + 4y

IA
N

X=y

The constraints define the feasible region, which is
the triangle shown below, including its interior.

¥ Solving a linear optimization problem in Java

3x-y=0

.. 3Xx+4y =34

Solution = 34

(6, 4)

~
~

The dashed green line is defined by
setting the objective function equal to
its optimal value of 34.

Any line whose equation has the form 3x +
4y = cis parallel to the dashed line, and 34
is the largest value of ¢ for which the line
intersects the feasible region

Number of variables = 2
Number of constraints = 3
Solution:

X = 6.0
y = 4.0
Optimal objective value

Mixed-Integer optimization problem in Java

X+7y=17.5 Integer opt.
solution = 23
B (0,2) o ¢ . W
(3,2)
i . . = °

The optimal value of the
objective function is 23,
which occurs at the point
X=3,y=2.

Number of variables = 2
Number of constraints = 2
Solution:

Objective value

Comparing Linear and Integer Optimization

Let's compare the solution to the integer optimization problem, with the solution to the
corresponding linear optimization problem, in which integer constraints are removed.

1.

3.

[s2]

Replace the MIP Solver with LP Solver; (SCIP -> GLOP)
2. Replace Integer Variables with Continuous Variables; (makelntVar -> makeNumVar)

Check differences!

Linear opt.
solution = 25

(0, 2.5)

(0,2)

X +7y =175 Integer opt.
solution = 23
L] L J ® ®

3, 2)

N —He
w —e

Objective value = 23

MIP: [

y =2

Results:
esults Objective value = 25.000000

LP- X = 0.000000

y = 2.500000

The integer solution is not close to the linear
solution. The solutions to a linear optimization
problem and the corresponding integer
optimization problems can be far apart.
Because of this, the two types of problems
require different methods for their solution.

OR-Tools: Constraints Programming

Constraint optimization, or constraint programming (CP), is the name given to identifying feasible
solutions out of a very large set of candidates, where the problem can be modeled in terms of

arbitrary constraints.

CP is based on:
- Feasibility (finding a feasible solution) rather than Optimization (finding an optimal solution)
- Focuses on constraints and variables rather than the objective function

A CP Problem may not have an objective function! Because the idea is to find a vary large set of
possible solutions to a more manageable subset by adding constraints to the problem.

OR-Tools: Constraints Programming

Employee Scheduling example:

The problem arises when companies that operate continuously — such as factories — need to create

weekly schedules for their employees.

The company runs three 8-hour shifts per day and assigns three of its four employees to different
shifts each day, while giving the fourth the day off.

Actors:

Company

3 runs every day (8-hours)

4 Employees

Every day a different employee has a day off

OR-Tools: Constraints Programming

Even in such a small case, the number of possible schedules is huge:

-On each day thereare4!=4-3-2-1 =24 possible employee assignments;
- The number of possible weekly schedules is 247, which is over 4.5 billion.

Note that, usually, there will be other constraints that reduce the number of feasible solutions:

- In example: Each employee should work at least a minimum number of days per week

However, the CP method keeps track of which solutions remain feasible when you add new
constraints, making it a powerful tool for solving large, real-world scheduling problems.

OR-Tools: Constraints Programming

Even in such a small case, the number of possible schedules is huge:

-On each day thereare4!=4-3-2-1 =24 possible employee assignments;
- The number of possible weekly schedules is 247, which is over 4.5 billion.

Note that, usually, there will be other constraints that reduce the number of feasible solutions:

- In example: Each employee should work at least a minimum number of days per week

However, the CP method keeps track of which solutions remain feasible when you add new
constraints, making it a powerful tool for solving large, real-world scheduling problems.

The Employee Scheduling problem

Organizations whose employees work multiple shifts need to schedule sufficient workers for each
daily shift. Typically, the schedules will have constraints, such as:

“No employee should work two shifts in a row”

Finding a schedule that satisfies all constraints can be computationally difficult.

OR-Tools provide the CP-SAT Solver for solve such problems:

CpSolver solver = new CpSolver();

CpSolverStatus status = solver.solve(model);

The Employee Scheduling problem:CP-SAT Solver

The CP-SAT Solver returns one of the status values shown in the table below:

Status

OPTIMAL

FEASIBLE

INFEASIBLE

MODEL _INVALID

UNKNOWN

Description

An optimal feasible solution was found.
A feasible solution was found, but we don't know if it's optimal.
The problem was proven infeasible.

The given CpModelProto didn't pass the validation step. You can get a detailed error by calling
ValidateCpModel(model_proto).

The status of the model is unknown because no solution was found (or the problem was not proven
INFEASIBLE) before something caused the solver to stop, such as a time limit, a memory limit, or a custom
limit set by the user.

The Employee Scheduling problem

In particular the example is about a nurse scheduling problem. A hospital supervisor needs to
create a schedule for four nurses over a three-day period, subject to the following

conditions:

* Each day is divided into three 8-hour shifts
* Every day, each shift is assigned to a single nurse, and no nurse works more than one shift.

®* Each nurse is assigned to at least two shifts during the three-day period.

Universita di Camerino

1336

The Employee Scheduling problem: step by step

1. Import the required libraries:

import
import
import
import
import
import
import
import
import
import
import

com.
com.
com.
com.
com.
com.
com.
com.

google.
google
google
google
google
google
google
google

.ortools
.ortools
.ortools
.ortools
.ortools
.ortools
.ortools

ortools.

Loader;

.sat
.sat
.sat
.sat
.sat.
SO
.sat.

java.util.ArraylList;
java.util.List;
java.util.stream.IntStream;

2. Create Variables

int numNurses
int numDays
int numShifts

int[] allNurses
int[] allDays
int[] allShifts = IntStream.range(@, numShifts).toArray();

.CpModel;

.CpSolver;
.CpSolverSolutionCallback;
.CpSolverStatus;

LinearExpr;
LinearExprBuilder;
Literal;

IntStream.range(9, numNurses).toArray();
IntStream.range(8, numDays).toArray();

The Employee Scheduling problem: step by step

3. Create the CP Model:

CpModel model = new CpModel();

4. Create an array of variables:

Literal[][][] shifts = new Literal[numNurses][numDays][numShifts];
for (int n : allNurses) {
for (int d : allDays) {
for (int s : allShifts) ({

shifts[n][d][s] = model.newBoolVar(“shifts_n" + n + “d" +d + "s" + s);

The array defines assignments for shifts to nurses as follows:
shifts[(n, d, s)] equals 1 if shift s is assigned to nurse n on day d, and 0 otherwise.

1336

The Employee Scheduling problem: step by step

5. Next, we assign nurses to shifts subject to the following constraints:

Each shift is assigned to a single nurse per day

for (int d : allDays) { . .
for (int s : allshifts) { The last line says that for each shift,

List<Literal> nurses = new ArraylList<>(); the sum of the nurses aSSignEd to

for (int n : allNurses) {

nurses.add(shifts[n][d][s]); that Shift iS 1.
}

model .addExactlyOne(nurses) ;

}
}

Each nurse works at most one shift per day

for (int n : allNurses) {

for (int d : allDays) { For each nurse, the sum of shifts

el ke el e assigned to that nurse is at most 1 ("at

work..add(shifts[n][d][s]); most" because a nurse might have the

}
model .addAtMostOne(work) ; day Off)

}
}

1336

The Employee Scheduling problem: step by step

Next, we need to assign shifts to nurses as evenly as possible:

Since there are nine shifts over the three-day period, we can assign two shifts to each
of the four nurses. After that there will be one shift left over, which can be assigned to

any nurse.

int minShiftsPerNurse = (numShifts * numDays) / numNurses;
int maxShiftsPerNurse;
if ((numShifts * numDays) % numNurses == 0) {
maxShiftsPerNurse = minShiftsPerNurse;
} else {
maxShiftsPerNurse = minShiftsPerNurse + 1;
}
for (int n : allNurses) {
LinearExprBuilder numShiftsWorked = LinearExpr.newBuilder();
for (int d : allDays) {
for (int s : allShifts) {
numShiftsWorked.add(shifts[n][d][s]);
}
}

model.addLinearConstraint(numShiftsWorked, minShiftsPerNurse,

}

maxShiftsPerNurse) ;

minShiftsPerNurse: used to
distribute the shifts evenly.

Note: If this is not possible,
because the total

number of shifts is not divisible
by the number of nurses, some
nurses will be assigned one
more shift.

The Employee Scheduling problem: step by step

Since there are num_shifts * num_days total shifts in the schedule period, you can assign at least

Shifts to each nurse, but some shifts may be left over. For the given values of:
num_nurses =4,

num_shifts = 3,

num_days = 3,

The expression min_shifts_per_nurse has the value (3 * 3/4) =2, so you can assign at least two
shifts to each nurse. This is guaranteed by the constraint.

model.Add(min_shifts_per_nurse <= num_shifts_worked)

The extra Shlft can be aSSigned to any nurse: model.Add(num_shifts_worked <= max_shifts_per_nurse)

(Ensures that no nurse is assigned more than one extra shift. The constraint isn't necessary in this
case, because there's only one extra shift)

1336

The Employee Scheduling problem: step by step

6. Update the solver parameters:

CpSolver solver = new CpSolver();
solver.getParameters().setLinearizationLevel(9);

// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);

7. Invoke the solver and display solution:

CpSolverStatus status = solver.solve(model, cb);
System.out.println(“Status: " + status);

System.out.println(cb.getSolutionCount() + " solutions found.");

OR-Tools has found 5184 possible solutions!! But... how?

Solution ©
Day ©
Nurse
Nurse
Nurse
Nurse
Day 1
Nurse
Nurse
Nurse
Nurse
Day 2
Nurse
Nurse
Nurse
Nurse

Statistics

does not work
works shift ©
works shift 1
works shift 2

works shift 2
does not work
works shift 1
works shift ©

works shift 2
works shift 1
works shift ©
does not work

- conflicts 25
- branches . 142

- wall time
- solutions found: 5

1 0.002484 s

Solution 1
Day ©
Nurse
Nurse
Nurse
Nurse
Day 1
Nurse
Nurse
Nurse
Nurse
Day 2
Nurse
Nurse
Nurse
Nurse

works shift ©
does not work
works shift 1
works shift 2

does not work
works shift
works shift
works shift

works shift
works shift
works shift
does not work

Solution 2
DEVA
Nurse
Nurse
Nurse
Nurse
Day 1
Nurse
Nurse
Nurse
Nurse
Day 2
Nurse
Nurse
Nurse
Nurse

works shift ©
does not work
works shift 1
works shift 2

works shift 1
works shift 2
does not work
works shift @

works shift 2
works shift 1
works shift ©
does not work

Solution 3
Day ©
Nurse
Nurse
Nurse
Nurse
Day 1
Nurse
Nurse
Nurse
Nurse
Day 2
Nurse
Nurse
Nurse
Nurse

does not work
works shift ©
works shift 1
works shift 2

works shift 1
works shift 2
does not work
works shift ©

works shift 2
works shift 1
works shift ©
does not work

Solution 4
Day ©
Nurse
Nurse
Nurse
Nurse
Day 1
Nurse
Nurse
Nurse
Nurse
Day 2
Nurse
Nurse
Nurse
Nurse

does not work
works shift ©
works shift 1
works shift 2

works shift 2
works shift 1
does not work
works shift ©

works shift 2
works shift 1
works shift ©
does not work

There are 4 choices for the one nurse who works an extra shift. Having chosen that nurse,
there are 3 shifts the nurse can be assigned to on each of the 3 days, so the number of
possible ways to assign the nurse with the extra shift is 4 - 33 = 108. After assigning this
nurse, there are two remaining unassigned shifts on each day..

The Employee Scheduling problem: Solutions

Of the remaining three nurses, one works days 0 and 1, one works days 0 and 2, and one works
days 1 and 2. There are 3! = 6 ways to assign the nurses to these days:

(The three nurses are labeled A, B, and C, and we have not yet assigned them to shifts.)

For each row in the above diagram, there are 23 = 8 possible ways to assign the remaining shifts to the
nurses (two choices on each day). So the total number of possible assignments is 108:6:8 = 5184.

The Job Shop problem

One common scheduling problem is the job shop, in which multiple jobs are processed on
several machines. Each job consists of a sequence of tasks, which must be performed in
a given order, and each task must be processed on a specific machine.

The problem is to schedule the tasks on the machines so as to minimize the length of the
schedule—the time it takes for all the jobs to be completed.

There are several constraints for the job shop problem:

* No task for a job can be started until the previous task for that job is completed;
®* A machine can only work on one task at a time;

* A task, once started, must run to completion.

The Job Shop problem

Each task is labeled by a pair of numbers (m,p) where:
* misthe number of the machine the task must be processed on;

* pisthe processing time of the task (the amount of time it requires).

In the example, job 0 has three tasks. The first, (0, 3), must be processed on machine 0 in 3 units of
time. The second, (1, 2), must be processed on machine 1 in 2 units of time, and so on.

Altogether, there are eight tasks:

job0=[(0,3),(1,2),(2,2)]
job1=1(0,2),(2,1),(1,4)]

job2=[(1,4),(2,3)]

The Job Shop problem: A solution for the problem

A solution to the job shop problem is an assignment of a start time for each task, which meets the constraints
given above. The diagram below shows one possible solution for the problem:

werneo [T job 0=1(0,3), (1,2), (2, 2)]
O co Twa lwoy job1=[(0,2),2,1), (1,4
N O O 2-0.4.¢.9)

1 2 3 4 5 6 7 8 9 10 1 12

All the tasks for each job are scheduled at non-overlapping time intervals, in the order given by the problem.

The length of this solution is 12, which is the first time when all three jobs are complete.
However, as you will see below, this is not the optimal solution to the problem!!

The Job Shop problem: Variables and constraints for the problem

First, let task(i, j) denote the jth task in the sequence for job i.

For example, task(0, 2) denotes the second task for job 0, which corresponds to the pair (1, 2) in the
problem description.

Next, define ti, j to be the start time for task(i,j). The t;;are the variables in the job shop problem. Finding
a solution involves determining values for these variables that meet the requirement of the problem.

There are two types of constraints for the job shop problem:

* Precedence constraints: These arise from the condition that for any two consecutive tasks in
the same job, the first must be completed before the second can be started.

For example, task(0, 2) and task(0, 3) are consecutive tasks for job 0. Since the processing time for
task(0, 2) is 2, the start time for task(0, 3) must be at least 2 units of time after the start time for
task 2. (Perhaps task 2 is painting a door, and it takes two hours for the paint to dry.) As a result,

you get the following constraint:
t 0.2 + 2 S t0’3

The Job Shop problem: Variables and constraints for the problem

* No overlap constraints: These arise from the restriction that a machine can't work on two tasks
at the same time. For example, task(0, 2) and task(2, 1) are both processed on machine 1. Since
their processing times are 2 and 4, respectively, one of the following constraints must hold:

to,+2 < t,; If(task(0,2)is scheduled before task(2,1)) OR
t,,+4 < t,, If(task(2,1)is scheduled before task(0,2))

Objective for the problem:

The objective of the job shop problem is to minimize the makespan: the length of time from
the earliest start time of the jobs to the latest end time.

Universita di Camerino

1336

1. Import the required libraries:

The Employee Scheduling problem: step by step

import static java.lang.Math.max;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

com.google
com.google
com.google
com.google
com.google
com.google
com.google
java.util
java.util
java.util
java.util
java.util.
java.util.
java.util.
java.util.

.ortools.Loader;
.ortools.sat.CpModel;
.ortools.sat.CpSolver;
.ortools.sat.CpSolverStatus;
.ortools.sat.IntVar;
.ortools.sat.IntervalVar;
.ortools.sat.LinearExpr;

.ArraylList;
.Arrays;
.Collections;
.Comparator;

HashMap ;
At

Map;
stream.IntStream;

3. Declare the model

CpModel model = new CpModel();

2. Define the data

class Task {
int machine;
int duration;
Task(int machine, int duration) {
this.machine = machine;
this.duration = duration;

final List<List<Task>> allJobs =
Arrays.asList(Arrays.asList(new Task(®, 3), new Task(1, 2), new Task(2, 2)), // Job®
Arrays.asList(new Task(®, 2), new Task(2, 1), new Task(1, 4)), // Job1l
Arrays.asList(new Task(1, 4), new Task(2, 3)) // Job2
);

int numMachines = 1;
for (List<Task> job : allJobs) {
for (Task task : job) ({
numMachines = max(numMachines, 1 + task.machine);
}
}

final int[] allMachines = IntStream.range(8, numMachines).toArray();

// Computes horizon dynamically as the sum of all durations.
int horizon = 0;
for (List<Task> job : allJobs) {
for (Task task : job) {
horizon += task.duration;

}
}

Universita di Camerino

4. Define the variables:

class TaskType {
IntVar start;
IntVar end;
IntervalVar interval;
}
Map<List<Integer>, TaskType> allTasks = new HashMap<>();
Map<Integer, List<IntervalVar>> machineToIntervals = new HashMap<>();

for (int jobID = ©; jobID < allJobs.size(); ++jobID) {
List<Task> job = allJobs.get(jobID);
for (int taskID = @; taskID < job.size(); ++taskID) {
Task task = job.get(taskID);
String suffix = “"_" + jobID + "_" + taskID;

TaskType taskType = new TaskType();
taskType.start = model.newIntVar(@, horizon, “"start" + suffix);
taskType.end = model.newIntVar(®, horizon, "end" + suffix);
taskType.interval = model.newIntervalVar(
taskType.start, LinearExpr.constant(task.duration), taskType.end, "interval" + suffix);

List<Integer> key = Arrays.asList(jobID, taskID);

allTasks.put(key, taskType);

machineToIntervals.computeIfAbsent(task.machine, (Integer k) -> new ArraylList<>());
machineToIntervals.get(task.machine).add(taskType.interval);

The Employee Scheduling problem: step by step

For each job and task, the program
uses the solver's NewlntVar method

to create the variables:
® Start_var: Start time of the task;
® End var: End time of the task.

Universita di Camerino

The Employee Scheduling problem: step by step

5. Define the constraints:

// Create and add disjunctive constraints.

for (int machine : allMachines) { The program uses the solver's
List<IntervalVar> list = machineToIntervals.get(machine); AddNoOverlap method to create
model.addNoOverlap(list); the no overlap constraints,

which prevent tasks for the

same machine from overlapping
// Precedences inside a job. in time.

for (int jobID = @; jobID < allJobs.size(); ++jobID) {
List<Task> job = allJobs.get(jobID); Next, the program adds the

for (int taskID = 0; taskID < job.size() - 1; ++taskID) { precedence constraints, which
List<Integer> prevKey = Arrays.aslList(jobID, taskID); prevent consecutive tasks for
List<Integer> nextKey = Arrays.asList(jobID, taskID + 1); the same jOb from overlapping
model.addGreaterOrEqual(allTasks.get(nextKey).start, allTasks.get(prevKey).end); in time.

}

}

}

For each job, the line requires
model.Add(the end time of a task to occur

all_tasks[job, task_id + 1].start >= all_tasks[job, task_id].end) before the start time of the next
task in the job.

1336

The Employee Scheduling problem: step by step

6. Define the objective:

// Makespan objective.
IntVar objVar = model.newIntVar(6, horizon, "makespan”);

List<IntVar> ends = new ArraylList<>();

for (int jobID = ©; jobID < allJobs.size(); ++jobID) {
List<Task> job = allJobs.get(jobID);
List<Integer> key = Arrays.asList(jobID, job.size() - 1);
ends.add(allTasks.get(key).end);

}

model .addMaxEquality(objVar, ends);

model .minimize(objVar);

7. Invoke the solver:

CpSolver solver = new CpSolver(); The expression creates a variable obj_var
CpSolverStatus status = solver.solve(model); whose values is the maximum of the end times
for all jobs (that is the makespan)

The Employee Scheduling problem: Result

. Optimal Schedule Length: 11
8. Display the results: Machine @: job_6_@ job_1_@

[0,3] [3,5]
Machine 1: job_2_0 job_0_1

[0,4] [4,6]
Machine 2: job_1_1 job_0_2
[5.6] [6,8]

1 2 3 4 5 6 7 8 9 10 1"

Machine 1 might wonder why job_1_2 was scheduled at time 7 instead of time 6. Both are valid
solutions, but the objective is to minimize the makespan. Moving job_1_2 earlier wouldn't

reduce the makespan, so the two solutions are equal from the solver's perspective.

