
A Formal Approach to Modelling and Verification of
Business Process Collaborations

Barbara Re

November 29, 2018

1 / 56

Table of Contents

Basic Idea

BPMN Direct Formalization
� BNF Syntax
� Operational Semantics

Properties Verification: Safeness, Soundness and Compliance

Maude Implementation and BProVe tool chain

Concluding Remarks

2 / 56

Basic Idea

OMG did not provide a rigorous semantics for BPMN 2.0

� Possible miss-interpretations due to the usage of the natural language in the
specification of the standard

� Formal verification is not supported per se
� ...

Provide a direct formalisation of BPMN 2.0 collaboration diagram in
terms of Labelled Transition Systems

Major Benefits
� It is a native semantics, rather than a mapping to a formal notation equipped with

its own semantics
� Besides core elements such as tasks, gateways, etc., it takes into account message

exchange, and termination events which are often overlooked by other
formalisations

� It is suitable to model business processes with arbitrary topology, without
imposing restrictions to the modeler, such as well-structuredness

3 / 56

Considered BPMN 2.0 Elements

4 / 56

BPMN 2.0: Airline Collaboration Example
C

u
s
to

m
e
r

T
ra

v
e
l A

g
e
n
c
y

A
ir
lin

e

Offer
Received

Check Offer

Reject Offer

Book Travel

Is the offer
interesting?

Booking
Confirmed

Offer
Rejected

Pay Travel

Payment
Confirmation

Received

Travel
Paid

Offer
Needed

Make Travel
Offer

Booking
Received

Offer Rejection
Received

Offer
Cancelled

Confirm
Booking

Order
Ticket

Payment
Received

Ticket
Ordered

Ticket
Order

Received

Handle
Payment

Confirm
Payment

 Was Payment
Made?

Payment
Confirmed

Payment
Refused

No

Yes

No

Yes

Offer Rejection Payment

Order Payment Confirmation

Travel Confirmation

5 / 56

BNF Syntax Derivation

A term of the syntax can be straightforwardly obtained from a BPMN model by
decomposing:

� Collaboration in collection of pools
� Processes in collections of nodes
� Edges in two parts

Considered specifications are well-defined (easily checked through static analysis), this
implies that distinct pools, messages and sequences have different names

6 / 56

BNF Syntax

(Collaborations) C ::=
o P

m1 mk

| C1 C2

(Processes) P ::=

7 / 56

BNF Syntax: Airline Collaboration Example

8 / 56

BNF Syntax: Airline Collaboration Example (Cus-
tomer)

Check Offer

Reject Offer

Book Travel

 e5

Offer

e3 e3

 e5

e1 e1 e2 e2 Travel

Rejection

9 / 56

Operational Semantics: Marked Collaborations

The semantics of BPMN is given in terms of marked collaborations

A marking is a distribution of tokens (possibly multiple) over pool message edges and
process elements that indicate message arrivals and the process nodes that are active or
not in a given step of the execution

� A single token is denoted by ‚
� Multiple tokens labelling a message edge m (resp. sequence edge e) are denoted

by m.n (resp. e.n), where n P N is the token multiplicity

Even if single instance business process are considered the use of tokens with
multiplicity is necessary

.t1

t2

The initial marking of a collaboration assigns a single token to a start event of each
process in the collaboration

10 / 56

Operational Semantics: Process Labels

The labeled transition relation of the LTS defining the semantics of collaborations layer
and uses an auxiliary transition relation defining the semantics of process layer

P
α- P 1

pActionsq α ::“ τ | !m | ?m

pInternal actionsq τ ::“ running t | completed t | p´ẽ1,`ẽ2q | kill

� τ denotes an action internal to the process
� !m and ?m denote sending and receiving actions, respectively
� running t and completed t denote the start and completion of the execution of

task t, respectively
� p´ẽ1,`ẽ2q denotes movement of workflow tokens in the process graph
� kill denotes the termination of the whole process

11 / 56

Operational Semantics Processes Layer: Events (I)

(E-Startq e.0 `e- e.1

(E-Endq
e.n ´e-

e.n 1́
n ą 0

(E-Terminateq
e.n

0
´e- e.n 1́

1 n ą 0

(E-Killq
e.n

1
kill- e.0

0

12 / 56

Operational Semantics Processes Layer: Events (II)

(E-Receiveq

m

e.0 ?m-

m

e.0

(E-MsgStartq

m

e.0 `e-

m

e.1

(E-MsgEndq

m

e.n ´e-

m

e.n 1́
n ą 0

(E-Sendq

m

e.n !m-

m

e.n

13 / 56

Operational Semantics Processes Layer: Events
(III)

(E-EnableIntermq

m

e1.n1 e2.n2 ´e1-

m

e1.n1 1́ e2.n2 n1 ą 0

(E-ReceiveIntermq

m

e1.n1 e2.n2 ?m-

m

e1.n1 e2.n2

(E-SendIntermq

m

e1.n1 e2.n2 !m-

m

e1.n1 e2.n2

(E-CompleteIntermq

m

e1.n1 e2.n2 `e2-

m

e1.n1 e2.n2 1̀

14 / 56

Operational Semantics Processes Layer: Gateway
(Split)

(G-XorSplitq
e1.n1

e2.n2

...
ei .ni

...

eh.nh

p´e1,`ei q- e1.n1 1́

e2.n2

...
ei .ni 1̀

...

eh.nh

n1 ą 0
2 ď i ď h

(G-AndSplitq e1.n1

e2.n2

...

eh.nh

p´e1,`te2,...,ehuq-
e1.n1 1́

e2.n2 1̀

...

eh.nh 1̀

n1 ą 0

15 / 56

Operational Semantics Processes Layer: Gateway
(Join)

(G-XorJoinq
ei .ni

e2.n2

...
e1.n1

...

eh.nh

p´ei ,`e1q- ei .ni 1́

e2.n2

...
e1.n1 1̀

...

eh.nh

ni ą 0
2 ď i ď h

(G-AndJoinq e1.n1

e2.n2

...

eh.nh

p´te2,...,ehu,`e1q- e1.n1 1̀

e2.n2 1́

...

eh.nh 1́
n2, . . . , nh ą 0

16 / 56

Operational Semantics Processes Layer: Event
Based Gateway (I)

(G-EnableEventq

e1.n1

e2.n2

...
ei .ni

m2

...

mi

eh.nh
mh

´e1- e1.n1 1́

e2.n2

...
ei .ni

m2

...

mi

eh.nh
mh

n1 ą 0

17 / 56

Operational Semantics Processes Layer: Event
Based Gateway (II)

(G-ReceiveEventq

e1.n1

e2.n2

...
ei .ni

m2

...

mi

eh.nh
mh

?mi- e1.n1

e2.n2

...
ei .ni

m2

...

mi

eh.nh
mh

2 ď i ď h

18 / 56

Operational Semantics Processes Layer: Event
Based Gateway (III)

(G-CompleteEventq

e1.n1

e2.n2

...
ei .ni

m2

...

mi

eh.nh
mh

`ei- e1.n1

e2.n2

...
ei.ni 1̀

m2

...

mi

eh.nh
mh

2 ď i ď h

19 / 56

Operational Semantics Processes Layer: Task

(T-Enableq t
e1.n1 e2.n2 ´e1- t

e1.n1 1́ e2.n2

n1 ą 0

(T-Runningq t
e1.n1 e2.n2 running t- t

e1.n1 e2.n2

(T-Completeq t
e1.n1 e2.n2 completed t- t

e1.n1 e2.n2

(T-Proceedq t
e1.n1 e2.n2 `e2- t

e1.n1 e2.n2 1̀

20 / 56

Status of Non-Communicating Tasks

t
e1.n1 e2.n2

t
e1.n1 e2.n2

Disabled Enabled

t
e1.n1 e2.n2

t
e1.n1 e2.n2

Running Completed

21 / 56

Operational Semantics Processes Layer:
Communicating Task (I)

(T-Enablemsg q

m

t
e1.n1 e2.n2 ´e1-

m

t
e1.n1 1́ e2.n2

n1 ą 0

(T-Runningmsg q

m

t
e1.n1 e2.n2 running t-

m

t
e1.n1 e2.n2

(T-Completemsg q

m

t
e1.n1 e2.n2 completed t-

m

t
e1.n1 e2.n2

(T-Proceedmsg q

m

t
e1.n1 e2.n2 `e2-

m

t
e1.n1 e2.n2 1̀

22 / 56

Operational Semantics Processes Layer:
Communicating Task (II)

(T-Sendq

m

t
e1.n1 e2.n2 !m-

m

t
e1.n1 e2.n2

(T-Receiveq

m

t
e1.n1 e2.n2 ?m-

m

t
e1.n1 e2.n2

23 / 56

Status of Communicating Tasks

m

t
e1.n1 e2.n2

m

t
e1.n1 e2.n2

Disabled Enabled

m

t
e1.n1 e2.n2

m

t
e1.n1 e2.n2

m

t
e1.n1 e2.n2

Before msg exchange After msg exchange
Running Completed

24 / 56

Operational Semantics Process Layer: Node Collec-
tion

pN-MarkingUpdq
P1

p´ẽ1,`ẽ2q- P 11

P1 P2
p´ẽ1,`ẽ2q- P 11 P2 ¨ p´ẽ1,`ẽ2q

pN-Killq
P1

kill- P 11

P1 P2
kill- P 11 P2:

pN-Interleavingq
P1

α- P 11 α R tp´ẽ1,`ẽ2q, killu

P1 P2
α- P 11 P2

25 / 56

Operational Semantics: Making Updating Function

P ¨ p´ẽ1,`ẽ2q

Marking updating function returns a process obtained from P by unmarking (resp. marking)
edges in ẽ1 (resp. ẽ2)

It is inductively defined on the structure of process P and, with abuse of notation, extends to
terms of the form e.n as follows:

e.n ¨ p´ẽ1,`ẽ2q “

$

&

%

e.n´1 if e P ẽ1
e.n`1 if e P ẽ2
e.n otherwise

Few cases of the definition (the others are similar):

pP1 P2q ¨ p´ẽ1,`ẽ2q “ P1 ¨ p´ẽ1,`ẽ2q P2 ¨ p´ẽ1,`ẽ2q

p

e.n1
q ¨ p´ẽ1,`ẽ2q “

e.n1 ¨ p´ẽ1,`ẽ2q

26 / 56

Operational Semantics: Killing Function

P :

Killing function returns a process obtained from P by completely unmarking it

It is inductively defined on the structure of process P as follows (few cases):

pP1 P2q: “ P1: P2:

p
e.n1

q: “
e.0

p
e1.n1

e2.n2

...

eh.nh

q: “
e1.0

e2.0

...

eh.0

27 / 56

Operational Semantics: Collaboration Labels

C
l- C 1

pLabelsq l ::“ o : τ | o :?m | o1 Ñ o2 : m

� o : τ denotes an internal action action τ peformed by the process instance of
organisation o

� o :?m denotes an internal action action ?m peformed by the process instance of
organisation o

� o1 Ñ o2 : m denotes the exchange of a message m from organisation o1 to o2

28 / 56

Operational Semantics Collaboration Layer (I)

pC -Internalq

P
τ- P 1

o P

m1.n1 mk.nk

o:τ- o P 1

m1.n1 mk.nk

pC -Receiveq
P

?m- P 1 n ą 0

o P

m1.n1 m.n mk.nk

o:?m- o P 1

m1.n1 m.pn´1q mk.nk

29 / 56

Operational Semantics Collaboration Layer (II)

pC -Deliverq
P1

!m- P 11

o1 P1

m11.n11 m.n1 mk1.nk1

o2 P2

m21.n21 m.n2 mk2.nk2

o1Ño2:m-

o1 P 11

m11.n11 m.n1 mk1.nk1

o2 P2

m21.n21 m.pn2̀ 1q mk2.nk2

pC -Interleavingq
C1

l- C 11

C1 C2
l- C 11 C2

30 / 56

Semantics of the Running Example (I)

Initial Configuration
C

u
s
to

m
e
r

T
ra

v
e
l A

g
e
n
c
y

A
ir
lin

e

Offer
Received

Check Offer

Reject Offer

Book Travel

Is the offer
interesting?

Booking
Confirmed

Offer
Rejected

Pay Travel

Payment
Confirmation

Received

Travel
Paid

Offer
Needed

Make Travel
Offer

Booking
Received

Offer Rejection
Received

Offer
Cancelled

Confirm
Booking

Order
Ticket

Payment
Received

Ticket
Ordered

Ticket
Order

Received

Handle
Payment

Confirm
Payment

 Was Payment
Made?

Payment
Confirmed

Payment
Refused

No

Yes

No

Yes

Offer Rejection Payment

Order Payment Confirmation

Travel Confirmation

31 / 56

Semantics of the Running Example (II)

Make Travel Offer Task is Running (before message exchange) in the Travel Agency
Pool, while Customer and Airline are in the Initial State

C
u
s
to

m
e
r

T
ra

v
e
l A

g
e
n
c
y

A
ir
lin

e

Offer
Received

Check Offer

Reject Offer

Book Travel

Is the offer
interesting?

Booking
Confirmed

Offer
Rejected

Pay Travel

Payment
Confirmation

Received

Travel
Paid

Offer
Needed

Make Travel
Offer

Booking
Received

Offer Rejection
Received

Offer
Cancelled

Confirm
Booking

Order
Ticket

Payment
Received

Ticket
Ordered

Ticket
Order

Received

Handle
Payment

Confirm
Payment

 Was Payment
Made?

Payment
Confirmed

Payment
Refused

No

Yes

No

Yes

Offer Rejection Payment

Order Payment Confirmation

Travel Confirmation

32 / 56

Semantics of the Running Example (III)

Check Offer Task is Running in the Customer Pool, Event Based is Enable in the Travel
Agency Pool, while the Airline is in the Initial State

C
u
s
to

m
e
r

T
ra

v
e
l A

g
e
n
c
y

A
ir
lin

e

Offer
Received

Check Offer

Reject Offer

Book Travel

Is the offer
interesting?

Booking
Confirmed

Offer
Rejected

Pay Travel

Payment
Confirmation

Received

Travel
Paid

Offer
Needed

Make Travel
Offer

Booking
Received

Offer Rejection
Received

Offer
Cancelled

Confirm
Booking

Order
Ticket

Payment
Received

Ticket
Ordered

Ticket
Order

Received

Handle
Payment

Confirm
Payment

 Was Payment
Made?

Payment
Confirmed

Payment
Refused

No

Yes

No

Yes

Offer Rejection Payment

Order Payment Confirmation

Travel Confirmation

33 / 56

Verification - Soundness & Safeness Properties

The investigation of properties of business process models is an important aspect of business
process management

Behavioral correctness relates to potential sequences of execution as defined by the process
model

The business process model must be analyzed and improved to make sure
� If it actually includes all desired instances
� If a certain desired property at the business process model level can be shown, then all

process instances based on that business process model expose this property
� If a certain property is undesired at the business process model level can be shown, then

all process instances do not have to expose this property

Verification is an error-prone activities, to be repeated several times, for which automatic tools
are necessary

34 / 56

Verification - Safeness, Soundness & Compliance

Safeness refers to the occurrence of no more than one token at the same time along the same
sequence edge of a process instance

Soundness property can be encoded in terms of three simpler ones:
� Option To Complete, requiring that a process instance can always complete, once started
� Proper Completion, requiring that there exists no running or enabled activity for this

instance when the process instance completes
� No Dead Activities, requiring that a process model does not contain any dead activity,

i.e., for each activity there exists at least one producible trace which contains the activity

Business Process Compliance means the execution of business processes in compliance with
imposed rules

These properties naturally extend to process collaborations, requiring that the process in-
stances of all involved organisations satisfy them

35 / 56

Properties Formalization in LTL

In the verification we use Linear temporal logic (LTL) such as a modal temporal logic with
modalities referring to time

In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be
true, a condition will be true until another fact becomes true, etc.

The formulas are obtained as composition of the following basic cases:
� <> φ, where the operator <> (corresponding to the LTL operator F) is used to verify if a

formula φ eventually holds. That is, in any possible execution path we always encounter
a state where φ holds

� [] φ, where the operator [] (corresponding to the LTL operator G) is used to verify if a
formula φ globally holds. That is, φ holds in all states encountered in any possible
execution path

� φ -> ϕ, where the operator -> is the standard boolean implication

36 / 56

Properties Abstraction via Sub-formulae

We also define sub-formulae which make the approach effective because they abstract low level
parts of LTL formulae and will be reused whatever is the model to analyze

aBPstarts. It is satisfied if at least a process in the collaboration can start

aBPstartsParameterized. It is satisfied if the process associated to a specific Pool (identified
by its Organization Name) can always start

aTaskComplete. It is satisfied if in the all Collaboration, there is at least one Task that can
always be marked as “completed”

aTaskCompletedParameterized. It is satisfied if a specified Task in the Collaboration will
always complete

aTaskRunningParameterized. It is satisfied if a specified Task in the Collaboration will be able
to run

aBPSndMsg (resp. aBPRcvMsg). It is satisfied if a specified message is sent (resp. received)

37 / 56

Properties Verification - Safeness

Safeness can be encoded in terms of one single condition only, safeState

safeState evaluates to true in states that satisfy the auxiliary function
noMultipleToken, which verifies that on each sequence edge there is at most one
token

[] safeState(poolName)

The above formula verifies that from any state ([]) it is true or not

38 / 56

Properties Verification - Soundness Option To Com-
plete

Option To Complete requirs that a process instance can always complete, once
started

[](aBPstarts(poolName) -> <>aBPends(poolName))

The above formula verifies that from any state ([]) in which the pool can start
(aBPstarts(poolName)), we eventually reach a state (<>) where the pool
completes its execution (aBPends(poolName))

39 / 56

Properties Verification - Soundness Proper Comple-
tion

Proper Completion requiring that there exists no running or enabled activity for
this instance when the process instance completes

In particular, we check that whenever a token reaches the end of the pool, then
no other token remains unused within the pool

[](aBPends(poolName) -> NoDandlingToken(poolName))

Differently from Option To Complete, now the right-hand side of the implication
does not have a <> operator because we check the NoDanglingToken condition
on the same state that satisfied aPoolEnds

40 / 56

Properties Verification - Soundness No Dead Activ-
ities

No Dead Activities relies that a process model does not contain any dead
activity, i.e., for each activity there exists at least one producible trace which
contains the activity

<> aTaskRunning(taskName)

It relies on the verification of the condition aTaskRunning, which establishes that
a given task can be set, at least once, in the status Running (meaning that the
task is currently being executed)

41 / 56

Compliance Rules - Example

C
u

s
to

m
e

r
T

ra
v
e

l A
g

e
n

c
y

A
ir
lin

e

Offer
Received

Check Offer

Reject Offer

Book Travel

Is the offer
interesting?

Booking
Confirmed

Offer
Rejected

Pay Travel

Payment
Confirmation

Received

Travel
Paid

Offer
Needed

Make Travel
Offer

Booking
Received

Offer Rejection
Received

Offer
Cancelled

Confirm
Booking

Order
Ticket

Payment
Received

Ticket
Ordered

Ticket
Order

Received

Handle
Payment

Confirm
Payment

 Was Payment
Made?

Payment
Confirmed

Payment
Refused

No

Yes

No

Yes

Offer Rejection Payment

Order Payment Confirmation

Travel Confirmation

aTaskCompletedParameterized("Handle Payment")
|-ą aTaskCompletedParameterized("Confirm Payment") false

42 / 56

Checking Properties on our Running Example

1 <>[] safeState(poolName) true
2 <>[](aPoolCanStart(poolName) |-ą <>aPoolEnds(poolName)) false
3 <>[](aPoolEnds(poolName) |-ą NoDandlingToken(poolName)) true
4 <><> aTaskRunning(taskName) True
5 <>aBPoolstarts true
6 <>aBPstartsParameterized("Airline") false
7 <>aBPoolends true
8 <>aBPendsParameterized("Customer") false
9 <>aTaskComplete true
10 <>aTaskComplete("Handle Payment") false

11 rs (aTaskRunningParameterized("Confirmation Booking")
->(<>aTaskCompleteParameterized("Confirmation Booking"))) true

12 aTaskCompleteParameterized("Handle Payment")
|-ą aTaskCompleteParameterized("Confirm Payment") false

13 aBPoolSndMsg("Customer", "Payment")
|-ą aBPoolRcvMsg("Customer","Payment Confirmation") false

43 / 56

Maude Implementation

To concretely validate our theoretical definitions and to practically enable verification
of BPMN collaborations, both the syntax and the operational semantics have been
implemented using Maude1

Maude enables formal verification of BPMN collaborations, e.g., by means of the
MAUDE state space generator and the MAUDE LTL model checker

Using our Maude implementation of BPMN we can verify some properties by expressing
them in terms of LTL formulae and by using the Maude LTL model checker

1http://pros.unicam.it/tools/bprove
44 / 56

Maude Operation (Syntax)

Each BPMN element is declared as a Maude operation written according to the
following general form

op element(_, ... ,_) : Sort-1 ... Sort-k -> RSort .

Its meaning is:
� the keyword op indicates the definition of an operation
� element is the name of the operation that we define
� (_, ... ,_) specifies that the element operation is characterized by a number

of parameters, whose sorts Sort-1 , ... , Sort-k are reported after the : symbol
� the -> symbol is followed by the resulting sort RSort of the element operation
� finally, the . symbol is used to end the line of code

45 / 56

Minimal Collaboration Example

collaboration(
pool("Customer" ,

proc(
{emptyAction}
start(enabled , "e1" . 0) |
task(disabled , "e1" . 0 , "o1" . 0, "Check Offer") |
end("o1" . 0)

) , in: emptyMsgSet , out: emptyMsgSet
)

) .

46 / 56

Minimal Collaboration Example Syntax - Start

collaboration(
pool("Customer" ,

proc(
{emptyAction}
start(enabled , "e1" . 0) |
task(disabled , "e1" . 0 , "o1" . 0, "Check Offer") |
end("o1" . 0)

) , in: emptyMsgSet , out: emptyMsgSet
)

) .

op start(_,_) : Status Edge -> ProcElement .
ops disabled enabled running completed ... : -> Status .
op _._ : EdgeName EdgeToken -> Edge .

47 / 56

Minimal Collaboration Example Syntax - Task

collaboration(
pool("Customer" ,

proc(
{emptyAction}
start(enabled , "e1" . 0) |
task(disabled , "e1" . 0 , "o1" . 0, "Check Offer") |
end("o1" . 0)

) , in: emptyMsgSet , out: emptyMsgSet
)

) .

op task(_,_,_,_) : Status Edge Edge TaskName -> ProcElement .
ops disabled enabled running completed ... : -> Status .
op _._ : EdgeName EdgeToken -> Edge .

48 / 56

Minimal Collaboration Example Syntax - End

collaboration(
pool("Customer" ,

proc(
{emptyAction}
start(enabled , "e1" . 0) |
task(disabled , "e1" . 0 , "o1" . 0, "Check Offer") |
end("o1" . 0)

) , in: emptyMsgSet , out: emptyMsgSet
)

) .

op end(_) : Edge -> ProcElement .
op _._ : EdgeName EdgeToken -> Edge .

49 / 56

Minimal Collaboration Example Syntax

collaboration(
pool("Customer" ,
proc(
{emptyAction}
start(enabled , "e1" . 0) |
task(disabled , "e1" . 0 , "o1" . 0, "Check Offer") |
end("o1" . 0)

) , in: emptyMsgSet , out: emptyMsgSet
)

) .

op proc(_) : ActProcElement -> Process .
op __ : Action ProcElement -> ActProcElement .
op pool(_,_,in:_,out:_) : OrgName Process Msgs Msgs -> Collaboration .
op collaboration(_) : ActCollaboration -> Model .
op __ : CollaborationAction Collaboration -> ActCollaboration .

50 / 56

Maude Rewriting Rules (Semantics)

According to the presented syntax, we implemented the semantics by means of rewriting
rules and conditional rewriting rules, which we write respectively in the following
general forms

rl [Label] : Term-1 => Term-2 .

crl [Label] : Term-1 => Term-2 if Condition-1 /\... /\Condition-N .

51 / 56

Some Rewriting Rules

rl [E-Start] :
start(enabled , IEName . IEToken)
=>
{tUpd(emptyEdgeSet , IEName . IEToken)}
start(disabled , IEName . increaseToken(IEToken)) .

crl [N-Interleaving] :
ProcElem1 | ProcElem2
=>
{Action1} (ProcElem1’ | ProcElem2)
if ProcElem1 => Action1ProcElem1’ /\ isInterleaving(Action1) .

crl [C-Internal] :
pool(OrgName1, proc({Action1} ProcElem1), in:inMsgSet , out:outMsgSet)
=>
{collab(OrgName1 , Action1’)}
pool(OrgName1, proc({Action1’}ProcElem1’), in:inMsgSet , out:outMsgSet)
if ProcElem1 => {Action1’} ProcElem1’ / \ isInternal(Action1’) .

52 / 56

Eclipse and Apromore Tool Chain

A tool chain integrating the verification
environment with BPMN modelling
environments, such as Eclipse BPMN

Modeller and Apromore platform has been
developed

Verification will be applied in a wide range of real scenarios for a more extensive
evaluation of the approach

53 / 56

BProVe - Sequence Diagram

54 / 56

Conclusions

The lack of a shared, well-established, comprehensive formal semantics for BPMN
was the main driver of our work

A direct formalisation of BPMN 2.0 collaboration diagram in terms of Label Transition
System was defined

� It enables designers to freely specify their processes with an arbitrary topology
supporting the adherence to the standard, without the requirement of defining
well-structured models

The semantics was implemented in Maude
� This enables the exploration of the evolution of BPMN collaborations, and it

permits to exploit the analysis tool set provided by Maude

A complete tool chain presenting a modelling environment and a service for the
automatic verification of properties over the designed BPMN models was designed and
implemented

55 / 56

References

Corradini, F., Polini, A., Re, B., & Tiezzi, F. (2015, October). An Operational Semantics of
BPMN Collaboration. In International Conference on Formal Aspects of Component Software
(pp. 161-180). Springer International Publishing.

F. Corradini, F. Fornari, A. Polini, B. Re, A. Vandin, F. Tiezzi. BProVe: Tool Support for
Business Process Verification. 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017 - Tool Demo. Urbana Champaign, Illinois, USA, October 30 -
November 3, 2017.

F. Corradini, F. Fornari, A. Polini, B. Re, A. Vandin, F. Tiezzi. BProVe: a Formal Verification
Framework for Business Process Models. 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017. Urbana Champaign, Illinois, USA, October 30 -
November 3, 2017.

Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, and Francesco Tiezzi. A Formal
Approach to Modelling and Verification of BPMN Collaboration. Science of Computer
Programming, Vol. 166, pp. 35 - 70, June 2018.

Fabrizio Fornari, Marcello La Rosa, Andrea Polini, Barbara Re and Francesco Tiezzi. Checking
Business Process Correctness in Apromore. CAiSE 2018 FORUM - Information Systems in the
Big Data Era. Springer, LNBIP, vol. 317, pp. 114-123. Tallinn, Estonia, 11-15 June 2018.

56 / 56

	Introduction
	Background
	Syntax and Semantics
	Verification
	Implementation
	Concluding Remarks

