
Constraint Programming 
with Google OR-Tools



What is OR Tools?

OR-Tools is an open source software suite for optimization, for solve 
problems in vehicle routing, network flows, integer and linear 
programming, and constraint programming.



OR Tools: Identify the type of Solvers
There are many different types of optimization problems in the world. For each 
type of problem, there are different approaches and algorithms for finding an 
optimal solution. Before you can start writing a program to solve an optimization 
problem, you need to identify what type of problem you are dealing with, and 
then choose an appropriate solver — an algorithm for finding an optimal solution.

These are the types of problems that OR-Tools solves:

• Linear optimization

• Mixed-Integer optimization

• Constraint optimization

• Network flows/ Routing

• Assignment

• Scheduling



The Employee Scheduling problem:CP-SAT Solver

The CP-SAT Solver returns one of the status values shown in the table below:



OR-Tools: Constraints Programming
Employee Scheduling example:
The problem arises when companies that operate continuously — such as factories — need to create 
weekly schedules for their employees.
The company runs three 8-hour shifts per day and assigns three of its four employees to different 
shifts each day, while giving the fourth the day off.

Actors:

- Company

- 3 runs every day (8-hours)

- 4 Employees

- Every day a different employee has a day off



The Employee Scheduling problem

Organizations whose employees work multiple shifts need to schedule sufficient workers for each 
daily shift. Typically, the schedules will have constraints, such as:

“No employee should work two shifts in a row“

 Finding a schedule that satisfies all constraints can be computationally difficult.

OR-Tools provide the CP-SAT Solver for solve such problems:



The Employee Scheduling problem
In particular the example is about a nurse scheduling problem. A hospital supervisor needs to 
create a schedule for four nurses over a three-day period, subject to the following 
conditions:

• Each day is divided into three 8-hour shifts

• Every day, each shift is assigned to a single nurse, and no nurse works more than one shift.

• Each nurse is assigned to at least two shifts during the three-day period.



The Employee Scheduling problem: step by step
Next, we need to assign shifts to nurses as evenly as possible:

Since there are nine shifts over the three-day period, we can assign two shifts to each 
of the four nurses. After that there will be one shift left over, which can be assigned to 
any nurse.

minShiftsPerNurse: used to 
distribute the shifts evenly.

Note: If this is not possible, 
because the total
 number of shifts is not divisible 
by the number of nurses, some 
nurses will be assigned one 
more shift.



The Employee Scheduling problem: Solutions

There are 4 choices for the one nurse who works an extra shift. Having chosen that nurse, 
there are 3 shifts the nurse can be assigned to on each of the 3 days, so the number of 
possible ways to assign the nurse with the extra shift is 4 · 33 = 108. After assigning this 
nurse, there are two remaining unassigned shifts on each day..



The Job Shop problem

One common scheduling problem is the job shop, in which multiple jobs are processed on 
several machines. Each job consists of a sequence of tasks, which must be performed in 
a given order, and each task must be processed on a specific machine. 
The problem is to schedule the tasks on the machines so as to minimize the length of the 
schedule—the time it takes for all the jobs to be completed.

There are several constraints for the job shop problem:

• No task for a job can be started until the previous task for that job is completed;

• A machine can only work on one task at a time;

• A task, once started, must run to completion.



The Job Shop problem

Each task is labeled by a pair of numbers (m,p) where:

•  m is the number of the machine the task must be processed on;

•  p is the processing time of the task (the amount of time it requires).

In the example, job 0 has three tasks. The first, (0, 3), must be processed on machine 0 in 3 units of 
time. The second, (1, 2), must be processed on machine 1 in 2 units of time, and so on. 
Altogether, there are eight tasks:



The Job Shop problem: A solution for the problem

A solution to the job shop problem is an assignment of a start time for each task, which meets the constraints 
given above. The diagram below shows one possible solution for the problem:

All the tasks for each job are scheduled at non-overlapping time intervals, in the order given by the problem.

The length of this solution is 12, which is the first time when all three jobs are complete.
However, as you will see below, this is not the optimal solution to the problem!!



The Employee Scheduling problem: Result

8. Display the results:

Machine 1 might wonder why job_1_2 was scheduled at time 7 instead of time 6. Both are valid 
solutions, but the objective is to minimize the makespan. Moving job_1_2 earlier wouldn't 
reduce the makespan, so the two solutions are equal from the solver's perspective.



The n-Towers Problem

The n-Towers problem is a constraint programming (CP) by a combinatorial problem based on the game of 
chess. In chess, a tower can attack horizontally and vertically. The n-Towers problem asks:

How can N towers be placed on an NxN chessboard so that no two of them attack each other?



The n-Towers Problem: a possible solution

Below, you can see one possible solution to the N-queens problem for N = 4.

No two towers are on the same row or column

Note that this isn't an optimization problem: we want to 
find all possible solutions, rather than one optimal solution, 
which makes it a natural candidate for constraint 
programming. 



CP approach to the N-towers problem

A CP solver works by systematically trying all possible assignments of values to the 
variables in a problem, to find the feasible solutions.

In the 4-towers problem, the solver starts at the leftmost column and successively places 
one tower in each column, at a location that is not attacked by any previously placed 
towers.

1

2

3

4



CP approach to the N-towers problem

Constraints:

1. There must be one tower in each column;

2. There must be one tower in each row;

3. N must be equal for number of towers, rows and columns.



Propagation and backtracking

There are two key elements to a constraint programming search:

• Propagation — Each time the solver assigns a value to a variable, the constraints add 
restrictions on the possible values of the unassigned variables. These restrictions 
propagate to future variable assignments. For example, in the 4-towers problem, each time 
the solver places a tower, it can't place any other queens on the row and column the 
current tower is on. Propagation can speed up the search significantly by reducing the 
set of variable values the solver must explore.

• Backtracking occurs when either the solver can't assign a value to the next variable, 
due to the constraints, or it finds a solution. In either case, the solver backtracks to a 
previous stage and changes the value of the variable at that stage to a value that hasn't 
already been tried. In the 4-towers example, this means moving a tower to a new square on 
the current column.



Propagation and backtracking
How constraint programming uses propagation and backtracking to solve the 4-towers problem?

Let's suppose the solver starts by arbitrarily placing a tower in the upper left corner. That's a 
hypothesis of sorts; perhaps it will turn out that no solution exists with a tower in the upper left 
corner. 

Given this hypothesis, what constraints can we propagate? One constraint is that there can be only 
one tower in a column (the gray Xs below), and another constraint prohibits two towers on the same 
row (the red Ys below).



Propagation and backtracking

Our constraints propagated, we can test out another hypothesis, and place a second tower on one 
of the available remaining squares. Our solver might decide to place in it the first available square in 
the second column:



1. Import Libraries

2. Declare the model

3. Create the variables

The n-Towers Problem

Here we assume that towers[j] is the row 
number for the queen in column j. In other 
words, towers[j] = i means there is a tower 
in row i and column j.

Note: When drawing a diagram of a 
solution, you will get a different picture 
depending on whether the rows are ordered 
from bottom to top or top to bottom (and 
whether the columns are ordered from left 
to right or vice versa). However, the 
ordering doesn't change the set of all 
possible solutions, just the way they are 
represented in a diagram.



4. Create the constraints

The n-Towers Problem

The code uses the 
AddAllDifferent method, 
which requires all the 
elements of a variable array 
to be different.

No two towers on the same row
Applying the solver's AllDifferent method 
to towers forces the values of towers[j] to 
be different for each j, which means that all 
towers must be in different rows.

No two towers on the same column
This constraint is implicit in the definition of 
towers. Since no two elements of towers can 
have the same index, no two towers can be in 
the same column.



5. Create a solution pointer

To print all solutions to the n-Towers problem, you need to 
pass a callback, called a solution printer, to the CP-SAT 
solver. The callback prints each new solution as the solver 
finds it. 

6. Call the solver and display the results 

The n-Towers Problem



The n-Queens Problem: Assignment

The n-Queens problem is a constraint programming (CP) by a combinatorial problem based on the game of 
chess. In chess, a queen can attack horizontally, vertically, and diagonally. The n-Queens problem asks:

How can N queens be placed on an NxN chessboard so that no two of them attack each other?



CP approach to the N-queens problem

Constraints:

1. There must be one queen in each column;

2. There must be one queen in each row;

3. N must be equal for number of towers, rows and columns;

4. There must be one queen in each diagonal.

Some advices for the assignment:



Propagation and backtracking
How constraint programming uses propagation and backtracking to solve the 4-queens problem?

Let's suppose the solver starts by arbitrarily placing a tower in the upper left corner. That's a 
hypothesis of sorts; perhaps it will turn out that no solution exists with a tower in the upper left 
corner. 

Given this hypothesis, what constraints can we propagate? One constraint is that there can be only 
one queen in a row (the red Xs below), and another constraint prohibits two queens on the same 
diagonal and column (the grey Xs below)



Propagation

Our constraints propagated, we can test out another hypothesis, and place a second queen on one 
of the available remaining squares. Our solver might decide to place in it the first available square in 
the second column:

After propagating the diagonal constraint, we can see that it leaves no available squares in 
either the third column or last row.



Backtracking
With no solutions possible at this stage, we need to backtrack. One option is for the solver to 
choose the other available square in the second column. However, constraint propagation then 
forces a queen into the second row of the third column, leaving no valid spots for the fourth 
queen:

After propagating the diagonal constraint, we can see that it leaves no available squares in 
either the third column or last row.

Backtracking



Another Backtracking
And so the solver must backtrack again, this time all the way back to the placement of the 
first queen. We have now shown that no solution to the queens problem will occupy a corner 
square. Since there can be no queen in the corner, the solver moves the first queen down by 
one, and propagates, leaving only one spot for the second queen:

Propagating again reveals only one spot left for the third queen.


