
Software Project
Management - Laboratory

Lecture n° 7
A.Y. 2021-2022

Prof. Fabrizio Fornari

DevOps

Our Focus

What is Testing?

Testing
Testing is the activity of finding out whether a piece of code (a method, class, or
program) produces the intended behavior.

Have you ever done Testing?
How many of you? Raise your hands!!!

Testing DebuggingVS

What is the difference?

Testing
The purpose of testing is
to find bugs and errors.

Debugging

Testing
The purpose of testing is
to find bugs and errors.

Debugging
The purpose of debugging is to
correct those bugs found during
testing.

Debugging
Untested Code

Debugging
Untested Code

League of Legends, Fortnite, COD, or whatever you play :D
,

Testing...when?

The Continuous Delivery Pipeline

Testing

Test Sizes

Google Testing Blog ‘Test Sizes’

Feature Small Medium Large
Network access No localhost only Yes

Database No Yes Yes

File system access No Yes Yes

Use external systems No Discouraged Yes

Multiple threads No Yes Yes

Sleep statements No Yes Yes

System properties No Yes Yes

Time limit (seconds) 60 300 900+

Size & Time

https://testing.googleblog.com/2010/12/test-sizes.html

The Test Stack

Unit / Small

Integration / Medium

System /
Large

The Test Stack

Unit / Small

Integration / Medium

System /
Large

Unit testing on
individual units of
source code (smallest
testable part).

The Test Stack

Unit / Small

Integration / Medium

System /
LargeIntegration testing on

groups of individual
software modules.

The Test Stack

Unit / Small

Integration / Medium

System /
Large

System testing on a
complete, integrated
system (evaluate
compliance with
requirements)

Our Focus...

Unit tests and unit testing

Unit tests and unit testing
● a unit test is a piece of code written by a developer that executes a specific

functionality in the code to be tested.

● a unit test targets a small unit of code, e.g., a method or a class

● it ensures that code works as intended, or that it still works as intended in
case you need to modify code for fixing a bug or extending functionality.

Unit tests and unit testing
The percentage of code which is tested by unit tests is typically called test coverage.

Having a high test
coverage of your code
allows you to continue
developing features
without having to perform
lots of manual tests.

About test coverage in Eclipse:
https://www.eclemma.org/

https://www.eclemma.org/

Unit tests and unit testing
● JUnit (http://junit.org/) is a test framework which uses annotations to identify

methods that specify a test. Typically these test methods are contained in a
class which is only used for testing. It is typically called a Test class.

● Current version is JUnit 5

Tests in JUnit

● Tests are realized as public void AUsefulTestName() methods.

● A test typically calls a few methods, then checks if the state matches the
expectation. If not, it fails.

Tests in JUnit
● To define that a certain method is a test method, annotate it with the @Test

annotation.

● This method executes the code under test. You use an assert method,
provided by JUnit or another assert framework, to check an expected result
versus the actual result. These method calls are typically called asserts or
assert statements.

● You should provide meaningful messages in assert statements. That makes
it easier for the user to identify and fix the problem. This is especially true if
someone looks at the problem, who did not write the code under test or the
test code.

JUnit test example
public class MyClass {

public int multiply(int a, int b) {

return (a*b);

}

}

public class MyClassTest {
 @Test
 public void multiplicationOfZeroIntegersShouldReturnZero() {
 MyClass tester = new MyClass(); // MyClass is tested
 // assert statements
 assertEquals(0, tester.multiply(10, 0), "10 x 0 must be 0");
 assertEquals(0, tester.multiply(0, 10), "0 x 10 must be 0");
 assertEquals(0, tester.multiply(0, 0), "0 x 0 must be 0");
 }
}

JUnit naming conventions
● A widely-used solution for classes is to use the "Test" suffix at the end of test

classes names. (The Maven build system automatically includes such classes in its test scope.)

● As a general rule, a test name should explain what the test does. If that is
done correctly, reading the actual implementation can be avoided.

● One possible convention is to use the "should" in the test method name. For
example, "ordersShouldBeCreated" or "menuShouldGetActive". This gives a
hint what should happen if the test method is executed.

● Another approach is to use
"Given[ExplainYourInput]When[WhatIsDone]Then[ExpectedResult]" for the
display name of the test method.

JUnit5
Unlike previous versions of JUnit, JUnit 5 is composed of several different modules from three
different sub-projects.

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage

With the objective of separating "JUnit the tool" (which we use to write tests) and "JUnit the platform"
(which tools use to run our tests) the JUnit team decided to split JUnit 5 into three sub-projects:

● JUnit Platform: Contains the engine API and provides a uniform API to tools, so they can run tests

● JUnit Jupiter: The API against which we write tests and the engine that understands it.

● JUnit Vintage: An engine that allows to run tests written in JUnit 3 and 4 with JUnit 5

JUnit4

Maven Dependency
Import JUnit

JUnit test example - MyClass

public class MyClass {

 public int multiply(int x, int y) {

 return x / y;

 }

}

JUnit test example - MyClassTest

public class MyClassTest {

 @Test
 public void testMultiply() {
 MyClass tester = new MyClass();
 assertEquals(50, tester.multiply(10, 5));
 }
}

//JUnit 5
import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;

//JUnit4
import static org.junit.Assert.assertEquals;
import org.junit.Test;

Run Tests
● The test is failing, because

our multiplier class is
currently not working
correctly.

● It does a division
instead of
multiplication.

● Fix the bug and re-run
the test to get a green
bar.

1/1

JUnit test example - MyClass

public class MyClass {

 public int multiply(int x, int y) {

 return x * y;

 }

}

1/1

JUnit Eclipse Legend

Setup Your Maven Project with JUnit5

To setup JUnit 5
https://maven.apache.org/surefire/maven-surefire-plugin/examples/junit-platform.html

JUnit5 dependencies:

● junit-jupiter-api: for writing JUnit5 tests
● junit-jupiter-engine: for running JUnit5 tests
● junit-platform-xxx: the foundation for JUnit5
● (Optionally) you might want to include junit-vintage-engine for running JUnit4 tests

https://maven.apache.org/surefire/maven-surefire-plugin/examples/junit-platform.html

Available JUnit annotations

Annotation Description

@Test Denotes that a method is a test method. Unlike JUnit 4’s @Test
annotation, this annotation does not declare any attributes, since test
extensions in JUnit Jupiter operate based on their own dedicated
annotations. Such methods are inherited unless they are overridden

@ParameterizedTest Denotes that a method is a parameterized test. Such methods are
inherited unless they are overridden.

@RepeatedTest Denotes that a method is a test template for a test that we want to repeat
several times. Such methods are inherited unless they are overridden.

@DisplayName Declares a custom display name for the test class or test method. Such
annotations are not inherited.

All core annotations are located in the org.junit.jupiter.api package in the junit-jupiter-api module.

Available JUnit annotations
Annotation Description

@BeforeEach Denotes that the annotated method should be executed before each @Test,
@RepeatedTest, @ParameterizedTest, or @TestFactory method in the current class;
analogous to JUnit 4’s @Before. Such methods are inherited unless they are overridden.

@BeforeAll Denotes that the annotated method should be executed before all @Test,
@RepeatedTest, @ParameterizedTest, and @TestFactory methods in the current class;
analogous to JUnit 4’s @BeforeClass. Such methods are inherited (unless they are
hidden or overridden) and must be static (unless the "per-class" test instance lifecycle is
used).

@AfterEach Denotes that the annotated method should be executed after each @Test,
@RepeatedTest, @ParameterizedTest, or @TestFactory method in the current class;
analogous to JUnit 4’s @After. Such methods are inherited unless they are overridden.

@AfterAll Denotes that the annotated method should be executed after all @Test, @RepeatedTest,
@ParameterizedTest, and @TestFactory methods in the current class; analogous to JUnit
4’s @AfterClass. Such methods are inherited (unless they are hidden or overridden) and
must be static (unless the "per-class" test instance lifecycle is used).

Test Classes and Methods
A test method is any instance method that is directly or meta-annotated with
@Test, @RepeatedTest, @ParameterizedTest, @TestFactory, or TestTemplate.

A test class is any top level or static member class that contains at least one test

method.

Assertions
Statement Description

fail(String) Let the method fail. Might be used to check that a certain part of
the code is not reached or to have a failing test before the test
code is implemented. The String parameter is optional.

assertTrue(boolean condition) Checks that the boolean condition is true.

assertFalse(boolean condition) Checks that the boolean condition is false.

assertEquals(expected, actual) Tests that two values are the same. Note: for arrays the reference
is checked not the content of the arrays.

assertEquals(expected, actual,
tolerance)

Test that float or double values match. The tolerance is the
number of decimals which must be the same.

Assertion allow to add a message
JUNIT4: assertEquals("10 multiplied by 5 should return 50",50, tester.multiply(10, 5));

JUNIT5: assertEquals(50, tester.multiply(10, 5),"10 multiplied by 5 should return 50");

Assertions

Statement Description

assertNull(object) Checks that the object is null.

assertNotNull(object) Checks that the object is not null.

assertSame(expected, actual) Checks that both variables refer to the same object.

assertNotSame(expected, actual) Checks that both variables refer to different objects.

assertArrayEquals(expected, actual) Checks both array contains same values

Display Names
Test classes and test methods can declare custom display names — with spaces, special

characters, and even emojis — that will be displayed by test runners and test reporting.

import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;
@DisplayName("A special test case")
class DisplayNameDemo {
 @Test
 @DisplayName("Custom test name containing spaces")
 void testWithDisplayNameContainingSpaces() {
 }
 @Test
 @DisplayName(" °□°） ")
 void testWithDisplayNameContainingSpecialCharacters() {
 }
 @Test
 @DisplayName(" 😈")
 void testWithDisplayNameContainingEmoji() {
 }
}

Disabling tests
● The @Ignore annotation allow to statically ignore a test. The @Disabled

allow to disable a test.

Assumptions
● Alternatively you can use Assume.assumeFalse or Assume.assumeTrue to

define a condition for the test.

● Assume.assumeFalse(System.getProperty("os.name").contains("Mac OS X"));

● Assume.assumeTrue(System.getProperty("os.name").contains("Mac OS X"));

● All JUnit Jupiter assumptions are static methods in the

org.junit.jupiter.api.Assumptions class.

Conditional Test Execution
The ExecutionCondition extension API in JUnit Jupiter allows developers to either enable or disable

a container or test based on certain conditions programmatically.

Operating System Conditions A container or test may be enabled or disabled on a

particular operating system via the @EnabledOnOs and @DisabledOnOs annotations.

@Test
@EnabledOnOs(MAC)
void onlyOnMacOs() {
 // ...
}
@TestOnMac
void testOnMac() {
 // ...
}

@Test
@EnabledOnOs({ LINUX, MAC })
void onLinuxOrMac() {
 // ...
}
@Test
@DisabledOnOs(WINDOWS)
void notOnWindows() {
 // ...
}

Conditional Test Execution
Java Runtime Environment Conditions A container or test may be enabled or disabled

on a particular version of the Java Runtime Environment (JRE) via the @EnabledOnJre and

@DisabledOnJre annotations.

@Test
@EnabledOnJre(JAVA_8)
void onlyOnJava8() {

// ...
}

@Test
@EnabledOnJre({ JAVA_9, JAVA_10 })
void onJava9Or10() {
 // ...
}

@Test
@DisabledOnJre(JAVA_9)
void notOnJava9() {
 // ...
}

Conditional Test Execution
Environment Variable Conditions A container or test may be enabled or disabled based on

the value of the named environment variable from the underlying operating system via the

@EnabledIfEnvironmentVariable and @DisabledIfEnvironmentVariable annotations. The value

supplied via the matches attribute will be interpreted as a regular expression.

@Test
@EnabledIfEnvironmentVariable(named = "ENV", matches = "staging-server")
void onlyOnStagingServer() {
 // ...
}

@Test
@DisabledIfEnvironmentVariable(named = "ENV", matches = ".*development.*")
void notOnDeveloperWorkstation() {
 // ...
}

Conditional Test Execution
Script-based Conditions enable or disable a test based on the evaluation of a script

configured via the @EnabledIf or @DisabledIf annotation. Scripts can be written in JavaScript,

Groovy, or any other scripting language for which there is support for the Java Scripting API, defined

by JSR 223

@Test // Static JavaScript expression.
@EnabledIf("2 * 3 == 6")
void willBeExecuted() {
 // ...
}

@RepeatedTest(10) // Dynamic JavaScript
expression.
@DisabledIf("Math.random() < 0.314159")
void mightNotBeExecuted() {
 // ...
}

@Test // Regular expression testing bound system property.
@DisabledIf("/32/.test(systemProperty.get('os.arch'))")
void disabledOn32BitArchitectures() {
 assertFalse(System.getProperty("os.arch").contains("32"));
}

@Test
@EnabledIf("'CI' == systemEnvironment.get('ENV')")
void onlyOnCiServer() {
 assertTrue("CI".equals(System.getenv("ENV")));
}

Parameterized test
● JUnit allows you to use parameters in a tests class. This class can contain

one test method and this method is executed with the different parameters

provided.

@ParameterizedTest

@ValueSource(strings = { "pippo" , racecar",

"radar", "able was I ere I saw elba" })

void palindromes(String candidate) {

 assertTrue(isPalindrome(candidate));

}

Test Suites
● combine multiple tests into a test suite

● a test suite executes all test classes in

that suite in the specified order

● A test suite can also contain other test

suites.

import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)
@SuiteClasses({
 MyClassTest.class,
 MySecondClassTest.class })

public class AllTests {

}

Tagging and Filtering
Test classes and methods can be tagged via the @Tag annotation. Those tags

can later be used to filter test discovery and execution.

• A trimmed tag must not contain whitespace.

• A trimmed tag must not contain ISO control characters.

• A trimmed tag must not contain any of the following

reserved characters:

◦ ,: comma

◦ (: left parenthesis

◦): right parenthesis

◦ &: ampersand

◦ |: vertical bar

◦ !: exclamation point

import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;

@Tag("fast")
@Tag("model")
class TaggingDemo {

 @Test
 @Tag("taxes")
 void testingTaxCalculation() {
 }

}

Test Result from code
JUnit 5 introduces the concept of a Launcher that can be used to discover, filter,
and execute tests. The launcher API is in the junit-platform-launcher module

final LauncherDiscoveryRequest request =
 LauncherDiscoveryRequestBuilder.request()

 .selectors(selectClass(MyClassTest.class))
 .selectors(selectClass(HelloWorldTest.class))
 .build();

final Launcher launcher = LauncherFactory.create();
final SummaryGeneratingListener listener = new SummaryGeneratingListener();

launcher.registerTestExecutionListeners(listener);
launcher.execute(request);

TestExecutionSummary summary = listener.getSummary();

https://junit.org/junit5/docs/current/api/org/junit/platform/launcher/package-summary.html

Console launcher

● The ConsoleLauncher is a command-line Java application that lets you
launch the JUnit Platform from the console. For example, it can be used to
run JUnit Vintage and JUnit Jupiter tests and print test execution results to the
console.

● An executable junit-platform-console-standalone-1.3.2.jar with all
dependencies included is published in the central Maven repository under the
junit-platform-console-standalone directory.

● java -jar lib/junit-platform-console-standalone-1.3.2.jar --class-path bin
--scan-class-path

Github Sample Project
https://github.com/FabrizioFornari/spm2021Template.git

1. Clone (or pull) the repository.
2. Import Maven project in eclipse.

Best practices
● Tests should be written before the code (TDD - Test driven development)

● Test everything that could reasonably break.

● If it can’t break on its own, it’s too simple to break (like most get and set

methods).

● Run all your unit tests as often as possible

Best practices

One of the founding fathers of Extreme Programming

Extreme Programming (XP)
● A type of Agile software development

○ it advocates frequent "releases" in short development cycles
○ introduce checkpoints at which new customer requirements can be adopted

● Other elements of extreme programming include:

○ programming in pairs or doing extensive code review
○ unit testing of all code
○ avoiding programming of features until they are actually needed
○ code simplicity and clarity
○ expecting changes in the customer's requirements as time passes and the problem is better

understood
○ frequent communication with the customer and among programmers

● XP uses Test Driven Development (TDD) and refactoring to help uncover the most effective design.
○ refactoring can be safely achieved only with a strong test system, able to check that the whole

software product don't break when you add new code, or when you modify existing ones.

https://en.wikipedia.org/wiki/Pair_programming
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Unit_testing

Test-Driven Development (TDD)

● Writing test before code to be tested
○ “a little test, a little code, a little test, a little code, ...”
○ Tests are added gradually during implementation – not in large lump

afterwards

● Process of writing tests drives low-level design and programming
○ Tests specify what code should do
○ Tests validate that code does what it should

● Actually, a design and coding practice
● One of the core practices of Extreme Programming

○ Developers have been applying TDD for several decades

TDD cycle

● Proceeds step by step
a. Write a test.
b. Design and implement just enough to

make the test pass.
c. Repeat.

● Testing and coding alternate in very small
steps
○ Duration of one cycle should be a few

minutes
○ Small steps – difficult to make mistake

TDD

● TDD procedure is over when you can’t write a failing test anymore
a. Write test for each requirement of the code
b. Write test for each point that can possibly break

● One cycle at a time
a. Don’t write a bunch of tests at once

● Refactor if you ever see the chance to make the design simpler
● Run all tests after finishing episode

○ Make sure you did not break anything else

TDD - claimed benefits (1/2)
● Close feedback loop

a. TDD cycle is very short – know if code is working right after you
programmed it

● Task-orientation
a. Encourage programmer to decompose problem into manageable

programming tasks
b. Helps to maintain focus
c. Helps to measure progress and scope work

● Low-level design
a. Programmer is forced to think which classes and methods to create, how

they are used, how to name them, what arguments does a method take,
what does a method return

TDD - claimed benefits (2/2)
● Results better code

a. If the test is too hard to write, the code being tested is too
complicated

● Results testable code
a. Programmer can’t end up with code that cannot be tested

● Effect on quality
a. Testing becomes part of the development process and gets done
b. Side effect of TDD is that code gets thoroughly unit tested

TDD - Try it!
● The only way to know!
● Personal experiences

a. Good feeling about the code written
■ General confidence that your code does what you have intended it to do
■ Good feeling when checking your code into version control with all green

b. Tests really get written when they are written beforehand
■ You always have an up-to-date regression testing suite
■ TDD helps you to keep focus on the current task
■ Program only what is needed to see the green light

c. Promote best practices
■ System.out.println is used for displaying messages for user – not for

developer Debugger is used for debugging

and for anything else...

Check this out: JUnit 5 User Guide

https://junit.org/junit5/docs/current/user-guide/index.pdf
or

https://junit.org/junit5/docs/current/user-guide/

https://junit.org/junit5/docs/current/user-guide/index.pdf
https://junit.org/junit5/docs/current/user-guide/

and for anything else...

Java Unit Testing with JUnit 5:
Test Driven Development with JUnit 5.

Shekhar Gulati and Rahul Sharma

