
Software Project
Management - Laboratory

Lecture n° 13
A.Y. 2021-2022

Prof. Fabrizio Fornari

https://jenkins.io/

Jenkins is used to build
and test your product

continuously, so
developers can

continuously integrate
changes into the build.

Jenkins triggers a build upon every
commit to the source code repository,

typically to a development branch.

Continuous
Integration with

Jenkins

Download the latest .war file
https://www.jenkins.io/download/

Deploy the .war on Tomcat
https://www.jenkins.io/doc/book/installing/#war-file

Jenkins on Tomcat

https://www.jenkins.io/download/
https://www.jenkins.io/doc/book/installing/#war-file

Create Job

1 Create a new Job

2 Link it with your
GitHub Repository

Run a Job

Run a Job

Run a Job

Configure JDK

Manage Jenkins > Global Tool Configuration

Configure JDK & Maven
Manage Jenkins --> Global Tool Configuration

Or

Tell Jenkins to
install a version

Configure a Job

Configure for
changing settings

Configure Build Environment

(Build Triggers → Build periodically)

Jenkins uses a cron expression, and the different fields are:

1. MINUTES Minutes in one hour (0-59)
2. HOURS Hours in one day (0-23)
3. DAYMONTH Day in a month (1-31)
4. MONTH Month in a year (1-12)
5. DAYWEEK Day of the week (0-7) where 0 and 7 are sunday

To schedule a build every 5 minutes : */5 * * * *
To schedule a build every day at 8h00, this will do the job : 0 8 * * *

MINUTES HOURS DAYMONTH MONTH DAYWEEK

*/5 * * * *

Schedule a build

https://en.wikipedia.org/wiki/Cron#CRON_expression

Email Notifications
Manage Jenkins → Configure System

Job Name --> Configure

Email Notifications
If you are using gmail, allow third party application to login from https://myaccount.google.com/security

Test the configuration

Email Notifications

Test the configuration

Email Notifications

To be removed: https://mail.google.com/mail/u/0/#inbox/FMfcgxwKjdtDKSXnZkfdzMGGxxBRtLKj

https://mail.google.com/mail/u/0/#inbox/FMfcgxwKjdtDKSXnZkfdzMGGxxBRtLKj

Build failed in Jenkins: SPM2021
See
<http://proslabtest:8080/jenkins/job/SPM2021/4/display/redirect?page=changes>
Changes:
[fabrizio.fornari] added a failing test
--
Started by user Fabrizio Fornari
Running as SYSTEM
Building in workspace <http://proslabtest:8080/jenkins/job/SPM2021/ws/>
…
[INFO] -----------------------< pros.unicam.it:spm2021 >-----------------------
[INFO] Building webapp Maven Webapp 0.0.1-SNAPSHOT
[INFO] --------------------------------[war]---------------------------------
[INFO] --- maven-clean-plugin:3.1.0:clean (default-clean) @ spm2021 ---
[INFO] Deleting <http://proslabtest:8080/jenkins/job/SPM2021/ws/target>
…
[INFO] --- maven-compiler-plugin:3.8.0:testCompile (default-testCompile) @
spm2021 ---
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 7 source files to
<http://proslabtest:8080/jenkins/job/SPM2021/ws/target/test-classes>
...

...
[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running pros.unicam.spm2021.practice.JUnit.EmptyTest
[WARNING] Tests run: 1, Failures: 0, Errors: 0, Skipped: 1, Time elapsed:
0.05 s - in pros.unicam.spm2021.practice.JUnit.EmptyTest
[INFO] Running pros.unicam.spm2021.practice.JUnit.HelloWorldTest
Nov 22, 2021 11:54:31 AM
pros.unicam.spm2021.practice.JUnit.HelloWorldTest setUpBeforeClass
[ERROR] Tests run: 12, Failures: 1, Errors: 0, Skipped: 3, Time elapsed:
0.185 s <<< FAILURE! - in
pros.unicam.spm2021.practice.JUnit.HelloWorldTest
[ERROR] testMain Time elapsed: 0.019 s <<< FAILURE!
org.opentest4j.AssertionFailedError: Not yet implemented
 at
pros.unicam.spm2021.practice.JUnit.HelloWorldTest.testMain(HelloWorldT
est.java:111)
[INFO]
[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] Total time: 9.285 s
[INFO] Finished at: 2021-11-22T11:54:32+01:00
[INFO] --

http://proslabtest:8080/jenkins/job/SPM2021/4/display/redirect?page=changes
http://proslabtest:8080/jenkins/job/SPM2021/ws/
http://proslabtest:8080/jenkins/job/SPM2021/ws/target
http://proslabtest:8080/jenkins/job/SPM2021/ws/target/test-classes

Fix the error
Email: Jenkins build is back to normal : SPM2021 #5

See <http://proslabtest:8080/jenkins/job/SPM2021/5/display/redirect?page=changes>

http://proslabtest:8080/jenkins/job/SPM2021/5/display/redirect?page=changes

Automatic Deploy

Apache Maven

Apache Maven is an open source, standards-based project management framework that simplifies the
building, testing, reporting, and packaging of projects.

http://maven.apache.org/

Apache Tomcat
The Apache Tomcat® software is an open source
implementation of the Java Servlet, JavaServer
Pages, Java Expression Language and Java
WebSocket technologies.

http://tomcat.apache.org/

Download Tomcat
https://tomcat.apache.org/download-90.cgi

Run Your Application
Run On Server Pick the version you installed

Run Your Application

Maven

Maven can be
extended by
plugins to utilise a
number of other
development tools
for reporting or the
build process

https://maven.apache.org/plugins/

To perform a Maven Tomcat deploy of a WAR file you must first set up a user in Tomcat with the
appropriate rights. You can do this with an edit of the tomcat-users.xml file, which can be found in
Tomcat's conf sub-directory. Add the following entry inside the tomcat-users tag:

<!-- User to deploy WAR file to Tomcat from Maven -->
<user username="war-deployer" password="maven-tomcat-plugin"
 roles="manager-gui, manager-script, manager-jmx" />

Save the tomcat-users.xml file and restart the server to have the changes take effect.

Automatically deploy a WAR on Tomcat with Maven

 <!-- Configure the Tomcat Maven plugin -->
<plugin>

<groupId>org.apache.tomcat.maven</groupId>
<artifactId>tomcat7-maven-plugin</artifactId>
<version>2.2</version>
<configuration>

<!-- Use tomcat9 user defined credentials.
Usually you would place them under the Maven
folder .settings.xml telling eclipse to read them from there
by just using adding <server>tomcat9</server>-->
<username>war-deployer</username>
<password>maven-tomcat-plugin</password>
<update>true</update>
<!-- <url>http://localhost:8080/manager/text</url>-->

</configuration>
</plugin>

Automatically deploy a WAR on Tomcat with Maven

Apache Tomcat Maven Plugin: http://tomcat.apache.org/maven-plugin-2.2/

Maven Goals

Goals: clean install tomcat7:deploy

Automatically Deployed WebApp

Automatically deploy a WAR on Tomcat with Jenkins

Install the Deploy
to container plugin

Automatically deploy a WAR on Tomcat with Jenkins

Automatically deploy a WAR on Tomcat with Jenkins

To Do: Change index.jsp

What is Missing?

git commit
git push

git clone
git pull

git clone
git pull

build & test
result notification

deploy

Your Fantastic
Web Application

How to connect
Github and Jenkins?

Webhook

● Webhooks allow you to build or set up GitHub Apps which
subscribe to certain events on GitHub.com.

● When one of those events is triggered, we'll send a HTTP
POST payload to the webhook's configured URL.

● Webhooks can be used to update an external issue tracker,
trigger CI builds, update a backup mirror, or even deploy to your
production server.

https://developer.github.com/webhooks/

http://proslabtest.unicam.it:80/jenkins/github-webhook/

Jenkins GitHub hook trigger

Enable Selenium Tests

Is everything ok?

Environments
Development Build/Test Staging Production

Development and Unit testing
for the developed feature are
done on the individual
developer’s laptop or desktop
system with a proper version
control system in place.

For web based applications,
at a minimum, it requires:

- The same web server used
in production.
- The same database used
in production.
- The same language being
used in production.

The build/test server
should automatically check
out all the code, refresh
the database and then
execute tests.

All unit tests are run, then
integration and regression
testing are performed to
make sure that all the
pieces fit together and
nothing previously working
was broken.

 The staging site is used to
assemble, test and review
new versions of a web app
before it goes into
production.

It is often used to present
the client with the final
project for them to perform
Acceptance testing

The accepted product, is
deployed to a Production
environment, making it
available to all users of the
system.

NOTE: Referred also as Development,
Testing, Acceptance and Production (DTAP)

The Product Pipeline

