Software Project
Management - Laboratory

Lecture n°® 2
A.Y. 2020-2021

Prof. Fabrizio Fornari

Recap Previous Lecture

- Agile O
- Scrum (Roles) m

Product
Owner

o

Scrum
Master

Recap Previous Lecture

- Agile
- Scrum (Roles, Artifacts)

Product Backlog Sprint Backlog

Sprint #1 Sprint #2 Sprint #3
User story # User story #1 User story #4

DEEP User story # User story #2

Technique = =
User story #:! User story #3

Detailed

Estimated
Emergent
Prioritized User story #¢

User story #4

User story

Recap Previous Lecture

- Agile
- Scrum (Roles, Artifacts, Events, Sprint)

5. Product
Backlog
Refinement

1. Sprint 4. Sprint
Planning Refrospective

A Sprint will last 2 weeks

DevOps

DevOps addresses gaps in Developer and IT Operations communications

Customer Developer
- -
Software Requirement bAP Tester

Solution olution

W Mg " Dovops

Operations
+

IT Infrastructure

DevOps Technologies

X | gra | | git é & | aws

Confluence gocker

&G sot |

-]Uml Nagios’ splunk ; i v_“J‘
enki el

DATADOG

Questionnaire

https://docs.qoogle.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmMIx18r1JG78ECpiP
NACMETE/73Mez9 bRRSQ/viewform?usp=sf link

https://docs.google.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmIx18r1JG78ECpiPNACMETE73Mez9_bRRSQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmIx18r1JG78ECpiPNACMETE73Mez9_bRRSQ/viewform?usp=sf_link

Lecture Topic: Version Control

Use Case

Consider this scenario:

e Itis 11:00 PM
e You have a homework submission for today and the assignment is ready for submission

e While testing it, you discover a minor bug and decide to fix it
e You try to fix the bug, you change several lines of code on different files and try to run the code
e You discover now that your code is not working anymore as expected

e You no longer remember what you changed

Use Case

Consider this scenario:

e Itis 11:00 PM
e You have a homework submission for today and the assignment is ready for submission

e While testing it, you discover a minor bug and decide to fix it
e You try to fix the bug, you change several lines of code on different files and try to run the code
e You discover now that your code is not working anymore as expected

e You no longer remember what you changed

Version Control

Version control is a system that records
changes to a file or set of files over time
so that you can recall specific versions

How to do it?

" Project

Manually

Project Version Project Version
1.0 11

Any issues?

How to do it?

Manually

Project Version
1.0

Project Version
11.2

Project Version
1.21

"W Project

H v

Project Version
11

Project Version
1.2

Project Version
1.25

Project Version
1.3

Project Version 2

Project Version
21

Project Version
1.3.1

Project Version
211

Project Version
1.6

How to do it?

Local Version Control Systems

Local Computer

Checkout Version Database

Version 2

Version 1

Figure 1. Local version control

How to do it?

Local Version Control Systems

Any issues?

Local Computer

Checkout Version Database

Version 2

Version 1

Figure 1. Local version control

How to do it?

Centralized Version Control Systems

- \ 4 <

Figure 2. Centralized version control

How to do it?

Centralized Version Control Systems

Any issues?

- \ 4 <

Figure 2. Centralized version control

How to do it?

Distributed Version Control Systems

Distributed means that there is no main
server and all of the full history of the
project is available once you cloned the
project.

Server Computer

Version Database

Version 3

Version 2

Version 1

Version Database >

Version 3

Version 2

Version 1

Figure 3. Distributed version control

Version Database

Version 3

Version 2

Version 1

What is git?

e Adistributed version control system - DVCS
e Open source project originally developed in 2005 by Linus Torvalds
e A command line utility

e You can imagine git as something that sits on top of your file system and
manipulates files.

https://git-scm.com/

Git

You can imagine git as something that sits
on top of your file system and manipulates
files.

This “something” is a tree structure where
each commit creates a new node in that
tree.

Nearly all git commands actually serve to
navigate on this tree and to manipulate it
accordingly.

&
2]
@
=
branch ©

commit

Git

The purpose of git is to manage a project, or a set of
files, as they change over time. Git stores this
information in a data structure called a repository

A git repository contains, mainly: a set of commits

Git - Three Sections

Three main sections of a Git project: the working tree, the staging area, and the Git directory.

Working Staging .git directory
Directory Area (Repository)

Checkout the

Figure 6. Working tree, staging area, and Git directory

Git - Three States

Git has three main states that your files can reside in:

e Modified - it means you have changed the file but have not committed it to your database yet.

e Staged - it means that you have marked a modified file in its current version to go into your

next commit snapshot.

e Committed - it means that you have marked a modified file in its current version to go into your

next commit snapshot.

Git - Three Sections

Three main sections of a Git project: the working tree, the staging area, and the Git directory.

. Working Staging .git directory

1. Modify file in working directory

2. Stage changes you want to , Checkout the
commit

3. Commit, takes the file as they
are in the saging area and
stores that snapshot
permanently to your Git
directory

Figure 6. Working tree, staging area, and Git directory

Git - Commit

A commit object mainly contains three things:

e A hash, a 40-character string that uniquely identifies the commit object
e Commit message describing the changes
e A set of changes the commit introduces

Commit id (hash)
,///

commit |284dbf 2cef7d2fb1624eabd3f ef2f c2d39230564]
Author: Fabrizio Fornari <fabrizio.fornari@unicam.it>
Date: Thu Oct 8 16:85:29 2828 +B268A

[Create Test.txt]
\

Commit message

What is an hash?

The result of the application of a cryptographic hash function (CHF).

CHF is a mathematical algorithm that maps data of arbitrary size (often called the "message") to a

bit array of a fixed size (the "hash value", "hash", or "message digest"). It is a function which is
practically infeasible to invert.

Secure Hash Algorithm 1 (SHA1) https://www.hjp.at/(st_a)/doc/rfc/rfc3174.html

Give it a try: http://www.sha1-online.com/

https://www.hjp.at/(st_a)/doc/rfc/rfc3174.html
http://www.sha1-online.com/

Commits
Third Commit

commit cBbaefab2cab786d7%eead4et7451df Saeeadblbel r:}EA.D —> main,

Author: FabrizioFornarig9 <fabrizio.fornari@unicam.it=>
Date: Thu Oct § 17:41:52 2620 +6200

added a second change to the text

diff —git a/Test.txt b/Test.txt
index cf8637c..1fefal8 168644
— a/Test.txt

e h/l'est.txt

@@ -1 +1,2 @@

5\ No newlme at end of file

+Second Chﬂng%

Second Commit ———

commit 69c8fdbS51ica8iBbdes 3
Author: FabrizioFornarisg9 -<beI’1210 fornurl@umcum it=
Date: Thu Oct § 17:36:43 2020 +6200

Fixing a change in the text

diff —git a/Test.txt b/Test.txt
index 8b13789..cf8637c 168644

+First change
% No newline at end of file

First Commit —

commit 984dbf2ced?dZ2fbl524eabd3fed2f
Author: Fabrizio Fornari <fabrizio.fornari@unicam.it=
Date: Thu Oct § 16:85:29 2620 +6200

Create Test.txt

diff —git a/Test.txt b/Test.txt
nev file mode 168644

index 6000000 ..8b13769

— Jdev/rull

+++ b/Test.txt

@@ -A.,0 +1 @@

DeVO pS Our Focus

X gy 5 | |- | aws

Confluence docker

'JUml) Nagios’ splunk > B
enki ESHIF

DATADOG

Git Cheat Sheet

by Jan Kriger <jk
on work hy Zack Rusin

Baser

Basics

Use git help [command] if you're stuck.

master
origin

HEAD

default devel branch
default upstream branch
current branch

HEAD™ parent of HEAD

HEAD~

foo.

Create

From existing files
git init
git add .

From existing repository
git clone ~/old ~/new
git clone git://...
git clone ssh://...

View

git status

git diff [oldid newid]
git log [-p] [file|dir]
git blame file

git show Id (meta data + oiff)
git show id:file

git branch (s

git tag -1

Revert

In Git, revert usually describes a new
commit that undoes previous commits.

git reset --hard (No UNDO)
(reset to last ¢ nit)

git revert branch

git commit -a --amend
(replaces prev.

git checkout id fllé

gs>, httpz//jan-krueger.net/git/

4 great-great grandparent of HEAD
.bar from branch foo to branch bar

=

create browse
init] status
clone

Publish

In Git, conmit only respects changes that
have been marked explicitly with add.

git comm:t [-a]

aticaliy)
format patch origxn
creat

push. remote

sh to origin or remote)
tag foo

mark current v

Update

fetch (from det. upstream
fetch remote

PULL (= fetch & merge)
am -3 patch.mbox
apply patch.diff

Branch

checkout branch
witch working dir to branch
merge branch
(merge into current)
branch branch
(branch current)
checkout -b new other
ch new from
1 to it)

git
git
git
git
git
git
git
git

git

gitk

S

revert

reset
checkout
revert

Useful Tools

archive
Create release tarbal
bisect
Binary search for defects
cherry-pick
Take single commit from elsewhere
fsck
Check tree
gc
Compress metadata (performance)
rebase
Forward-port local changes to
remote branch
remote add URL
Register a new remote repository
for this tree
stash
Temnporarily set aside changes
tag

(there's more to it)

Tk GUI for Git

Conflicts

Use add to mark files as resolved.

git diff [--base]
git diff --ours

git diff -

-theirs

git log --merge
gitk --merge

(left to right)

branch commit push

checkout commit

push
branch format-patch

Tracking Files

add files
mv old new
rm files
rm --cached files
{stop tracking but keep files in working dir)

Structure Overview

Command Flow

Local Repository

~— working dir »

checkout to switch
commit >
Current

Branch
(in .git)

Branch
{in .git)

|

pull push

|
I |
Remote repositofy (e.g. origin)

|
Branch

\
" Branch f

Visual Git Cheat Sheet: https://ndpsoftware.com/git-cheatsheet.html#loc=remote_repo;

https://ndpsoftware.com/git-cheatsheet.html
https://ndpsoftware.com/git-cheatsheet.html#loc=remote_repo;

Let’s start!

—_—

W N

Check if you have a version of git installed on your machine $git --version
If not, install it https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
Set your user name and email address; every Git commit will use this information.

$ git config --global user.name "Name Surname"

$ git config --global user.email name.surname@studenti.unicam.it

You can check your settings at any time:
$qit config ——list

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Git Help

If you ever need help while using Git you can get the comprehensive manual page
(manpage) help for any of the Git commands by typing:

$ git help <verb>

$ qgit <verb> --help
$ man git-<verb>

For example, you can get the manpage help for the git config command by running this:
$ qit help config

If you don’t need the full manpage help, but just a quick refresher on the available
options for a Git command you can just type -h:

$ git config -h

Getting a Git Repository

Typically we obtain a Git repository in one of two ways:

1. Take a local directory that is not currently under version control, and turn it into a Git
repository

2. Clone an existing Git repository from elsewhere

In either case, you end up with a Git repository on your local machine, ready for work.

Initialize a Repository

Create a new folder and open a terminal in that folder.
$ cd pathToTheFolder/FolderName
$ git init
This creates a new subdirectory named .git that contains all of your necessary repository files

— a Git repository skeleton. Git uses this special sub-directory to store all the information
about the project . If we ever delete the .git sub-directory, we will lose the project’s history.

Type Is -a to see the .git folder (Linux or Mac)

Type dir /a to see the .git folder (Windows)

Git Status

The command used to determine which files are in which state is git status

fabriziounicam:Local user$ git status
On branch master

No commits vet

nothing to commit {create/copy files and use "git add" to track)

This means:
e you have a clean working directory.
e no changes have been detected.
e master is the name of the branch.

Tracking a File

-

Working
Directory

~

git add
File1.txt

Staging Area

Repository

e

Universita di Camerino
kﬁ/

Tracking a File

1. Create afile in that folder (by GUI or by command line)

fabriziounicam:Local user$ echo 'My Project' = README

fabriziounicam:Local user$ git status

Reldivn e _(ou. can see that your new !?EADME
file is untracked, because it’s under

the “Untracked files” heading in your

status output.

No commits yet

Untracked files:
{use "git add <file=..." to include in what will be committed)

nothing added to commit but untracked files present {use "git add" to track)

Tracking a File

2. Use the command git add <FileName> to begin tracking the README file

fabriziounicam:Local user$ git add README

fabriziounicam:Local user$ git status You can see that your README file is
On branch master opy

staged because it's under the
HacommiLs:yel “Changes to be committed” heading.

Changes to be committed:
{use "git rm --cached <file=..." to unstage)

Tracking a File

git add
FILE1.txt

FILEL.txt

When to change it is
only part of the file

Staging Area

git commit

Repository

‘\‘

Universita di Camerino

\\\ >
N’

1336

/

// /

Tracking a File

3. Modify the README file and run git status Git stages a file exactly as it is when
fabriziounicam:Local user$ vi README you run the glt add command.

fabriziounicam:Local user$ git status

On branch master

If you modify a file after you run git
add, you have to run git add again to
stage the latest version of the file.

anges to be committed:
{use "git rm --cached <file=..." to unstage)

new file:

Changes not staged for commit:
{use "git add =file=..." to update what will be committed)

{use "git checkout —- <file=..." to discard changes in workingMirectory)

Tracking a File

4. Run git add README and run git status -s
Git stages a file exactly as it is when

you run the git add command.

If you modify a file after you run git
add, you have to run git add again to
stage the latest version of the file.

fabriziounicam:Local user$ git add README
fabriziounicam:Local user$ git status -s
4 README

Tracking a File

5. Create a second File and run git status -s

fabriziounicam:Local user$ echo 'My Second File' = SecondFile.txt
fabriziounicam:Local user$ ls

README SecondFile.txt
fabriziounicam:Local user$ git status -s
4 README

SecondFile.txt

6. Create a third File and run git status -s

fabriziounicam:Local user$ echo 'My Third File' = ThirdFile.txt
fabriziounicam:Local user$ git status -s

README

SecondFile.txt

ThirdFile.txt

7. Add all untracked file to staging area by running git add . and run git status

fabriziounicam:Local user$ git add .
fabriziounicam:Local user$ git status -s
README
4 SecondFile.txt
ThirdFile.txt

Tracking a File

8. Edit one or more File and run git status -s

fabriziounicam:Local user$ git status -s

A0 README Can you guess

4 SecondFile.txt

AN ThirdFile.txt what happened?
README . txt

fabriziounicam:Local user$ git status
On branch master

No commits yet

Changes to be committed:
{use "git rm --cached <file=..." to unstage)

Changes not staged for commit:
{use "git add/rm <file>..." to update what will be committed)
{use "git checkout —- «file=..." to discard changes in working directory)

Untracked files:
{use "git add <file=..." to include in what will be committed)

Tracking a File

9. Add all the changes to the staging area by running git add . and run git status -s

fabriziounicam:Local user$ git add .
fabriziounicam:Local user$ git status -s
README .txt
SecondFile.txt
A4 ThirdFile.txt

10. Remove a file from the staging area git rm --cached ThirdFile.txt and run git status -s

fabriziounicam:Local user$ git rm --cached ThirdFile.txt
rm 'ThirdFile.txt'
fabriziounicam:Local user$ git status -s

README .txt

SecondFile.txt

ThirdFile.txt

fabriziounicam:Local user$ git status

TraCklng a F|Ie On branch master

No commits yet

Changes to be committed:

11. Edit a file and run g|t status {use "git rm --cached <filex..." to unstage)

Changes not staged for commit:
{use "git add =file=..." to update what will be committed)
{use "git checkout -- <file=..." to discard changes in working directory)

Untracked files:
{use "git add «file=..." to include in what will be committed)

i i fabriziounicam:Local user$ vi README.txt
12 Run glt dlff fabriziounicam:Local user$ git diff
QLT At OPENNE -txt b/REAINE ot diff compares what is in your working
index B8956che..5dd2ch6 188644 . . Qg .
— a/READIE.txt directory with what is in your staging
e area. The result tells you the changes
My Project you’'ve made that you haven't yet staged.

Adding a second line

+A4dding a third line

Tracking a File

13. Run git diff --staged

fabriziounicam:Local user$ git diff --staged
diff —git o/README.txt b/README.txt

new file mode 168644

index 6600008 . .8956che

wer B/README txt git diff --staged shows what you’ve staged

that will go into your next commit. It
e e o et compares your staged changes to your
nev file mode 108644 last commit.
index 66600008 . .75%250

— Zdev/null
+++ b/SecondFile.txt

14. Stage all by running git add .

Git - Three Sections

Three main sections of a Git project: the working tree, the staging area, and the Git directory.

Working Staging .git directory
Directory Area (Repository)

Checkout the

Figure 6. Working tree, staging area, and Git directory

Commit

When your staging area is set up the way you want it, you can commit your changes. Remember,
anything that is still unstaged — any files you have created or modified that you haven’t run git add on
since you edited them — won’t go into this commit

15. Run git commit -m “A message which describes the changes, helping me to remember what i
changed with this commit’

Branch name SHA-1 checksum

briziounicam:Local usery git commit -m "I created three files that I used for testing git functionalities"
it (CdiA4efD] created three files that I used for testing git functionalities

3 Tiles changed, 6 insertions(+)
create mode 108644 README.txt
create mode 1088644 SecondFile.txt
create mode 188644 ThirdFile.txt

\ Changed Files and statistics
about lines added/removed

How to visualize commits

A4

master

\{

As a list where each element point to its predecessor

Tracking multiple File

FILE1 txt git add FILE1.txt

git commit

git add FILE2.txt

staging area

reposito
FILE2.txt p ry

Remember

The commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to add it to your
history.

Every time you perform a commit, you’re recording a snapshot of your project that you can revert to
or compare to later.

Skip the Staging Area

Let’s assume you modified a file and you want to commit directly without staging that change

fabriziounicam:Local user$ git status
On branch master
Changes not staged for commit:
{use "git add =file=..." to update what will be committed)
{use "git checkout —- <file=..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")

Run git add -A && git commit -m “A message which describes the changes, helping me to
remember what i changed with this commit’

fabriziounicam:Local user$ git commit -a -m "Added one line to ThirdFile"
[master d@876829] Added one line to ThirdFile

1 file changed, 1 insertion{+)

fabriziounicam:Local user$ git status

On branch master

nothing to commit, working tree clean

Removing Files

1. Run git rm FileName to remove a file from the working directory and staging the delete

fabriziounicam:Local user$ ls
FourthFile.txt README.txt SecondFile.txt ThirdFile.txt
fabriziounicam:Local user$ git rm FourthFile.txt
rm 'FourthFile.txt'
fabriziounicam:Local user$ git status
On branch master
Changes to be committed:
{use "git reset HEAD <file=..." to unstage)

deleted:

Removing Staged Files

2. What if you staged a file then you realize you don’t actually want to commit it? How do you
remove a staged file?

fabriziounicam:Local user$ echo 'My Fifth File' = FifthFile.txt
fabriziounicam:Local user$ git add .
fabriziounicam:Local user$ git status
On branch master
Changes to be committed:
{use "git reset HEAD <file=..." to unstoge)
git rm --cached FileName

1Les FLITThN

fabriziounicam:Local user$ git rm FifthFile.txt
error: the following file has changes staged in the index:
FifthFile.txt
se ——cached to keep the file or f to force removal)
fobriziounicam:Local user$ git rm —-cached FifthFile.txt ™ —>
rm F1ITTAFTIE.CXT
fabriziounicam:Local user$ git status
On branch master
Untracked files:
{use "git odd <«file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

Rename a File

Run git mv OldFileName NewFileName

fabriziounicam:Local user$ git mv README.txt FirstFile.txt
fabriziounicam:Local user$ git status
On branch master
Changes to be committed:
{use "git reset HEAD =file=..." to unstage)

amed : README .txt -= FirstFile.txt

Commit History

Run git log

fabriziounicam:Local user$ git log

commit d96f4clabbedbf4762c301650c87e18efel4c?72 (HEAD — master)
Author: FabrizioFornari89 «fabrizio.fornari@unicam.it=

Date: Mon Oct 12 16:18:37 2020 +62608

deleted the fourth file git log lists the commits made in that
commit dalb4eaedzBb33438e8bb3eb7clcd4d3dbececdaf repOSitory in reverse ChronOIOgical order

Author: FabrizioFornari89 <fabrizio.fornari@unicam.it=
Date: Mon Oct 12 16:15:29 2620 +6200

added a fourth file /

Author: FabrizioFornarid9 «fabrizio.fornari@unicam.it= Try:
Date: Mon Oct 12 16:00:81 2020 +6260 .
gitlog -p -2

Added one line to ThirdFile g|t |Og --stat
commit cd1B4eA38841ch286672700f a400del4b4733b14 git log --pretty=oneline
Author: FabrizioFornari89 <fabrizio.fornari@unicam.it= i . = "o _0 (o) -0/ Q"
Date: Mon Oct 12 15:30:46 2020 +8260 glt IOg pretty format' /Oh /oan, /oar : /OS

I created try files that I used for testing git functionalities

Undoing Things

| Added a FifthFile and committed it

fabriziounicam:Local user$ git status
On branch master
Untracked files:
{use "git add =file=..." to include in what will be committed)

hothing added to commit but untracked files present (use "git add" to track)
fabriziounicam:Local user$ git add .

fabriziounicam:Local user$ git commit -m "added a FifthFile"

[master 3c955ea] added a FifthFile

1 file changed, 1 insertion{+)

create mode 108644 FifthFile.txt

| Created a SixthFile ———ffabriziounicam:Local user$ echo "Sixth File" = SixthFile.txt

| realized that FifthFile and SixthFile are
related and it makes sense to commit
them together in a single commit

| run git commit --amend

T~

fabriziounicam:Local user$ git status
On branch master
Untracked files:
{use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present {use "git add" to track)
fobriziounicam:Local user$ git add SixthFile.txt

fobriziounicam:local user$ git commit ——amend ——>
—

[master ddlla39] added a FifthFile and a SixthFile
Date: Mon Oct 12 17:67:01 26026 +62600

| committed both file together and
| also changed the commit
message

2 files changed, 2 insertions(+)
create mode 1688644 FifthFile.txt
create mode 168644 SixthFile.txt

Unstaging & Unmodifying

fabriziounicam:Local user$ git status
On branch master
Changes to be committed:

/Guse "git reset HEAD =file=..." to unstage))
To unstage run git reset HEAD FileName _ _
Wicam:mcal user$ git reset HEAD ThirdFile IXT—>
Nnstaged CHANges ar el Ieset.

M ThirdFile.txt
fabriziounicam:Local user$ git status
On branch master
Changes not staged for commit:

{use "git add ~file DbeppEate—niat bl be connitied
use "git checkout -- =file=..." to discard changes in working di£§§§§E§;>

To unmodify git checkout -- FileName

FTSPUAY

t o ‘gil., Tt o llg;t
iziounicam:Local user$ git checkout -- ThirdFile.txt >
fabriziounicam:COCATl Userd Ort SLOC
On branch master
nothing to commit, working tree clean

Ignoring Things

Often, you'll have a class of files that you don’t want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore.

ignore all .a files # ignore all .a files

*.a *.a

but do track lib.a, even though you're # but do track lib.a, even though you're
#ignoring .a files above #ignoring .a files above

lib.a lib.a

only ignore the TODO file in the current # only ignore the TODO file in the current
directory, not subdir/TODO # directory, not subdir/TODO

/TODO /TODO

Example of .gitignore https://github.com/qgithub/gitignore

https://github.com/github/gitignore

Ignoring Things

"””_,,—<:Iﬁﬁfiéiounicam:Local user$ cat .gitignore >
Run cat .gitignore # ignore all @ T1Tes

*.q

but do track lib.a, even though vou're ignoring .a files above
Ilib.a
fabriziounicam:Local user$ git status
On branch master
Untracked files:
{use "git add <file=..." to include in what will be committed)

nothing added to commit but untracked files present {use "git add" to track)
fabriziounicam:Local user$ ls
FifthFile.txt FirstFile.txt SecondFile.txt SixthFile.txt ThirdFile.txt lib.a testIgnore.a

About the Projects

