
Software Project
Management - Laboratory

Lecture n° 15
A.Y. 2021-2022

Prof. Fabrizio Fornari
fabrizio.fornari@unicam.it

The Product Pipeline

Environments
Development Build/Test Staging Production

Development and Unit testing
for the developed feature are
done on the individual
developer’s laptop or desktop
system with a proper version
control system in place.

For web based applications,
at a minimum, it requires:

- The same web server used
in production.
- The same database used
in production.
- The same language being
used in production.

The build/test server
should automatically check
out all the code, refresh
the database and then
execute tests.

All unit tests are run, then
integration and regression
testing are performed to
make sure that all the
pieces fit together and
nothing previously working
was broken.

 The staging site is used to
assemble, test and review
new versions of a web app
before it goes into
production.

It is often used to present
the client with the final
project for them to perform
Acceptance testing

The accepted product, is
deployed to a Production
environment, making it
available to all users of the
system.

NOTE: Referred also as Development,
Testing, Acceptance and Production (DTAP)

DevOps

Our Toolchain

git commit
git push

git clone
git pull

git clone
git pull

build & test
result notification

deploy

Your Fantastic
Web Application

instantiate

test

Architecture

Selenium
Something more to say about it…

Selenium
To make Selenium tests resilient, we need to make them wait for certain elements to load. Elements that
we want to interact with. This is especially true with JavaScript heavy pages.

Implicit waits vs Explicit waits

And the standard advice from the Selenium Core Committers is to use explicit waits.

Note: Explore AdvancedSeleniumTest.java

Implicit Wait
An implicit wait requires setting a default amount of time for Selenium to wait if it can't
perform an action immediately, and/or setting static sleeps.

Implicit sleeps:

driver.manage().timeouts().implicitlyWait(TimeOut, TimeUnit.SECONDS);

By implicitly waiting, WebDriver polls the DOM for a certain duration when trying to find any element. It
means that if the element is not located on the web page within that time frame, it will throw an exception.

Static sleeps:

Thread.sleep(ms); // To avoid!

It forces your tests to wait a hard-coded amount of time to perform an action

Explicit Waits
An explicit wait is code you define to wait for a certain condition to occur before
proceeding further in the code.

The condition is called with a certain frequency until the timeout of the wait is elapsed. This
means that for as long as the condition returns a falsy value, it will keep trying and waiting.

Since explicit waits allow you to wait for a condition to occur, they make a good fit for synchronising the
state between the browser and its DOM, and your WebDriver script.

import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;
...
WebDriver driver = new FirefoxDriver();
driver.get("http://somedomain/url_that_delays_loading");
...
WebDriverWait wait = (new WebDriverWait(driver, NumberOfSeconds));
wait.until(ExpectedConditions.presenceOfElementLocated(By.id("ElementId")));

Screenshot
public void takeSnapShot(WebDriver webdriver,String fileWithPath){

TakesScreenshot scrShot =((TakesScreenshot)webdriver);

//Call getScreenshotAs method to create image file
File SrcFile=scrShot.getScreenshotAs(OutputType.FILE);

//Move image file to new destination
File DestFile=new File(fileWithPath);
Files.copy(SrcFile.toPath(), DestFile.toPath(),StandardCopyOption.REPLACE_EXISTING);

}

How to check the status of HTTP Request?
We can use Rest Assured

REST Assured is a Java DSL for simplifying testing of REST based services built on top of
HTTP Builder.

It supports POST, GET, PUT, DELETE, OPTIONS, PATCH and HEAD requests and can be
used to validate and verify the response of these requests.

https://rest-assured.io/

https://github.com/rest-assured/rest-assured/wiki/Usage

Rest Assured

What about complex tests…?

Do we have to write them entirely from scratch?

Fortunately No!

Selenium IDE

Download it from:
https://www.seleniumhq.org/selenium-ide/

and let us see what we can do with it...

However we cannot export tests in a format that we can use for writing tests in our
preferred programming language

Katalon Recorder

Download the extension for the browser you want to use

Katalon Automation Recorder it is an automation recorder that helps to export Selenium
WebDriver code.

https://www.katalon.com/

Try to record some tests

Try to find any difference

Do we really need a browser…?

Or better...do we really need a graphical interface?

Every time we run a test, an instance of a
browser is created and the graphical user
interface of the chosen browser
appears...do we really need it?

Headless Browser…

Headless Browser…
● It is a browser without graphical interface

● What is it for?

Headless Browser…
It is a browser without graphical interface

Headless browsers are commonly used for:
● Website and application testing
● JavaScript library testing
● JavaScript simulation and interactions
● Running one or more automated UI tests in the background

Headless Browser…
In a headless testing environment, you can write and execute scripts to:

● Test basic and alternative flows
● Simulate clicks on links and buttons
● Automate form filling and submission
● Test SSL performance
● Experiment with various server loads
● Get reports on page response times
● Scrape useful website code
● Take screenshots of results

Testing these use cases provides you with a solid overview of how a site’s UI
performs and gives you essential information for making changes before deployment.

Which Headless Browser…?

Can you name one Headless Browser?

Which Headless Browser…?
● Firefox Headless Mode
● Headless Chrome
● PhantomJS
● Zombie JS
● HtmlUnit
● Splash

Headless Chrome

Headless Chrome
The biggest downside is that you need to be able to install Chrome. You don’t need a
UI, but installing software is not always possible.

Chrome Driver also requires an executable to be downloaded.

I keep the executable in the same directory as the project (or in a binary repository
and copy it to the workspace.)

It still requires Chrome itself to be installed.

https://sites.google.com/a/chromium.org/chromedriver/downloads

Html Unit

https://htmlunit.sourceforge.io/

Html Unit
In the past, Selenium came with a built in headless driver called HtmlUnitDriver.

While this driver is still supported, it is now a separate dependency and, unsurprisingly,
uses the Html Unit framework.

Prior to Single Page Applications and largely AJAX based pages, this driver was an
excellent choice. You have the ability to choose whether to run the page JavaScript, it
runs in memory and is very fast. It’s still a good choice for web pages with a good
amount of HTML data on them.

HtmlUnit Driver

https://htmlunit.sourceforge.io/gettingStarted.html

Phantom JS

https://phantomjs.org/
https://github.com/ariya/phantomjs/

Project Suspended - https://github.com/ariya/phantomjs/issues/15344
https://groups.google.com/g/phantomjs/c/9aI5d-LDuNE?pli=1

PhantomJS is a headless web browser scriptable with JavaScript.
It runs on Windows, macOS, Linux, and FreeBSD.

https://phantomjs.org/
https://github.com/ariya/phantomjs/
https://github.com/ariya/phantomjs/issues/15344
https://groups.google.com/g/phantomjs/c/9aI5d-LDuNE?pli=1

Running Acceptance Tests

A possible solution is to exclude Acceptance tests from our first
Jenkins Job

Which issue do we had last time?

and include them into a second Jenkins Job

One way is to assign them a Tag and specify the maven goals:

To skip the acceptance tests: clean install -DexcludedGroups=AcceptanceTest surefire:test
To run the acceptance tests: test -Dgroups=AcceptanceTest

1. Undeploy web application

Modify the First Job

Create the Second Job

Configure the Second Job

...and now?

Modify the First Job

Downstream/Upstream

