
Software Project
Management - Laboratory

Lecture n° 17
A.Y. 2021-2022

Prof. Fabrizio Fornari

Software Development Process
Software Development Process is the process of dividing software development work into distinct
phases to improve design, product management, and project management. It is also known as a
software development life cycle (SDLC)

Requirements
Definition

System
Design

System
Implementation Testing

Deployment Maintenance Bug Fixing

Waterfall Model - Negative Aspects
● Too much focused on the

production of documents and
less on the actual software
product

● Software is released only at
the end

● Customer involved only during
the initial phase (requirements
definition)

● Changings in the
requirements are not possible
after the requirements phase
is over

List of
Requirements

Models and design
documentation

Produced
code

List of Tests

Software
product

Agile Development Process

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Manifesto for Agile Software Development

Waterfall vs Agile
The focus is on the software product

What about your project?

Does it have any kind of documentation?

SCRUM Artifacts

The SCRUM artifacts are used to help define the workload coming into the team and currently being
worked upon the team.

The main artifacts:

● Product backlog - a collection of user stories which present functionalities required/wanted by
the product team. Usually the product owner takes responsible for this list.

● Sprint backlog - a collection of stories which could be included in the current sprint.

Which kind of documentation in a Agile/Scrum project?

Public documentation

- Code
- Code Comments

- Product Backlog
- Sprint Backlog Documentation

for the
Development Team

Planning & Design phase

Development phase

- README file
- Wiki

README
You can add a README file to a repository to communicate important information about your project.
A README, along with a repository license, contribution guidelines, and a code of conduct,
communicates expectations for your project and helps you manage contributions

A README is often the first item a visitor will see when visiting your repository. README files
typically include information on:

● What the project does
● Why the project is useful
● How users can get started with the project
● Where users can get help with your project
● Who maintains and contributes to the project

If you put your README file in your repository's root, docs, or hidden .github directory, GitHub will
recognize and automatically surface your README to repository visitors.

README

README file

Github - Wiki
Every GitHub repository comes equipped with a section for hosting documentation, called a wiki. We
can use our repository's wiki to share long-form content about our project, such as how to use it, how
we designed it, or its core principles. We can use a wiki to provide additional documentation.

If you create a wiki in a public repository, the wiki is available to the public. If you create a wiki in
an internal or private repository, people with access to the repository can also access the wiki.

You can edit wikis directly on GitHub, or you can edit wiki files locally. By default, only
people with write access to your repository can make changes to wikis, although you can allow
everyone on GitHub to contribute to a wiki in a public repository.

Cloning wikis to your computer

$ git clone https://github.com/YOUR_USERNAME/YOUR_REPOSITORY.wiki.git

Clones the wiki locally

https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/adding-or-editing-wiki-pages#cloning-wikis-to-your-computer

Github - Wiki

Github - Wiki Permissions

Wiki spm2021Template

Jenkins triggers a build upon every
commit to the source code repository,

typically to a development branch.

Continuous
Integration with

Jenkins by Webhook

Build Status

Build Status

Embeddable
Build Status

Embeddable Build Status

Markdown:
[![Build Status](http://proslabtest.unicam.it/jenkins/buildStatus/icon?job=SPM2021)](http://proslabtest.unicam.it/jenkins/job/SPM2021/)

Build Status Markdown on GitHub

Build Status
Configure Job

GitHub Secret Text

GitHub Secret On Jenkins Credentials

Build Status

Not only Jenkins

https://travis-ci.com/
TRAVIS CI GitHub Actions

https://docs.github.com/en/actions

Travis CI
Travis CI is a hosted, distributed continuous integration service used to
build and test software projects hosted at GitHub.

Travis CI is configured by adding a file named .travis.yml, which is a
YAML format text file, to the root directory of the repository.

this is a java project using maven
language: java
install
install: mvn install

https://travis-ci.com/

Travis CI Documentation: https://docs.travis-ci.com/

https://travis-ci.com/
https://docs.travis-ci.com/

Travis CI

Commit Status

GitHub Actions
Get executed on GitHub
Server

Jobs are execute on virtual
machines hosted by GitHub.

GitHub Actions
name: Java CI with Maven

on:
 push:
 branches: [master]
 pull_request:
 branches: [master]

jobs:
 build:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2
 - uses: browser-actions/setup-chrome@latest
 - name: Set up JDK 11
 uses: actions/setup-java@v2
 with:
 java-version: '11'
 distribution: 'adopt'
 cache: maven
 - name: Build with Maven
 run: mvn -B package --file pom.xml test

GitHub Actions
name: Java CI with Maven

on:
 push:
 branches: [master]
 pull_request:
 branches: [master]

jobs:
 build:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2
 - uses: browser-actions/setup-chrome@latest
 - name: Set up JDK 11
 uses: actions/setup-java@v2
 with:
 java-version: '11'
 distribution: 'adopt'
 cache: maven
 - name: Build with Maven
 run: mvn -B package --file pom.xml test

The name of the workflow as it will appear in
the Actions tab of the GitHub repository.

The trigger for this workflow. This example uses the
push event, so a workflow run is triggered every
time someone pushes a change to the repository or
merges a pull request

Groups together all the jobs that run in the

Defines a job named build. The child keys will
define properties of the job.

Configures the job to run on the latest version
of an Ubuntu Linux runner

GitHub Actions
name: Java CI with Maven

on:
 push:
 branches: [master]
 pull_request:
 branches: [master]

jobs:
 build:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2
 - uses: browser-actions/setup-chrome@latest
 - name: Set up JDK 11
 uses: actions/setup-java@v2
 with:
 java-version: '11'
 distribution: 'adopt'
 cache: maven
 - name: Build with Maven
 run: mvn -B package --file pom.xml test

actions/setup-java@v2 action to install the
specified version of java ‘11’

The run keyword tells the job to execute a
command on the runner. In this case, we are using
mvn to build our application and to run tests

Groups together all the steps that run in the build job

The uses keyword specifies that this step will run v2 of the
actions/checkout action (https://github.com/actions)

.github/workflows

GitHub Actions
name: Java CI with Maven

on:
 push:
 branches: [master]
 pull_request:
 branches: [master]

jobs:
 build:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2
 - uses: browser-actions/setup-chrome@latest
 - name: Set up JDK 11
 uses: actions/setup-java@v2
 with:
 java-version: '11'
 distribution: 'adopt'
 cache: maven
 - name: Build with Maven
 run: mvn -B package --file pom.xml test

Acceptance Tests
What happens with Selenium

WebDriverManager is an open-source Java library that carries out the
management (i.e., download, setup, and maintenance) of the drivers required by
Selenium WebDriver (e.g., chromedriver, geckodriver, msedgedriver, etc.) in a fully
automated manner.

https://github.com/bonigarcia/webdrivermanager

WebDriverManager.chromedriver().setup();
ChromeOptions options = new ChromeOptions()
options.addArguments("--no-sandbox");
options.addArguments("--disable-dev-shm-usage");
options.addArguments("--headless");
driver = new ChromeDriver(options);
driver.manage().timeouts().implicitlyWait(20,TimeUnit.SECONDS);

<dependency>
 <groupId>io.github.bonigarcia</groupId>
 <artifactId>webdrivermanager</artifactId>
 <version>4.3.1</version>
</dependency>

Add dependency to pom.xml Adjust a selenium test

https://bonigarcia.dev/webdrivermanager/
https://www.selenium.dev/documentation/webdriver/

Looking ahead...

DevOps Technologies

https://www.docker.com/

Docker is an open platform for developing, shipping, and running applications.
Docker enables you to separate your applications from your infrastructure so you can deliver
software quickly.
With Docker, you can manage your infrastructure in the same ways you manage your applications.

Compatibility/
Dependency

Long setup
time

Different
Dev/Test/Prod
environments

Run each service
with its own
dependencies in
separate
containers

Containerized Application

VMs vs Containers

From Application to Container

From Application to Container

It Fixes the traditional “but it works on my machine”

From Application to Container

It Fixes the traditional “but it works on my machine”

Docker
https://docs.docker.com/get-docker/

https://docs.docker.com/get-docker/

Dockerfile
FROM tomcat

COPY /target/spm2021.war /usr/local/tomcat/webapps/

CMD ["catalina.sh", "run"]

Public Docker Images Repository

https://hub.docker.com/

Create an account and a Private Repository

GitHub Actions
…
 - name: Build with Maven

 run: mvn -B package --file pom.xml test

 - name: Build and Push Docker Image

 uses: mr-smithers-excellent/docker-build-push@v5

 with:

 image: fabriziofornari89/spm2021template

 registry: docker.io

 username: ${{ secrets.DOCKER_USERNAME }}

 password: ${{ secrets.DOCKER_PASSWORD }}

Docker Desktop

Docker Desktop

Setup the Optional Settings so to
specify the container name and the
host port from which you will access
the application

Docker Desktop

Open the browser to the
right address and port

http://localhost:8080/spm2021 in my case

Jenkins + Docker

...so a Docker Host

What if a Docker Host fails?

Orchestrating Hosts

Orchestration technology focuses on clustering and managing containers and hosts.

Docker Swarm: Easy to setup but lacks autoscaling
Kubernetes: from Google, difficult to setup but supports many advanced features, all public cloud
supports it

MESOS: from Apache, difficult to setup but supports many advanced features,

Kubernetes

A fundamental difference between Kubernetes and Docker is that Kubernetes is
meant to run across a cluster while Docker runs on a single node. Kubernetes is more
extensive than Docker Swarm and is meant to coordinate clusters of nodes at scale in
production in an efficient manner.

What’s next?

Date Topic

10/12/2021 Sprint Review

16/12/2021 The role of Databases in CI/CD with a
Special Guest

17/12/2021 Sprint Meeting/ Project Status Check

23/12/2021 Review of the Entire Course

January Sprint Review

