

Test Generation – Finite State Models

Andrea Polini

Advanced Topics on Software Engineering – Software Testing MSc in Computer Science University of Camerino

(ATSE)

Test Generation - Finite State Models

CS@UNICAM 1/29

• • • • • • • • • • • • •

Models in the Design Phase

Design Phase

- Between the requirements phase and the implementation phase "The last you start the first you finish"
- Produce models in order to clarify requirements and to better formalize them
- Models can be the source of test set derivation strategies

Various modeling notations for behavioral specification of a software system have been proposed. Which to use depends on the system you are developing, and the aspects you would like to highlight:

- Finite State Machines
- Petri Nets
- Statecharts
- Message sequence charts

Finite State Machines

FSM

A finite state machine is a six-tuple $\langle \mathscr{X}, \mathscr{Y}, \mathscr{Q}, q_0, \delta, \mathscr{O} \rangle$ where:

- ► X: finite set of input symbols
- ► 𝒴: finite set of output symbols
- 2: finite set of states
- $q_0 \in \mathscr{Q}$: initial state
- δ : transition function ($\mathscr{Q} \times \mathscr{X} \to \mathscr{Q}$)
- \mathscr{O} : output function ($\mathscr{Q} \times \mathscr{X} \to \mathscr{Y}$)

Many possible extensions:

- Transition and output functions can consider strings
- Definiton of the set of accepting states $\mathscr{F} \subseteq \mathscr{Q}$
- Non determinism

< 回 > < 三 > < 三 >

Properties of FSM

Useful properties/concepts for test generation

- Completely specified (input enabled)
 - $\forall (q_i \in \mathscr{Q}, a \in \mathscr{X}) . \exists q_j \in \mathscr{Q} . \delta(q_i, a) = q_j$
- Strongly connected
 - $\forall (q_i, q_j) \in \mathscr{Q} \times \mathscr{Q}. \exists s \in X^*. \delta^*(q_i, s) = q_j$

V-equivalence (distinguishable)

Let M₁ and M₂ two FSMs. Let V denote a set of non-empty string on the input alphabet X, and q_i ∈ Q₁ and q_j ∈ Q₂. q_i and q_j are considered V – equivalent if O₁(q_i, s) = O₂(q_j, s). If q_i and q_j are V – equivalent given any set V ⊆ X⁺ than they are said to be equivalent (q_i ≡ q_j). If states are not equivalent they are said to be distinguishable.

CS@UNICAM 4/29

Properties of FSM....cntd

Useful properties/concepts for test generation...cntd

- Machine equivalence
 - *M*₁ and *M*₂ are said to be *equivalent* if ∀q_i ∈ *Q*₁.∃q_j ∈ *Q*₂.q_i ≡ q_j and viceversa.
- k-equivalence
 - Let M_1 and M_2 two FSMs and $q_i \in \mathcal{Q}_1$ and $q_j \in \mathcal{Q}_1$ and $k \in \mathbb{N}$. q_i and q_j are said to be $\mathscr{K} - equivalent$ if they are $\mathscr{V} - equivalent$ for $\mathscr{V} = \{s \in X^+ | | s | \le k\}$
- Minimal machine
 - an FSM is considered *minimal* if the number of its states is less than or equal to any other *equivalent* FSM

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conformance Testing

Conformance Testing

Relates to testing of communication protocols. It aims at assessing that an implementation of a protocol conform to its specification. Protocols generally specify:

- Control rules (FSM)
- Data rules

Developed techniques are equally applicable when the specification is refined into an FSM

The Testing Problem

FSM and Testing

- Reset inputs ($\mathscr{X} = \mathscr{X} \cup \{Re\}$, and $\mathscr{Y} = \mathscr{Y} \cup \{null\}$)
- Testing based on requirements checks if the implementation conforms to the machine on a given requirement.
- The testing problem is reconducted to an equivalence (nevertheless finite experiments). Is the SUT (IUT) equivalent to the machine defined during design?
- Fault model for FSM given a fault model the challenge is to generate a test set *T* from a design *M_d* where any fault in *M_i* of the type in the fault model is guaranteed to be revealed when tested against *T*
 - Operation error (refers to issues with 𝒪)
 - Transfer error (refers to issues with δ)
 - Extra-state error (refers to issues with $\mathcal Q$ and δ)
 - Missing-state error (refers to issues with ${\mathscr Q}$ and $\delta)$

Mutation of FSMs

Mutant

A mutant of an FMS M_d is an FSM obtained by introducing one or more errors one or more times.

Equivalent mutants: mutants that could not be distinguishable from the originating machine

Test Generation - Finite State Models

The Testing Problem

Fault coverage

Techniques to measure the goodness of a test set in relation to the number of errors that it reveals in a given implementation M_i .

- N_t: total number of first order mutants of the machine M used for generating tests.
- ► *N_e*: Number of mutants that are equivalent to M
- N_f: Number of mutants that are distinguished by test set T generated using some test generation method.
- \blacktriangleright N₁: Number of mutants that are not distinguished by T

The fault coverage of a test suite T with respect to a design M is denoted by FC(T, M) and computed as follows:

 $FC(T, M) = \text{Number of mutants not distinguished by T / Number of mutants that are not equivalent to M} = (N_t - N_e - N_f)/(N_t - N_e)$

Characterization Set

Let $M = \langle \mathscr{X}, \mathscr{Y}, \mathscr{Q}, q_1, \delta, \mathscr{O} \rangle$ an FSM that is minimal and complete. A characterization set for M, denoted as \mathscr{W} , is a finite set of input sequences that distinguish the behaviour of any pair of states in M.

CS@UNICAM 10/29

A B b 4 B b

4 A N

The notion of \mathcal{K} – equivalence leads to the notion of \mathcal{K} – equivalence partitions.

Given an FSM a \mathscr{K} – equivalence partition of \mathscr{Q} , denoted by \mathscr{P}_k , is a collection of *n* finite sets of states denoted as $\Sigma_{k_1}, \Sigma_{k_2}, ..., \Sigma_{k_n}$ such that:

$$\blacktriangleright \cup_{i=1...n} \Sigma_{K_i} = \mathscr{Q}$$

► States in Σ_{k_i} , for $1 \le j \le n$ are \mathcal{K} – equivalent

• if $q_l \in \Sigma_{k_i}$ and $q_m \in \Sigma_{k_j}$, for $i \neq j$, then q_l and q_m must be \mathcal{K} – distinguishable

 $\mathscr{K}-\textit{equivalence}$ partitions can be derived using an iterative approach for increasing number of \mathscr{K}

The notion of \mathcal{K} – equivalence leads to the notion of \mathcal{K} – equivalence partitions.

Given an FSM a \mathscr{K} – equivalence partition of \mathscr{Q} , denoted by \mathscr{P}_k , is a collection of *n* finite sets of states denoted as $\Sigma_{k_1}, \Sigma_{k_2}, ..., \Sigma_{k_n}$ such that:

$$\blacktriangleright \cup_{i=1...n} \Sigma_{K_i} = \mathscr{Q}$$

• States in Σ_{k_i} , for $1 \le j \le n$ are $\mathcal{K} - equivalent$

• if $q_l \in \Sigma_{k_i}$ and $q_m \in \Sigma_{k_j}$, for $i \neq j$, then q_l and q_m must be \mathcal{K} – distinguishable

 $\mathscr{K}-\textit{equivalence}$ partitions can be derived using an iterative approach for increasing number of \mathscr{K}

Let's use the intuition

Let's build K-equivalence partitions for the previous FSM

A I > A = A A

How to derive *W* from K-equivalence partitions

- Let M an FSM for which $P = \{P_1, P_2, ..., P_n\}$ is the set of k-equivalence partition. $\mathcal{W} = \emptyset$
- Provide the steps (a) through (d) given below for each pair of states (q_i, q_j), i ≠ j, in M
 - (a) Find *r* (1 ≤ *r* < *n* such that the states in pair (*q_i*, *q_j*) belong to the same group in *P_r* but not in *P_{r+1}*. If such an *r* is found then move to step (b) otherwise we find an η ∈ *X* such that *O*(*q_i*, η) ≠ *O*(*q_j*, η), set *W* = *W* ∪ {η} and continue with the next available pair of states. The length of the minimal distinguishing sequence for (*q_i*, *q_j*) is *r* + 1.
 - (b) Initialize $z = \epsilon$. Let $p_1 = q_i$ and $p_2 = q_j$ be the current pair of states. Execute steps (i) through (iii) given below for m = r, r - 1, ..., 1
 - (i) Find an input symbol η in P_m such that 𝒢(p₁, η) ≠ 𝒢(p₂, η). In case there is more than one symbol that satisfy the condition in this step, then select one arbitrarily.
 - (ii) set $z = z\eta$
 - (iii) set $p_1 = \delta(p_1, \eta)$ and $p_2 = \delta(p_2, \eta)$
 - (c) Find an $\eta \in \mathscr{X}$ such that $\mathscr{O}(p_1, \eta) \neq \mathscr{O}(p_2, \eta)$. Set $z = z\eta$
 - (d) The distinguishing sequence for the pair (q_i, q_j) is the sequence z. Set $\mathscr{W} = \mathscr{W} \cup \{z\}$

Example

Termination of the *# – procedure* guarantees the generation of distinguishing sequence for each pair.

< 6 b

Example

Termination of the *# – procedure* guarantees the generation of distinguishing sequence for each pair.

S_i	S_i	X	$\mathscr{O}(S_i, x)$	$\mathscr{O}(S_j, x)$
1	2	baaa	1	0
1	3	aa	0	1
1	4	а	0	1
1	5	а	0	1
2	3	aa	0	1
2	4	а	0	1
2	5	а	0	1
3	4	а	0	1
3	5	а	0	1
4	5	aaa	1	0

イロト イポト イラト イラ

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset
- M and IUT have the same input alphabet

(ATSE)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset
- M and IUT have the same input alphabet

A (10) A (10) A (10)

Given an FSM $\mathcal{M} = \langle \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_0, \delta, \mathcal{O} \rangle$ the W-method consists of the following steps:

- Estimate the maximum number of states in the correct design
- 2 Construct the characterization set ${\mathscr W}$ for the given machine ${\mathscr M}$
- Construct the testing tree for *M* and determine the transition cover set *P*
- Construct set *L*
- **(**) $\mathscr{P} \cdot \mathscr{Z}$ is the desired test set

Computation of the transition cover set

\mathcal{P} - transition cover set

Let q_i and q_j , $i \neq j$ be two states of \mathscr{M} . \mathscr{P} consists of sequences $s \cdot x$ s.t. $\delta(q_0, s) = q_i \wedge \delta(q_i, x) = q_j$ for $s \in \mathscr{X}^* \wedge x \in \mathscr{X}$. The set can be constructed using the testing tree for \mathscr{M} .

Testing tree

The testing tree for an FSM \mathcal{M} can be constructed as follows:

• State q_0 is the root of the tree

- Suppose that the testing tree has been constructed till level k. The $(k + 1)^{th}$ level is built as follows:
 - Select a node *n* at level *k*. If *n* appears at any level from 1 to k 1 then *n* is a leaf node. Otherwise expand it by adding branch from node *n* to a new node *m* if $\delta(n, x) = m$ for $x \in \mathcal{X}$. This branch is labeled as *x*.

・ロン・(部・・前・・日)

Computation of the transition cover set

\mathcal{P} - transition cover set

Let q_i and q_j , $i \neq j$ be two states of \mathscr{M} . \mathscr{P} consists of sequences $s \cdot x$ s.t. $\delta(q_0, s) = q_i \wedge \delta(q_i, x) = q_j$ for $s \in \mathscr{X}^* \wedge x \in \mathscr{X}$. The set can be constructed using the testing tree for \mathscr{M} .

Testing tree

The testing tree for an FSM \mathcal{M} can be constructed as follows:

- **()** State q_0 is the root of the tree
- Suppose that the testing tree has been constructed till level k. The $(k + 1)^{th}$ level is built as follows:
 - Select a node *n* at level *k*. If *n* appears at any level from 1 to k 1 then *n* is a leaf node. Otherwise expand it by adding branch from node *n* to a new node *m* if $\delta(n, x) = m$ for $x \in \mathscr{X}$. This branch is labeled as *x*.

The set \mathscr{Z}

Suppose number of states estimates to be *m* for the IUT, and *n* in the specification m > n. We compute \mathscr{Z} as: $\mathscr{Z} = (\mathscr{X}^0 \cdot \mathscr{W}) \cup (\mathscr{X} \cdot \mathscr{W}) \cup (\mathscr{X}^1 \cdot \mathscr{W}) \cdots \cup (\mathscr{X}^{m-1-n} \cdot \mathscr{W}) \cup (\mathscr{X}^{m-n} \cdot \mathscr{W})$

CS@UNICAM 18/29

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deriving a test set $-\mathscr{P} \cdot \mathscr{Z}$

Try sequences:

🕨 baaaaaa

(ATSE)

baaba

CS@UNICAM 19/29

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Deriving a test set $-\mathscr{P} \cdot \mathscr{Z}$

■ ◆ ■ ◆ ■ ◆ へへの CS@UNICAM 19/29

W-method fault detection rationale

• A test case generated by the \mathcal{W} – *method* is of the form $r \cdot s$ where $r \in \mathcal{P}$ and $s \in \mathcal{W}$

- Why can we detect operation errors?
- Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$

Test Generation – Finite State Models

W-method fault detection rationale

• A test case generated by the \mathscr{W} – *method* is of the form $r \cdot s$ where $r \in \mathscr{P}$ and $s \in \mathscr{W}$

- Why can we detect operation errors?
- Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$

W-method fault detection rationale

▶ A test case generated by the \mathscr{W} – method is of the form $r \cdot s$ where $r \in \mathscr{P}$ and $s \in \mathscr{W}$

- Why can we detect operation errors?
- Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$

The partial \mathcal{W} – method (aka Wp – method)

Wp – method

Main characteristics:

- It considers minimal, complete and connected FSM
- ► is inspired by the *W* method it generates smaller test sets
- uses a derivation phase split in two phases that make use of state identification sets *W_i* instead of characterization set *W*
- uses the state cover set (\mathscr{S}) to derive the test set.

CS@UNICAM 21/29

Identification Set and State Cover Set

Identification Set

The Identification Set is associated to each state $q \in \mathcal{Q}$ of an FSM.

An Identification set for state $q_i \in \mathcal{Q}$, where $|\mathcal{Q}| = n$, is denoted by \mathcal{W}_i and has the following properties:

•
$$\mathscr{W}_i \subseteq \mathscr{W}$$
 per $1 < i \leq n$

$$\textbf{2} \hspace{0.1in} \exists j, s. \mathsf{1} \leq j \leq \mathsf{n} \land s \in \mathscr{W}_i \land \mathscr{O}(\boldsymbol{q}_i, s) \neq \mathscr{O}(\boldsymbol{q}_j, s)$$

3 No subset of \mathcal{W}_i satisfies property 2.

State Cover Set

The state cover set is a nonempty set of sequences ($\mathscr{S} \subseteq \mathscr{X}^*$ s.t.:

 $\blacktriangleright \forall q_i \in \mathcal{Q} \exists r \in \mathscr{S}s.t.\delta(q_0, r) = q_i$

From the definition it is evident that $\mathscr{S} \subseteq \mathscr{P}$

Identification Set and State Cover Set

Identification Set

The Identification Set is associated to each state $q \in \mathscr{Q}$ of an FSM.

An Identification set for state $q_i \in \mathcal{Q}$, where $|\mathcal{Q}| = n$, is denoted by \mathcal{W}_i and has the following properties:

•
$$\mathscr{W}_i \subseteq \mathscr{W}$$
 per $1 < i \leq n$

$$\textbf{2} \hspace{0.1in} \exists j, \textbf{s}. \textbf{1} \leq j \leq \textbf{\textit{n}} \land \textbf{\textit{s}} \in \mathscr{W}_i \land \mathscr{O}(\textbf{\textit{q}}_i, \textbf{\textit{s}}) \neq \mathscr{O}(\textbf{\textit{q}}_j, \textbf{\textit{s}})$$

3 No subset of \mathcal{W}_i satisfies property 2.

State Cover Set

The state cover set is a nonempty set of sequences ($\mathscr{S} \subseteq \mathscr{X}^*$ s.t.:

$$\blacktriangleright \forall q_i \in \mathscr{Q} \exists r \in \mathscr{S}s.t.\delta(q_0, r) = q_i$$

From the definition it is evident that $\mathscr{S} \subseteq \mathscr{P}$

Compute the State cover set and the identification set for the usual automaton

CS@UNICAM 23/29

4 6 1 1 4

The $\mathcal{W}p$ procedure (assuming m = n)

The test set derived using the $\mathscr{W}p - method$ is given by the union to two test sets \mathcal{T}_1 . \mathcal{T}_2 calculated according to the following procedure:

1 Compute sets $\mathcal{P}, \mathcal{S}, \mathcal{W}, \text{ and } \mathcal{W}_i$

(ATSE)

3 Let
$$\mathcal{W} = {\mathscr{W}_1, \mathscr{W}_2, \dots, \mathscr{W}_n}$$

- Let $\mathcal{R} = \{r_1, r_2, \dots, r_k\}$ where $\mathcal{R} = \mathscr{P} \mathscr{S}$ and $r_i \in \mathcal{R}$ is s.t. $\delta(q_0, r_i) = q_i$
- **9** $\mathscr{T}_2 = \mathcal{R} \otimes \mathcal{W} = \bigcup_{i=1}^K (\{r_i\} \cdot \mathscr{W}_i)$ where $\mathscr{W}_i \in \mathcal{W}$ is the state identification set for state q_i (\otimes is the partial string concatenation operator)

$\mathcal{W}p-method$ rationale

- Phase 1: test are of the form *uv* where *u* ∈ and *v* ∈ . Reach each state than check if it is distinguishable from another one
- Phase 2: test covers all the missing transitions and then check if the reached state is different from the one specified in the model

$\mathcal{W}p$ – method in practice

$$\begin{split} \mathscr{W} &= \{a, aa, aaa, baaa\} \\ \mathscr{P} &= \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ \mathscr{S} &= \{\epsilon, b, ba, baa, baaa\} \\ \mathscr{W}_1 &= \{baaa, aa, a\}, \, \mathscr{W}_2 = \{baaa, aa, a\}, \, \mathscr{W}_3 = \{aa, a\} \\ \mathscr{W}_4 &= \{aaa, a\}, \, \mathscr{W}_5 = \{aaa, a\} \end{split}$$

CS@UNICAM 26/29

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathcal{W}p$ – method in practice

$$\begin{split} & \mathscr{W} = \{a, aa, aaa, baaa\} \\ & \mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ & \mathscr{P} = \{\epsilon, b, ba, baa, baaa\} \\ & \mathscr{W}_1 = \{baaa, aa, a\}, \, \mathscr{W}_2 = \{baaa, aa, a\}, \, \mathscr{W}_3 = \{aa, a\} \\ & \mathscr{W}_4 = \{aaa, a\}, \, \mathscr{W}_5 = \{aaa, a\} \end{split}$$

CS@UNICAM 26/29

< ロ > < 同 > < 回 > < 回 >

$\mathcal{W}p$ – method in practice

$$\begin{split} & \mathscr{W} = \{a, aa, aaa, baaa\} \\ & \mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ & \mathscr{P} = \{\epsilon, b, ba, baa, baaa\} \\ & \mathscr{W}_1 = \{baaa, aa, a\}, \, \mathscr{W}_2 = \{baaa, aa, a\}, \, \mathscr{W}_3 = \{aa, a\} \\ & \mathscr{W}_4 = \{aaa, a\}, \, \mathscr{W}_5 = \{aaa, a\} \end{split}$$

CS@UNICAM 26/29

< ロ > < 同 > < 回 > < 回 >

Is it phase 2 needed?

Let's consider the following FSM:

Now introduce an operation error or a transfer error on a "c" transition

CS@UNICAM 27/29

4 6 1 1 4

The $\mathscr{W} p$ procedure (assuming m > n)

Modify the derivation of the two sets as follows:

CS@UNICAM 28/29

Possible alternatives to W-method

- W-method high effectiveness in bugs identification
- High number of generated tests

To solve this issue alternative solutions have been proposed possibly reducing effectiveness:

- UIO-sequence method
- Distinguishing signatures