Software Project
Management - Laboratory

Lecture n® 3
A.Y. 2021-2022

Prof. Fabrizio Fornari

Version Control

A version control system records changes to a file or set of files over time so that you
can recall specific versions.

How to do it?

Manually Local Version Control Systems

Distributed Version Control Systems

I Project

e

Local Computer

Server Computer
Checkout Version Database

Version Database

Project Version Project Version project Version Project Version

Version 3
1.0 1 13 131

Version 3

Version 2
Version 2

Project Version Project Version Project Version 2 Project Version
11.2 12

211 Version 1

Version 1

Project Version Project Version project Version Project Version
1.21 125 21 16

Figure 1. Local version control

Centralized Version Control Systems

4

» v

Figure 2. Centralized version control

Computer A

A

Version Database

Version 3

Version 2

Version 1

Figure 3. Distributed version control

<

Computer B

I

Version Database

Version 3
Version 2

Version 1

Distributed Version
Control System

Distributed means that there is no main
server and all of the full history of the
project is available once you cloned the
project.

Server Computer

Version Database

Version 3

Version 2

Version 1

Version Database >

Version 3

Version 2

Version 1

Figure 3. Distributed version control

Version Database

Version 3

Version 2

Version 1

Last slides from the previous lectures

Unstaging & Unmodifying

fabriziounicam:Local user$ git status
On branch master
Changes to be committed:

/Guse "git reset HEAD =file=..." to unstage))
To unstage run git reset HEAD FileName _ _
Wicam:mcal user$ git reset HEAD ThirdFile IXT—>
Nnstaged CHANges ar el Ieset.

M ThirdFile.txt
fabriziounicam:Local user$ git status
On branch master
Changes not staged for commit:

{use "git add ~file DbeppEate—niat bl be connitied
use "git checkout -- =file=..." to discard changes in working di£§§§§E§;>

To unmodify git checkout -- FileName

FTSPUAY

t o ‘gil., Tt o llg;t
iziounicam:Local user$ git checkout -- ThirdFile.txt >
fabriziounicam:COCATl Userd Ort SLOC
On branch master
nothing to commit, working tree clean

Ignoring Things

Often, you'll have a class of files that you don’t want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore.

ignore all .a files # ignore all .a files

*.a *.a

but do track lib.a, even though you're # but do track lib.a, even though you're
#ignoring .a files above #ignoring .a files above

lib.a lib.a

only ignore the TODO file in the current # only ignore the TODO file in the current
directory, not subdir/TODO # directory, not subdir/TODO

/TODO /TODO

Example of .gitignore https://github.com/qgithub/gitignore

https://github.com/github/gitignore

Ignoring Things

"””_,,—<:Iﬁﬁfiéiounicam:Local user$ cat .gitignore >
Run cat .gitignore # ignore all @ T1Tes

*.q

but do track lib.a, even though vou're ignoring .a files above
Ilib.a
fabriziounicam:Local user$ git status
On branch master
Untracked files:
{use "git add <file=..." to include in what will be committed)

nothing added to commit but untracked files present {use "git add" to track)
fabriziounicam:Local user$ ls
FifthFile.txt FirstFile.txt SecondFile.txt SixthFile.txt ThirdFile.txt lib.a testIgnore.a

Today’s Lecture

Set up a Repository

1. Create a new folder and open a terminal in that folder. $ cd pathToTheFolder/FolderName
2. Initialize a repository$ git init

3. Create one file and commit,

4. Create a second file and commit,

5. Create a third file and commit

Commits %

git log -p -2

git log --stat

git log --pretty=oneline

git log --pretty=format:"%h - %an, %ar : %s"

Commits can be seen as a list where each commit
points to his parent.

98ca9 34ac?2 f38ab

commit
tree
parent
author
committer

commit
tree
parent
author
committer

commit
tree
parent
author
committer

Y v vy

Snapshot A Snapshot B Snapshot C

Branching

Branching is one of the major characteristics of Git.

A git branch can be seen as a pointer that can point to any of the available commits.

master

y

The default branch name in Git is master.

98ca9 2 34ac2 e f30ab

\4 \ 4 v
Snapshot A Snapshot B Snapshot C

Branching

6. Run git log --oneline --decorate

base) fabriziounicam:MySecondRepo user$ git log --oneline --decorate
{HEAD — master) Added a Third File

&3 Added a Second File

7df Added a First File

master

»
98ca9 2 34ac2 & f30ab

) 4 \ 4 v
Snapshot A Snapshot B Snapshot C

Creating a New Branch

1. Run git branch testing
2. Run git status

master
The git branch command

only created a new branch
— it didn’t switch to that.

3. Rungitbranch -a fabriziounicam:Local user$ git branch -a
b 4

testing

Creating a New Branch

1.

Run git log --oneline --decorate

fobnzwumcam Local Lmeliii git log --oneline --decorate
dadéb7d (HEAD — f esting) added .gitighore file
ddi1a39 added a FlfthFllU and a "-wthFllc

co9dofd deleted the fourth file
dnimm added a fourth file

v
master
‘Ti.’

f30ab

&
testing

Switching to a New Branch

2. Run git checkout testing

fabriziounicam:Local user$ git checkout testing
Switched to branch 'testing' master

This moves HEAD to point to
the testing branch.

VX

Commit to a New Branch

3. Create a new file (or do some changes to the already available files)

4' Commlt thOSG Chr.:lnges {base) fabriziounicam:MySecondRepo user$ git log --oneline --decorate —-graph —-all
5. Run git log --oneline --decorate --graph --all |* fiaz19 (HEAD —> testing) Added a Fourth File
: 1 (maoster) Added a Third File
) &3 Added a Second File
* 4 - Added a First File

4
Your testing
branch has
moved forward A

A

Back to master branch

. {base) fabriziounicam:MySecondRepo user$ git log --oneline --decorate --graph --all
6. Switch back to the master branch * f10819 (testing) Added a Fourth File
bbaf42a (HEAD —> master) Added a Third File

¥ bbhaf 4z
i3 Added a Second File

7. Run git log --oneline --decorate --graph --allj, ..
* 4q757df Added a First File

e HEAD pointer is back to point to the master branch.

e Files in your working directory are back to the snapshot that master points to.

\ 4

master

v

A

testing

Commit to master branch

8. Make some changes to a file, or create a new one, or remove one.
9. Commit those changes
10. Run git log --oneline --decorate --graph --all

{base) fabriziounicam:MySecondRepo user$ git log --oneline --decorate —-graph —-all
¥ Q3c8802 (HEAD — master) added a fifth file
2b (testing) Added a Fourth File

* bbaf4Za Added a Third File
* hf95453 Added a Second File
* 40757df Added a First File

£

testing

Branching and Merging

Let’'s go through a simple example of branching and merging with a workflow that you might use in
the real world. You'll follow these steps:

1. Do some work on a website.
2. Create a branch for a new user story you’re working on.
3. Do some work in that branch.

At this stage, you'll receive a call that another issue is critical and you need a hotfix. You'll do the
following:

1. Switch to your production branch.

2. Create a branch to add the hotfix.

3. After it’s tested, merge the hotfix branch, and push to production.
4. Switch back to your original user story and continue working.

Branching and Merging

Let’'s say you're working on your project and have a couple of commits already on the master
branch.

Now you decide to focus on a specific issue; imagine it as a user story that you want to add or
something you want to fix.

1. Run git checkout -b IssueNumber fobriziounicunLocal usary giL

checkout -b iss22
Switched to a new branch ‘i :

822

A short way for: git branch IssueNumber

git checkout IssueNumber

v

Branching and Merging

You do some changes and you commit

fabriziounicam:Local user$ vi index.html

fabriziounicam:Local user$ git commit -a -m 'Create new footer [issue 22]'
[iss22 a44da93] Create new footer [issue 22]

1 file changed, 1 insertion{+), 1 deletion{-)

Now you get the call that there is an issue with the website, and you need to fix it immediately.

What do you do?

Branching and Merging

You do some changes and you commit

fabriziounicam:Local user$ vi index.html

fabriziounicam:Local user$ git commit -a -m 'Create new footer [issue 22]'
[iss22 a44da93] Create new footer [issue 22]

1 file changed, 1 insertion{+), 1 deletion{-)

Now you get the call that there is an issue with the website, and you need to fix it immediately.

1. Run git checkout master

2. You have a hotfix to make. Let’s create a hotfix branch on which to work until it's completed.
3. Run git checkout -b hotfix

4. Modify index.html file and commit the changes

Branching and Merging

v \4

C2

Branching and Merging

You can run your tests, make sure the hotfix is what you want, and finally merge the hotfix branch
back into your master branch to deploy to production.

1. Run git checkout master
2. Run git merge hotfix

fabriziounicam:Local user$ git checkout master

“ » Switched to branch 'master’
Fast-forward when you try to fabriziounicam:Local user$ git merge hotfix

merge one commit with a commit that Undating 2f45ef3. .237368f

can be reached by following the first ————Fast-forward >

commit’s history, Git simplifies things indeschEml | 1+

by moving the pointer forward it I&r = .

b th) di t K t 2 files changed, 2 insertions{+)
ecause there IS no divergent Work 1o create mode 186644 index.html

merge together create mode 108644 index.txt

Git
Up to now we have seen how to use git to do local versioning.

However we said during the last lesson that git is a distributed version control
system and it is useful when collaborating with others.

How do you collaborate with others? By means of the Internet

Remotes in Git

A remote repository is a repository stored somewhere else.

Most programmers use hosting services like:

e GitHub,
e BitBucket,
e GitLab

O o Bitbucket

GitHub

GitHub

The first thing you need to do is set up a free user account.

Visit https://github.com, choose a username that isn’t already taken, provide an email address
and a password, and click the big green “Sign up for GitHub” button.

https://github.com

Remote Repository

Create a new repository to share our code.

1. Click “New repository” button on the left side of the dashboard, or from the + button in the top
toolbar next to your profile image as seen in the “New repository” dropdown.

O Search or jump to...

‘ FabrizioFornari ~

New repository

Import repository

New gist

New organization

Repositories New project

Create a new repository

n
I te I I I Ote I te p OS I to ry A repository contains all project files, including the revision history. Already have a project repository

elsewhere? Import a repository.

. . Owner * Repository name *
1. Write the name of the repository @ Febrizioromar~ | /
2' Add a descrlptlon (Optlonal) . . Great repository names are short and memorable. Need inspiration? How about special-enigma?
3. Choose whether to create a Public or Private Description (optiona)

repository
4. Create the repository

Public
1 Anyone on the internet can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

[[] Add a README file
This is where you can write a long description for your project. Learn more.

[J Add .gitignore
Choose which files not to track from a list of templates. Learn more.

[J Choose a license
A license tells others what they can and can't do with your code. Learn more.

Create a new repository

n
I {e I I I Ote I te p OS I to ry A repository contains all project files, including the revision history. Already have a project repository

elsewhere? Import a repository.

. . Owner * Repository name *
1. Write the name of the repository & FabrizioFornari~ | spm2020 5
2' Add a descrlptlon (Optlonal) . . Great repository names are short and memorable. Need inspiration? How about special-enigma?
3. Choose whether to create a Public or Private |GGG

re pOSItO ry . This is a repository for the SPM course
4. Create the repository

Public
Anyone on the internet can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

(] Add a README file
This is where you can write a long description for your project. Learn more.

(J Add .gitignore
Choose which files not to track from a list of templates. Learn more.

[J Choose a license
A license tells others what they can and can't do with your code. Learn more.

Remote Repository

Quick setup — if you've done this kind of thing before

AS Soon aS the repOSItory IS Created, EgJSetupin Desktop or HTTPS SSH https://github.com/FabrizioFornari/spm2020.git (]

G|tHUb d|Sp|ayS a page W|th a URL Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and
- - .gitignore.

and some information on how to

configure your local repository.

...or create a new repository on the command line

echo "# spm2020" >> README.md

git init

git add README.md

git commit -m "first commit"

git branch -M main

git remote add origin https://github.com/FabrizioFornari/spm2020.git
git push -u origin main

..or push an existing repository from the command line

git remote add origin https://github.com/FabrizioFornari/spm2020.git
git branch -M main
git push -u origin main

..or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

Remote Repository

What happened on the Server?

$ mkdir spm2020
$ cd spm2020
$ git init

But the repository now it is empty

Remote Repository

We have to link our local repository to the remote repository.

1. Access your local repository with a terminal (command line)
2. Run git remote add origin https://github.com/YourUserName/YourRepositoryName.git

git remote add origin https://github.com/FabrizioFornari/spm2020.git

We can check that the command has worked by running git remote -v

(base) fabriziounicam:MySecondRepo user$ git remote -v
origin https://github.com/FabrizioFornari/spm2628.git (fetch)
origin https://github.com/FabrizioFornari/spm2628.git (push)

The name origin is a local nickname for your remote repository. We could use something else if we
wanted to, but origin is by far the most common.

Remote Repository

Once the nickname origin is set up, we push the changes from our local repository to the repository
on GitHub

3. Run git push origin master

{base) fabriziounicam:MySecondRepo user$ git push origin master
Enumerating objects: 15, done.
Counting objects: 168% (15/15), done.
Delta compression using up to 4 threads.
Compressing objects: 188% (9/9), done.
Writing objects: 168% {15/15), 1.17 KiB | 399.88 KiB/s, done.
Total 15 (delta 3), reused 8 (delta 8)
remote: Resolving deltas: 188% (3/3), done.
To https://github.com/FabrizioFornari/spm2626.qit
* [new branch] master -= master

Remote Repository

Once the nickname origin is set up, we push the changes from our local repository to the repository
on GitHub

3. Run git push origin master
4. Refresh your github webpage

¥ master ~ ¥ 1branch © 0tags Go to file Add file ~

‘ FabrizioFornari Modified Fifth File 458b369 1hourago YO 5 commits

¥ FifthFile.txt Modified Fifth File 1 hour ago

FirstFile.txt Added a First File 2 hours ago

b
[SecondFile.txt Added a Second File 2 hours ago
B

ThirdFile.txt Added a Third File 2 hours ago

Help people interested in this repository understand your project by adding a README. Add a README

Remote Repository

If you have more branches in your local repository and you want to keep track of all of them

5. Run git push origin --all

{base) fabriziounicam:MySecondRepo user$ git push origin --all
Enumerating objects: 7, done.

Counting objects: 188% (7/7), done.

Delta compression using up to 4 threads.

Compressing objects: 188% {4/4), done.

Writing objects: 188% (5/5), 581 bytes | 290.88 KiB/s, done.
Total 5 {delta 1), reused @ (delta @)

remote: Resolving deltas: 160% (1/1), completed with 1 local object.
To https://github.com/FabrizioFornari/spm2828.9it

* [new branch] hotfix -= hotfix

* [new branch] 18822 -» iss22

* [new branch] testing -= testing

Remote Repository

If you have more branches in your local repository and you want to keep track of all of them

5. Run git push origin --all

¥ master ~ ¥ 4 branches © 0tags Go to file Add file ~

Switch branches/tags
458b369 1hourago ‘Y 5 commits

Find or create a branch...
Modified Fifth File 1 hour ago

Branches Tags
Added a First File 2 hours ago
v/ master default

Added a Second File 2 hours ago
hotfix

5522 Added a Third File 2 hours ago

testing

View all branehes ferstand your project by adding a README. Add a README

Commit vs Push

When we commit we update our local repository.

When we push we interact with the remote repository to update it with the changes we have made
locally. In this way, who has access to the repository can see the changes.

How can your collaborators download the changes you have made and pushed to the remote
repository?

Git Pull

We can pull changes from the remote repository to the local one

1. Run git pull origin master

The command goes out to that remote project and pulls down all the data from that remote project
that you don’t have yet.

‘ FabrizioFornari Create README.md ae97dac now YO 6 commits

FifthFile.txt Modified Fifth File 1 hour ago

FirstFile.txt Added a First File 2 hours ago

. README.md Create README.md now

I added a READM E flle by means Of SecondFile.txt Added a Second File 2 hours ago

the G ItH u b User Inte rface Wh ICh ThirdFile.txt Added a Third File 2 hours ago
allowed me to add the file and to

perform a commit to store the changes BEADME] 4

spm2020

This is a repository for the SPM course

You can clone it to practice with Git

Git Pull

We can pull changes from the remote repository to the local one

1. Run git pull origin master

The command goes out to that remote project and pulls down all the data from that remote project
that you don’t have yet.

{base) fabriziounicam:MySecondRepo user$ git pull origin master
remote: Enumerating objects: 4, done.
remote: Counting objects: 166% (4/4), done.
remote: Compressing objects: 108% (3/3), done.
remote: Total 3 (delta 1), reused @ (delta @), pack-reused @
Unpacking objects: 188% (3/3), done.
From https://github.com/FabrizioFornari/spm2628
* branch master -= FETCH_HEAD
Tcce357..965fcée master -= origin/master
Updating 7cc6357..965fcee
Fast-forward
README.md | 4 ++++
1 file changed, 4 insertions{+)
create mode 186644 README .md

Collaboration on GitHub

& FabrizioFornari / spm2020

One person will be the “Owner”
and the others will be the
“Collaborators”.

The Owner needs to give the
Collaborators access.

The Collaborators will receive
an email and/or they can check
notifications on
https://github.com/notifications

Code Issues

Options

Manage access
Security & analysis
Branches
Webhooks
Notifications
Integrations
Deploy keys
Secrets

Actions

Moderation settings

Interaction limits

1"l Pull requests ») Actions

|I'l] Projects

Who has access

PUBLIC REPOSITORY ®

This repository is public and visible
to anyone.

Manage

Manage access

® Unwatch ~ 1 YrStar 0 % Fork

Security ~ Insights 83 Settings

DIRECT ACCESS AL

0 collaborators have access to this
repository. Only you can contribute
to this repository.

You haven't invited any collaborators yet

Invite a collaborator

0

Collaboration on GitHub

A collaborators can download a copy of the Owner’s repository to their machine. This action
is referred as “cloning a repository”.

To clone a Git project hosted on GitHub:

1. Run git clone <address of the project>.git <pathToAFolderinYourMachine>

You can run git clone https://github.com/FabrizioFornari/spm2020.git

{base) fabriziounicam:5PM user$ git clone https://github.com/FabrizioFornari/spm2628.9it GitHubRepo/
Cloning into 'GitHubRepo'...

remote: Enumerating objects: 31, done.

remote: Counting objects: 188% (31/31), done.

remote: Compressing objects: 188% {26/28), done.

remote: Total 31 {delta 11), reused 18 (delta 4), pack-reused @

Unpacking objects: 160% {31/31), done.

Collaboration on GitHub

The collaborator can now make a change to the copy of the repository he/she has.

S ————
<:: {base) fabriziounicam:GitHubRepo usey$ git commit -m "Added a Eight File"
[mU3ter-+e£€eéd§-ﬁdded—a—E+gﬂt’F1;e

1 file changed, 1 insertion{+)
create mode 1688644 EigthFile.txt
{base) fabriziounicam:GitHubRepo user$ git push
Enumerating objects: 4, done.
Counting objects: 188% (4/4), done.
Delta compression using up to 4 threads.
Compressing objects: 188% (2/2), done.
Writing objects: 188% (3/3), 297 bytes | 297.88 KiB/s, done.
Total 3 {delta 1), reused @ (delta @)
remote: Resolving deltas: 168% {1/1), completed with 1 local object.
To https://github.com/FabrizioFornari/spm2628.9it
965fcee. . fe23ebd master -= master

Note: here | am using the same account but the effect would be the same by using the account of a collaborator

Collaboration on GitHub

To update the Owner’s version, the Owner runs:

1. qit pull origin master

{base) fabriziounicam:MySecondRepo user$ git pull origin master
From https://github.com/FabrizioFornari/spm262a

* branch master -= FETCH_HEAD

Updating 965fcée..fe23ebd

Fast-forward

EigthFile.txt | 1 +

1 file changed, 1 insertion{+)

create mode 1088644 EigthFile.txt

Collaborative Workflow

It is good to be sure that you have an updated version of the repository you are collaborating
on, so you should git pull before making our changes.

The basic collaborative workflow would be the following.

Run git pull origin master to update your local repo with changes stored on the server
Make changes and stage them by running git add

Commit your changes by running git commit -m

Upload the changes to GitHub by running git push origin master

Better to make many commits with small changes rather than of one single commit with massive
changes: small commits are easier to read and to review.

Git Fetch

On the command line, the Collaborator can run git fetch origin master to get the remote
changes into the local repository, but without merging them.

Then by running git diff master origin/master the Collaborator will see the changes output in
the terminal.

$ git fetch origin/master
$ git diff master origin/master
$ git merge origin/master

The Dark Side of Collaboration

When you are collaborating on a shared repository you may end up changing the same files other
collaborators are working on. Version control helps us to manage these conflicts by giving us tools to
resolve overlapping changes.

Note: this can also happen if you are the only one working on a repo but, for instance, on different
devices (a laptop and a pc)

The Dark Side of Collaboration

As collaborators try to modify the same file (e.g. add a different line of text/code).

Collaborator A \

{base) fabriziounicam:MySecondRepo user$ vi EigthFile.txt
{base) fabriziounicam:MySecondRepo user$ git add EigthFile.txt
{base) fabriziounicam:MySecondRepo user$ git commit -m "as colloborator A I modified file Eight"
[master 49a3887] as collaborator & I modified file Eight
1 file changed, 1 insertion(+)
{base) fabriziounicam:MySecondRepo user$ git push origin master
Enumerating objects: 5, done.
Counting objects: 108% (5/5), done.
Delta compression using up to 4 threads.
Compressing objects: 188% {3/3), done.
Writing objects: 108% (3/3), 335 bytes | 335.80 KiB/s, done.
Total 3 {delta 1), reused @ {delta @)
remote: Resolving deltas: 108% (1/1), completed with 1 local object.
To https://github.com/FabrizioFornari/spm2628.git
fe23ebd. .49a3887 master - master

The Dark Side of Collaboration

As collaborators try to modify the same file (e.g. add a different line of text/code).

Collaborator B ~—

{base) fabriziounicam:GitHubRepo user$ git mv EigthFile.txt EightFile.txt
{base) fabriziounicam:GitHubRepo user$ git add .
{base) fabriziounicam:GitHubRepo user$ git commit -m "as colloborator B I fixed a typo to the name of file eight"
[master c@5d6f2] as collaborator B I fixed a typo to the name of file eight
2 files changed, 2 insertions{+), 1 deletion{-)
create mode 1868644 EightFile.txt
delete mode 1868644 EigthFile.txt
{base) fabriziounicam:GitHubRepo user$ git push origin master
To https://github.com/FabrizioFornari/spmz62e.git
master -= master {fetch first)

hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: {e.g., 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Git rejects the push because it detects that the remote repository has new updates that have not
been incorporated into the local branch.

Solve the Conflict

What we have to do is pull the changes from GitHub, merge them into the copy we’re currently working
in, and then push that.

{base) fabriziounicam:GitHubRepo user$ git pull origin master
remote: Enumerating objects: 5, done.
remote: Counting objects: 188% (5/5), done.
remote: Compressing objects: 188% (2/2), done.
remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused @
Unpacking objects: 188% {3/3), done.
From https://github.com/FabrizioFornari/spm2626
* branch master -= FETCH_HEAD
fe23ebd. .49a3887 master -= origin/master
CONFLICT {modify/delete): EigthFile.txt deleted in HEAD and modified in 49a3837ebf5fB79c13fa28427a83b40353ed1043 .
Version 49a38587ebf5fA79c13fa28427a83b4a353ed1843 of EigthFile.txt left in tree.
Automatic merge failed; fix conflicts and then commit the result.

Solve the Conflict

Run git status

{base) fabriziounicam:GitHubRepo user$ git status

On branch master

Your branch and ‘'origin/master' have diverged,

and have 1 and 1 different commits each, respectively.
{use "git pull" to merge the remote branch into yours)

You have unmerged paths.
{fix conflicts and run "git commit")
{use "git merge --abort" to abort the merge)

Unmerged paths:
{use "git add/rm <file=..." os appropriate to mark resolution)

no changes added to commit {use "git add" and/or "git commit -a")

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged. Git adds standard
conflict-resolution markers to the files that have conflicts, so you can open them manually and resolve

those conflicts.

Solve the Conflict

| decided to merge the
content of the files by
copy paste. | did so by
using my text editor
open -a TextEdit File.txt

| Run git status

{base) fabriziounicam:GitHubRepo user$ Ls

EightFile.txt EigthFile.txt FifthFile.txt FirstFile.txt README.md
{base) fabriziounicam:GitHubRepo user$ open -a TextEdit EightFile.txt
{base) fabriziounicam:GitHubRepo user$ open -a TextEdit EigthFile.txt

SecondFile.txt ThirdFile.txt

{base) fabriziounicam:GitHubRepo user$ git status

On branch master

Your branch and 'origin/master' have diverged,

and have 1 and 1 different commits each, respectively.
{use "git pull" to merge the remote branch into yours)

You have unmerged paths.
{fix conflicts and run "git commit")
{use "git merge --abort" to abort the merge)

Unmerged paths:
{use "git add/rm «file=..." as appropriate to mark resolution)

Changes not staged for commit:
{use "git add =file=..." to update what will be committed)
{use "git checkout —- <file=..." to discard changes in working directory)

no changes added to commit {use "git add" and/or "git commit -a")

Solve the Conflict

| removed EigthFile.txt

| run git status

| added the changes
to EightFile.txt

| committed the
changes

| pushed the changes

{base) fabriziounicam:GitHubRepo user$ git rm EigthFile.txt
EigthFile.txt: needs merge
rm 'EigthFile.txt'
(base) fabriziounicam:GitHubRepo user$ git status
On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commits each, respectively.
{use "git pull" to merge the remote branch into yours)

All conflicts fixed but you are still merging.
{use "git commit" to conclude merge)

Changes not staged for commit:
{use "git add <file=..." to update what will be committed)
{use "git checkout -- «file=..." to discard changes in working directory)

{base) fabriziounicam:GitHubRepo user$ git add EightFile.txt
{base) fabriziounicam:GitHubRepo user$ git commit -m "merged EightFile with EigthFile which has been removed"
[master 3697611] merged EightFile with EigthFile which has been removed
{base) fabriziounicam:GitHubRepo user$ git push origin moster
Enumerating objects: 9, done.
Counting objects: 100% (8/8), done.
Delta compression using up to 4 threads.
Compressing objects: 188% (5/5), done.
Writing objects: 108% {5/5), 588 bytes | 588.08 KiB/s, done.
Total 5 (delta 2), reused @ {delta @)
remote: Resolving deltas: 186% (2/2), completed with 1 local object.
To https://github.com/FabrizioFornari/spm2828.git
d2d1452..3697611 master -= master

Solve the Conflict

¥ master - spm2020 / EightFile.txt

‘ FabrizioFornari merged EightFile with EigthFile which has been removed

A3 1 contributor

3 lines (3 sloc) 101 Bytes

EightFile
I am collaborator B and I added this line
I am collaborator A and I am modifying this Lline

Good Practice

Pull from upstream more frequently, especially before starting new work
Use topic branches to segregate work, merging to master when complete
Make small commits

Break large files into smaller ones so to reduce the possibility of conflicts

About Conflicts:

Clarify who is responsible for what areas with your collaborators

Discuss the order of tasks with your collaborators so that tasks expected to change the
same lines won’t be worked on simultaneously

If the conflicts are stylistic churn (e.g. tabs vs. spaces), establish a project convention

that is governing and use code style tools (e.g. htmitidy, perltidy, rubocop, etc.) to
enforce, if necessary

Remember the Workflow

Update Local Commit Update Remote

Make Changes Stage Changes

Repository Changes Repository

git pull origin master

echo A new line in a text file > NewFile.txt

git add NewFile. txt

git commit -m “Add a new file”

git push origin master

Additional Materials

Pro Git
https://qit-scm.com/book/en/v2
by Scott Chacon and Ben Straub

SECOND EDITION

Git

Scott Chacon and Ben Straub

EVERYTHING YOU NEED TO
KNOW ABOUT GIT

Apress

https://git-scm.com/book/en/v2

In case of...

In case of fire }

=0~ 1. git commit

m 2. git push
[3. leave building

In case of earthquake E,Hi

—o- git commit

[# git push
[x] leave building

In case of Covid-19

-o- git commit
[# git push

| Xl leave building

