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Research Topics

Network of interconnected devices
that collect and exchange data to monitor, 

control or transfer relevant information 
so as to be able to perform consequent

intelligent actions

Internet of Things Business Process

A set of activities, tasks or actions to carry
out a specific organizational goal such as

a service or a product



Business Process 
Meet
Internet of Things
• Design and monitoring of the smart 

environment for a better execution, safety
and less complexity

• Bridging the gap between the high level of the 
Business Process and  the low level of the IoT 
technologies

• Programming of "dependencies between
independent devices“ in a process-oriented
vision



…Constraint programming can improve IoT systems?

However, there is no a well-established and mature 
approach that fully meet the requirements to 
represent an IoT scenario.

Findings

There isn’t a standard de facto for modeling smart 
scenarios in a process- oriented way. Existing solutions 
(86%) mainly use BPMN or an extension of it



Constraint Programming

Constraint programming is a powerful paradigm for solving combinatorial 
search problems that draws on a wide range of techniques from artificial 
intelligence (AI), operations research, algorithms, and graph theory.

The basic idea in constraint programming is that the user states the 
constraints, and a general-purpose ”constraint solver” is used to solve them.



Constraint Programming: Everyday-life example

Sudoku
- Rules for inserting numbers in the table

Gaming: Procedural Dungeon Simulation
- Procedural dungeon generation

in an open world/universe context

CPU’s Job Scheduling
- Constraints on determing which process should be 

executed



What is OR Tools?

OR-Tools is an open source software suite for optimization, for solve 
problems in vehicle routing, network flows, integer and linear 
programming, and constraint programming.



OR Tools: Identify the type of Solvers
There are many different types of optimization problems in the world. For each 
type of problem, there are different approaches and algorithms for finding an 
optimal solution. Before you can start writing a program to solve an optimization 
problem, you need to identify what type of problem you are dealing with, and 
then choose an appropriate solver — an algorithm for finding an optimal solution.

These are the types of problems that OR-Tools solves:
• Linear optimization
• Mixed-Integer optimization
• Constraint optimization
• Network flows/ Routing
• Assignment
• Scheduling



OR Tools: Installation
Download the following resources:

• “Constraints”:
• You must have the Microsoft Visual C++ Redistributable for Visual Studio 2019.

https://visualstudio.microsoft.com/downloads/?q=Visual+C%2B%2B+Redistributable+for+Visual+Studio
• You must also have a Java JDK 64 bit, version 8.0 or later installed. https://java.com/en/download/help/download_options.html
• You must also have a Maven 64 bit installed. https://maven.apache.org/download.cgi

• Visual Studio Code 2022: As IDE.
• OR-Tools Binary Distribution: 

1. Visit: https://developers.google.com/optimization/install
2. Select the distribution depending on your Operating System.
3. Unzip 

https://maven.apache.org/download.cgi
https://developers.google.com/optimization/install


OR Tools: Installation

Testing the installation (Inside the unzipped folder):

You should be able to have this output:



Possible errors
Make sure you:

• Defined environmental variables (PATH):
• For JDK, Maven, cmd view, …

• Microsoft Visual C++ Redistributable is up to date!

• Install MinGW (If “make” command doesn’t work)

• …



OR Tools: What is an optimization problem?

The goal of optimization is to find the best solution to a problem out of a large set of possible 
solutions. (Sometimes you'll be satisfied with finding any feasible solution; OR-Tools can do that 
as well.)

A typical optimization problem:

Here's a typical optimization problem. Suppose that a shipping company delivers 
packages to its customers using a fleet of trucks. Every day, the company must 
assign packages to trucks, and then choose a route for each truck to deliver its 
packages. Each possible assignment of packages and routes has a cost, based on the 
total travel distance for the trucks, and possibly other factors as well. The problem is to 
choose the assignments of packages and routes that has the least cost.



OR Tools: What is an optimization problem?

Like all optimization problems, this problem has the following 2 elements:

• The Objective: The quantity you want to optimize. Here, the objective is to minimize cost. To set up an 
optimization problem, you need to define a function that calculates the value of the objective for 
any possible solution. This is called the objective function. In the preceding example, the objective 
function would calculate the total cost of any assignment of packages and routes.

An optimal solution is one for which the value of the objective function is the best.

• The Constraints: Restrictions on the set of possible solutions, based on the specific requirements of 
the problem. For example, if the shipping company can't assign packages above a given weight to trucks, 
this would impose a constraint on the solutions. 

A feasible solution is one that satisfies all the given constraints for the problem, without necessarily being optimal.



Another linear optimization problem in Java

A linear optimization example:
- Maximize 3x + 4y subject to the following constraints:

- Both the objective function and the constraints are given 

by linear expressions, which makes this a linear problem.

The constraints define the feasible region, which is 
the triangle shown below, including its interior.



The dashed green line is defined by 
setting the objective function equal to 
its optimal value of 34. 

Any line whose equation has the form 3x + 
4y = c is parallel to the dashed line, and 34 
is the largest value of c for which the line 
intersects the feasible region

Solving a linear optimization problem in Java



The optimal value of the 
objective function is 23, 
which occurs at the point 
x = 3, y = 2.

Mixed-Integer optimization problem in Java



Comparing Linear and Integer Optimization

Let's compare the solution to the integer optimization problem, with the solution to the 
corresponding linear optimization problem, in which integer constraints are removed. 

1. Replace the MIP Solver with LP Solver; (SCIP -> GLOP)
2. Replace Integer Variables with Continuous Variables; (makeIntVar -> makeNumVar)
3. Check differences!

!"#$%&'(")

Results:

The integer solution is not close to the linear 
solution. The solutions to a linear optimization 
problem and the corresponding integer 
optimization problems can be far apart. 
Because of this, the two types of problems 
require different methods for their solution.

MIP:

LP:



OR-Tools: Constraints Programming

Constraint optimization, or constraint programming (CP), is the name given to identifying feasible 
solutions out of a very large set of candidates, where the problem can be modeled in terms of 
arbitrary constraints.

CP is based on:
- Feasibility (finding a feasible solution) rather than Optimization (finding an optimal solution)
- Focuses on constraints and variables rather than the objective function

A CP Problem may not have an objective function! Because the idea is to find a vary large set of 
possible solutions to a more manageable subset by adding constraints to the problem.



OR-Tools: Constraints Programming

Employee Scheduling example:
The problem arises when companies that operate continuously — such as factories — need to create 
weekly schedules for their employees.
The company runs three 8-hour shifts per day and assigns three of its four employees to different 
shifts each day, while giving the fourth the day off.

Actors:
- Company
- 3 runs every day (8-hours)

- 4 Employees
- Every day a different employee has a day off



OR-Tools: Constraints Programming

Even in such a small case, the number of possible schedules is huge: 

- On each day there are 4! = 4 · 3 · 2 · 1  = 24 possible employee assignments;
- The number of possible weekly schedules is 247, which is over 4.5 billion.

Note that, usually, there will be other constraints that reduce the number of feasible solutions:

- In example: Each employee should work at least a minimum number of days per week

However, the CP method keeps track of which solutions remain feasible when you add new 
constraints, making it a powerful tool for solving large, real-world scheduling problems.
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The Employee Scheduling problem

Organizations whose employees work multiple shifts need to schedule sufficient workers for each 
daily shift. Typically, the schedules will have constraints, such as:

“No employee should work two shifts in a row“

Finding a schedule that satisfies all constraints can be computationally difficult.

OR-Tools provide the CP-SAT Solver for solve such problems:



The Employee Scheduling problem:CP-SAT Solver

The CP-SAT Solver returns one of the status values shown in the table below:



The Employee Scheduling problem

In particular the example is about a nurse scheduling problem. A hospital supervisor needs to 
create a schedule for four nurses over a three-day period, subject to the following 
conditions:

• Each day is divided into three 8-hour shifts
• Every day, each shift is assigned to a single nurse, and no nurse works more than one shift.

• Each nurse is assigned to at least two shifts during the three-day period.



The Employee Scheduling problem: step by step

1. Import  the required libraries:

2.   Create Variables



The Employee Scheduling problem: step by step

3. Create the CP Model:

4. Create an array of variables:

The array defines assignments for shifts to nurses as follows: 
shifts[(n, d, s)] equals 1 if shift s is assigned to nurse n on day d, and 0 otherwise.



The Employee Scheduling problem: step by step

5. Next, we assign nurses to shifts subject to the following constraints:
• Each shift is assigned to a single nurse per day

• Each nurse works at most one shift per day

For each nurse, the sum of shifts 
assigned to that nurse is at most 1 ("at 
most" because a nurse might have the 
day off).

The last line says that for each shift, 
the sum of the nurses assigned to 
that shift is 1.



The Employee Scheduling problem: step by step

Next, we need to assign shifts to nurses as evenly as possible:

Since there are nine shifts over the three-day period, we can assign two shifts to each 
of the four nurses. After that there will be one shift left over, which can be assigned to 
any nurse.

minShiftsPerNurse: used to 
distribute the shifts evenly.

Note: If this is not possible, 
because the total
number of shifts is not divisible 
by the number of nurses, some 
nurses will be assigned one 
more shift.



The Employee Scheduling problem: step by step
Since there are num_shifts * num_days total shifts in the schedule period, you can assign at least

Shifts to each nurse, but some shifts may be left over. For the given values of:

num_nurses = 4, 
num_shifts = 3,
num_days = 3, 

The expression min_shifts_per_nurse has the value (3 * 3 / 4) = 2, so you can assign at least two 
shifts to each nurse. This is guaranteed by the constraint.

The extra shift can be assigned to any nurse:
(Ensures that no nurse is assigned more than one extra shift. The constraint isn't necessary in this 
case, because there's only one extra shift)



The Employee Scheduling problem: step by step

6. Update the solver parameters:

7. Invoke the solver and display solution:

OR-Tools has found 5184 possible solutions!! But… how?



The Employee Scheduling problem: Solutions

There are 4 choices for the one nurse who works an extra shift. Having chosen that nurse, 
there are 3 shifts the nurse can be assigned to on each of the 3 days, so the number of 
possible ways to assign the nurse with the extra shift is 4 · 33 = 108. After assigning this 
nurse, there are two remaining unassigned shifts on each day..



The Employee Scheduling problem: Solutions

Of the remaining three nurses, one works days 0 and 1, one works days 0 and 2, and one works 
days 1 and 2. There are 3! = 6 ways to assign the nurses to these days:

(The three nurses are labeled A, B, and C, and we have not yet assigned them to shifts.)

For each row in the above diagram, there are 23 = 8 possible ways to assign the remaining shifts to the 
nurses (two choices on each day). So the total number of possible assignments is 108·6·8 = 5184.



The Job Shop problem

One common scheduling problem is the job shop, in which multiple jobs are processed on 
several machines. Each job consists of a sequence of tasks, which must be performed in 
a given order, and each task must be processed on a specific machine. 
The problem is to schedule the tasks on the machines so as to minimize the length of the 
schedule—the time it takes for all the jobs to be completed.

There are several constraints for the job shop problem:
• No task for a job can be started until the previous task for that job is completed;
• A machine can only work on one task at a time;

• A task, once started, must run to completion.



The Job Shop problem

Each task is labeled by a pair of numbers (m,p) where:
• m is the number of the machine the task must be processed on;

• p is the processing time of the task (the amount of time it requires).

In the example, job 0 has three tasks. The first, (0, 3), must be processed on machine 0 in 3 units of 
time. The second, (1, 2), must be processed on machine 1 in 2 units of time, and so on. 

Altogether, there are eight tasks:



The Job Shop problem: A solution for the problem

A solution to the job shop problem is an assignment of a start time for each task, which meets the constraints 
given above. The diagram below shows one possible solution for the problem:

All the tasks for each job are scheduled at non-overlapping time intervals, in the order given by the problem.

The length of this solution is 12, which is the first time when all three jobs are complete.
However, as you will see below, this is not the optimal solution to the problem!!



The Job Shop problem: Variables and constraints for the problem

First, let task(i, j) denote the jth task in the sequence for job i. 
For example, task(0, 2) denotes the second task for job 0, which corresponds to the pair (1, 2) in the 
problem description. 
Next, define ti, j to be the start time for task(i,j). The ti,j are the variables in the job shop problem. Finding 
a solution involves determining values for these variables that meet the requirement of the problem.
There are two types of constraints for the job shop problem:

• Precedence constraints: These arise from the condition that for any two consecutive tasks in 
the same job, the first must be completed before the second can be started. 

For example, task(0, 2) and task(0, 3) are consecutive tasks for job 0. Since the processing time for        
task(0, 2) is 2, the start time for task(0, 3) must be at least 2 units of time after the start time for 
task 2. (Perhaps task 2 is painting a door, and it takes two hours for the paint to dry.) As a result, 
you get the following constraint: 

t 0,2 + 2  ≤  t0,3



The Job Shop problem: Variables and constraints for the problem

• No overlap constraints: These arise from the restriction that a machine can't work on two tasks 
at the same time. For example, task(0, 2) and task(2, 1) are both processed on machine 1. Since 
their processing times are 2 and 4, respectively, one of the following constraints must hold:

t 0,2 + 2  ≤  t2,1 if( task(0,2) is scheduled before task(2,1))        OR
t 2,1 + 4  ≤  t0,2 if( task(2,1) is scheduled before task(0,2))

Objective for the problem:
The objective of the job shop problem is to minimize the makespan: the length of time from 
the earliest start time of the jobs to the latest end time.



The Employee Scheduling problem: step by step

1. Import  the required libraries:                  2. Define the data

3. Declare the model



The Employee Scheduling problem: step by step

4. Define the variables:

For each job and task, the program 
uses the solver's NewIntVar method 
to create the variables:

• Start_var: Start time of the task;

• End_var: End time of the task.



The Employee Scheduling problem: step by step

5. Define the  constraints:

The program uses the solver's 
AddNoOverlap method to create 
the no overlap constraints, 
which prevent tasks for the 
same machine from overlapping 
in time.

Next, the program adds the 
precedence constraints, which 
prevent consecutive tasks for 
the same job from overlapping 
in time.

For each job, the line requires 
the end time of a task to occur 
before the start time of the next 
task in the job.



The Employee Scheduling problem: step by step

6. Define the objective:

7. Invoke the solver:
The expression creates a variable obj_var
whose values is the maximum of the end times 
for all jobs (that is the makespan)



The Employee Scheduling problem: Result

8. Display the results:

Machine 1 might wonder why job_1_2 was scheduled at time 7 instead of time 6. Both are valid 
solutions, but the objective is to minimize the makespan. Moving job_1_2 earlier wouldn't 
reduce the makespan, so the two solutions are equal from the solver's perspective.


