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The ML Framework

What are we learning?

Input x
g
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function f
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output y = f(x)
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The Learning Problem

What are we learning?
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The Learning Problem

Learning VS Machine Learning

Learning

" Learning is about acquiring skills — using experience from a set of
observations”

ML 131020122022 4/1



The Learning Problem

Learning VS Machine Learning

Learning
" Learning is about acquiring skills — using experience from a set of
observations” )

Machine Learning
“ Machine Learning is about acquiring skills — using experience derived

from data’ )

Learning is about “ acquiring skills”
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The Learning Problem

ML

DATA

What do mean with “skill"?
@ predict energy consumption
@ recognizing objects
o ...
@ uncovering an hidden process

@ improving a performance measure (e.g accuracy, recall, fl-score ...)
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The Learning Problem

Learning VS Machine Learning

Definition [Mitchell (1997)]

“ A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E”
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The Learning Problem

Notation

x the input x € X'. Often a column vector x € R? or x € {1} x RY. x is used if
input is scalar. y the outputy € ).

X input space whose elements are x € X', ) output space whose elements are
yey

Data, D = {(leyl)’ (X27y2)"'(xn’yn)}

Unknown function to be learned f :X — )

Approximation of the Unknown function g :X —

A learning algorithm, H set of candidates formulas for g
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The Learning Problem

UNKNOWN TARGET FUNCTION
f:3->%

|

Training examples Hypothesis Set

(X1, ¥1), %2, ¥2): .- . (X, V) H

Final Hypothesis
gxf

Learning
Algorithm

o
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A daily example...

Let suppose we need a bank loan. We go to the bank explaining why we
need money and then we ask a certain amount.

Do we get those money?
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A daily example...

Now, let suppose that a lot of people need a bank loan and the bank want
to set up an automatic procedure for approving or rejecting the
applications

What does the bank do?(hint: Remember that the bank has a lot
of data)
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The Learning Problem

Training examples Hypothesis Set
(X1, Y1) X2, ¥2), -, (X, ¥) H
Real data of the past customers set of candidate functions

Learning
Algorithm

o

Final Hypothesis
gxf

Learned function
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The Learning Problem

UNKNOWN TARGET FUNCTION
ft:T-v
Py [x)

|

Training examples
(X1, ¥1), %2, ¥2): .- . (X, V)

(X1, X3, .., Xp) \

Learning

Hypothesis Set

=

Probability Algorithm
Distribution d
P(x)
x . Final Hypothesis

gxf
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The Learning Problem

A “simple” model

X is the set of data, x, namely the information about the clients that
requested a bank loan
Y is the binary set {—1,1} (yes or no)
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The Learning Problem

A “simple” model

X is the set of data, x, namely the information about the clients that
requested a bank loan

Y is the binary set {—1,1} (yes or no)

A simple model could be a “thresholded” model:

o K wix; > threshold— +1 — YES
° Zf'(:1 w;x; < threshold— -1 — NO
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The Learning Problem

A “simple” model

X is the set of data, x, namely the information about the clients that
requested a bank loan

Y is the binary set {—1,1} (yes or no)

A simple model could be a “thresholded” model:

o K wix; > threshold— +1 — YES

o 3K | wix; < threshold— -1 — NO
In a more compact way we can write:

@ h(x) = sign((fo:1 w;x;) + threshold)
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The Learning Problem

A “simple” model

h(x) = Sign((fozl w;x;) + threshold)
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The Learning Problem

A “simple” model

h(x) = sign((3~_; wix;) + threshold)
() = ~(w %)
h(x) = v(wT (x))

+1 a>0
(a) = -1 a<o0

ML 13.10.20/12/2022

15/1



The Learning Problem

A “simple” model

h(x) = sign((3~_; wix;) + threshold)
() = ~(w %)
h(x) = v(wT (x))

+1 a>0
(a) = -1 a<o0

Y(wT(x)) = y(x) = {-1,+1}
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The Perceptron (Rosenblatt 1958)

average
salary

Income
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The role of f and g

In ML we are interested in learning f but ....
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The Feasibility of Learning

The role of f and g

In ML we are interested in learning f but ....f is unknown
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The Feasibility of Learning

We know the value of f for each sample but how can we generalize and
say that f is able to predict something that it has never seen before?
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The Feasibility of Learning

We know the value of f for each sample but how can we generalize and
say that f is able to predict something that it has never seen before?
Can D tell us anything outside of D?
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The Feasibility of Learning

Let's see an example....
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Call =)

e An easy visual learning problem just got very messy.
For every f that fits the data and is “+1” on the new point, there is one that is “—17.

Since f is unknown, it can take on any value outside the data, no matter how large the data.

e This is called No Free Lunch (NFL).

You cannot know anything for sure about f outside the data without making assumptions.

e What now!

Is there any hope to know anything about f outside the data set without making assumptions about f?
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MAGIC BIN /——\SAMPLES
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v = fraction of blue balls
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1 = probability of blue balls

The marbles are indefinitely many and p is Unknown.
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MAGIC BIN /\\SAMPLES
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v = fraction of blue balls
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u = probability of blue balls
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MAGIC BIN /\\SAMPLES

PYY T e

v = fraction of blue balls
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u = probability of blue balls

We pick N marbles. one marble at time, independently from the previous
one and check the color of the marble.
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MAGIC BIN /\\SAMPLES

PYY T e

v = fraction of blue balls

FY Y Y Y Y.rY)
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Y Y Y Y T I ..

u = probability of blue balls

We pick N marbles. one marble at time, independently from the previous

one and check the color of the marble. Can we use v for saying something

about (17
Marco Piangerelli (Unicam
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The Law of large numbers

If x1,x2,...,xmare m i.i.d. samples of a random variable X distributed
over P, then for a small positive non-zero value €:

>6]=0

lim P

m—>00

1 m
E[X]x~p — - ZX/'
i—1
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N
Hoeffding’s Inequality

P[-] < x, for some conditions

P[] > 1 — x, for some conditions

Marco Piangerelli (Unicam) FML
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N
Hoeffding’s Inequality

P[-] < x, for some conditions
P[] > 1 — x, for some conditions
P[lv — p| > €] <2e72N for any € >0

Pllv —pu| < €] >1—2e2N for any € > 0
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UNKNOWN TARGET FUNCTION
ft:T-v
Py [x)

|

Training examples
(X1, ¥1), %2, ¥2): .- . (X, V)

Hypothesis Set

x

(X1, Xy X,)
Learning
Probability Algorithm
Distribution d
P(x)
x . Final Hypothesis

gxf
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Choose an Hypthesis h € H and and compare it to f in each point x € X
and if h(x) = f(x) color marble blue otherwise it is red; but since f is
unknown the color is unknown too; but...
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Choose an Hypthesis h € H and and compare it to f in each point x € X
and if h(x) = f(x) color marble blue otherwise it is red; but since f is
unknown the color is unknown too; but...

The training samples play the role of the samples form the bin.

X1,X2,X3, - - -, XN are picked independently according to P we will get a
random sample of blue marbles (1) and a random sample of red ones

(1= p).
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Choose an Hypthesis h € H and and compare it to f in each point x € X
and if h(x) = f(x) color marble blue otherwise it is red; but since f is
unknown the color is unknown too; but...

The training samples play the role of the samples form the bin.

X1,X2,X3, - - -, XN are picked independently according to P we will get a
random sample of blue marbles (1) and a random sample of red ones

(1 — ). Now we see the color....so we know f(x,) and we can compare it
with our h. In this case v depends on h....(Why??)
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The role of h - Verification

How can we compare the two situations?

@ take any single hypothesis he H

@ compare it to f on each point x € X

@ if h(x) = f(x) — color x red, otherwise color x blue
@ since f is unknown we do not know which color x has
°

we pick x at random accordingly to some probaility distribution P —
x will be blue with some probability ,u, and red with 1 — g

the training examples play the role of the sample from the bin — we
know p and v

@ v is based on the particular hypothesis h

In learning we need many hypothesis to choose from....in this case we are
just verifying, non learning....

Marco Piangerelli (Unicam) FML 13-19-20/12/2022 27/1



|
Introducing the Error (Risk)

@ In-sample Error

o Out-of-sample Error

Eout(h) = Ex[/(h(x), f(x))]
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N
The role of h

Hoeffding’s Inequality revised

P[|Ein(h) — Eout(h)| > €] < 262N for any € > 0

hy hy hy

Erry(hy) Erroulhy) ErTouhag)

ceceecce ececccee ccececee

Erry,(hy) Erry,(hy) Erry,(hy)
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Almost done....

Now we have a problem — The Hoeffding's Inequality DOES NOT apply
to multiple bins
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Basic probability notions

Implications
If A= B (A C B) then P[A] < P[B]

Union Bound
If A= B (A C B) then P[A or B] = P[AU B] < P[A] + P[B]

In general P[AU B] = P[A] + P[B] — P[AN B]
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Almost done....

P[|Ein(8) — Eout(g)| > €] < P[|Ein(h1) — Eour(h1)| > € or

Marco Piangerelli (Unicam)

|Ein(h1) — Eout(h2)| > € or
or....

|Ein(hm) — Eout(hm)| > €]

<M. 272N for any € > 0

FML 13-19-20/12/2022

33/1



Almost done....

P[|Ein(g) — Eout(g)| > €] < 2Me™2N for any € > 0

M can be see as the “complexity” of the model
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Is learning feasible?

@ No, in a deterministic perspective
@ Yes, in probabilistic perspective
e only assumption we make is : the samples in D are to be generate
independently
o ifga~f = Eyu(g)=0, butfin unknown
The only information we get from the probabilistic analysis, i.e.

Hoeffding Inequality, is Ein(g) =~ Errout(g)
e we control Ej,(g)
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Is learning feasible?

Finally, the answer to the question is....
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Is learning feasible?

Finally, the answer to the question is....

YES., in PROBABILISTIC WAY

Marco Piangerelli (Unicam) FML
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Is learning feasible?

Finally, the answer to the question is....
YES., in PROBABILISTIC WAY
but, HOW?
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Is learning feasible?

Finally, the answer to the question is....
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Is learning feasible?

Finally, the answer to the question is....
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2 Errin(g) =0
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Is learning feasible?

Finally, the answer to the question is....
YES., in PROBABILISTIC WAY
but, HOW? — E,.:(g) =0

1 make sure that Ej,(g) = Eoutr(g) — Hoeffdind's Inequality
2 Errin(g) =0

ML 131020/12/2022  36/1



Theory of generalization

Learning is not memorizing
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Theory of generalization

Learning is not memorizing (er the effect of M)

>
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Theory of generalization

Learning is not memorizing
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Theory of generalization

Learning is not memorizing

| ./

>

Memorizing

Marco Piangerelli (Unicam)

VS Learning
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Theory of generalization

Generalization Bound

|Ein(g) — Eout(g)| = Generalization Error < €
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Theory of generalization

Generalization Bound

|Ein(g) — Eout(g)| = Generalization Error < €

Theorem

With probability at least 1 — §

Eout(8) < Ein(g) + \/ 2 In « Generalization Error

This Inequality is known as the Generalization Bound
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Theory of generalization

Generalization Bound

|Ein(g) — Eout(g)| = Generalization Error < €

Theorem
With probability at least 1 — §

Eout(8) < Ein(g) + \/ 2 In « Generalization Error

This Inequality is known as the Generalization Bound

Proof

Let M = |H]|

Let § = 2|H|e 2N

Then, P[|Ein(g) — Eout(g)| < €] >1—10

In words, with probability at least 1 — & , |Ein(g) — Eout(g)] < €.

Hence Eoui(g) < Ein(g) + ¢
From the definition of §, solving for € :

_ /1 2H]
€ = W/n 5

v

Marco Piangerelli (Unicam) FML
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Theory of generalization

Generalization Bound
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Theory of generalization

Generalization Bound

|Ein(g) — Eout(g)| < €=
—e < Ein(g) - Eout(g) <e

o E,ut(g) < Ein(g) + € = the hypothesis g continues to perform well
out of samples

o Eout(g) > Ein(g) — € = there is no other hypothesis h € H whose
Errout(h) is not significantly better than Erryu:(g)
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Theory of generalization

Almost done....

out-of-sample error

model complexity

Error

in-sample error

|
|
|
H|* |H|
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The dependance on H

With probability at least 1 — §

Eout(g) < E/n(g) + ﬁ/ﬂ%
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The dependance on H

With probability at least 1 — §

Eout(8) < En(g) + \/ 2y /n?2

1 N> In|H|, then Eout(g) =~ Ein(g)

Marco Piangerelli (Unicam) FML
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The dependance on H

With probability at least 1 — §

Eout(8) < En(g) + /224

1 N> In|H|, then Eoue(g) =~ Ein(g)
2 |H| — 400, then Egut(g) < +o0
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The dependance on H

The second condition does not make sense and unfortunately almost all
learning models have infinite M = H

We need to replace M with “something” that is finite,
M goes to +0o0
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Theory of generalization

Infinite number of H

‘Eﬁ(hl)
| Ein(h1)

— Eout(h1)| > € or
— Eout(hZ)‘ > € or
or..

|Ein(hp) — Eou“t(hM)! > €]
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Theory of generalization

Infinite number of H

| Ein(h1)

1 Eout(h1)| > € or
|Ein(h1) — E

out(h2)‘ > € or
or...

|Ein(hp) — Eou;(hM)! > €]

USING THE UNION BOUND WE ARE OVER-ESTIMATING THE
PROBABILITY OF THE EVENT |Ein(g) — Eout(g)| > €
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Theory of generalization

Infinite number of H

O

N

Marco Piangerelli (Unicam) FML
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Theory of generalization

Infinite number of H

B,
L)
B,
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Theory of generalization

Infinite number of H

The Union Bound states that the total area covered by By, B, B3 is
smaller than the sum of the individual areas

It is true — but is a strong assumption when the areas overlap heavily
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Theory of generalization

Infinite number of H

The Union Bound states that the total area covered by By, B, B3 is
smaller than the sum of the individual areas

It is true — but is a strong assumption when the areas overlap heavily
Overlapping events — By ~ By ~ B3
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Theory of generalization

Infinite number of H

The Union Bound states that the total area covered by By, B, B3 is
smaller than the sum of the individual areas

It is true — but is a strong assumption when the areas overlap heavily
Overlapping events — By ~ By ~ B3

Overlapping events
— |Errin(h1) — Erroue(h1)| > € coincides to |Erriy(h2) — Erroue(h3)| >
e coincides to |Errin(h3) — Errou(h3)| > €

—>h1~h2~h3
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From |[H| to myy (N)

Hoeffding’s Inequality revised
P[|Errin(h) — Erroue(h)| > €] < 2|H|e 2N for any € > 0 J

The Hoeffding's Inequality DOES NOT apply to multiple bins

for |H| — oo the generalization bound Errout(g) < Errin(g) + 1/ ﬁln%
does not make any sense
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From |[H| to myy (N)

We NEED to substitute || with another quantity that does not go to oo
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From |[H| to myy (N)

We NEED to substitute || with another quantity that does not go to oo
We call this quantity “The growth function” — It is a combinatorial

quantity that captures HOW different the hypothesis are and HOW much
they overlap.
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The Growth Function

Dichotomies

o
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The Growth Function

Dichotomies

o

Between h; and hy we can found “infinite” straight -lines (hypothesis)
that can split the plane into 2 sub- planes
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Dichotomies

@ A hypothesis h: X — —1,+1

@ a dichotomy h: x1,x2, ..., xy — —1,+1, a Dichotomy is an
Hypothesis that is defined only on finite subset of the input space

@ number of hypothesis || can be infinite

@ number of dichotomies |H(x1, X2, ..., xn)|
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Dichotomies

For defining the growth function we take into consideration a problem of
Binary Classification

heH, h:(xg..xy) = {—1,+1}

The hypothesis h splits the samples into two groups : those who are
classified as -1 and those who are classified as +1
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Dichotomies

For defining the growth function we take into consideration a problem of
Binary Classification

heH, h:(xg..xy) = {—1,+1}
The hypothesis h splits the samples into two groups : those who are

classified as -1 and those who are classified as +1

That is called a dichotomy
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The Growth Function

Dichotomies

Definition
Let x1...xy € X . The dichotomies generated by H on these points are
defined by

H(x1, ..., xn) = {(h(x1), ..., h(xpn)|h € H}

One can think about #(x1, ..., xx) as an H based only on that training set.
A larger H(x1,...,xy) means H is more “diverse”, i.e. it generates more
dichotomies on xi, ..., xy).

How many dichotomies? at most 2V

Why?
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The Growth Function

Growth Function

Definition
The growth function is defined for a hypothesis set H by

N) =
my (N) thjxaNer!H(xl, XN

Where | - | denotes the cardinality of the set.

In words it means that my/(N) is the maximum number of dichotomies
that can be generated by H on any N points.

my (N) < 2N
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Dichotomies

To compute my(N), we need to:
@ consider the number of possible choices of N points from X
@ pick the one that gives us the most dichotomies

If H is capable to generate all the possible dichotomies for that number of
points we say that H can shatter xi, ..., Xy
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Dichotomies (N = 1)
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Dichotomies (N = 1) — my(1) =2
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The Growth Function

Dichotomies (N = 2)
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Dichotomies (N = 2) — my(2) =4
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The Growth Function

Dichotomies (N = 3)
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The Growth Function

Dichotomies (N = 3) — my(3) =8

|
— |
|

Marco Piangerelli (Unicam)
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Dichotomies (N = 4)

b
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Dichotomies (N = 4) — my(3) = 14

XOR Problem

ML 131020/12/2022  67/1



The Growth Function

Example 1: Positive Rays

hix)=x+a=-1 a h(x)=x-a=+1

X1 X2 X3 . XN-1 XN
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The Growth Function

Example 1: Positive Rays

hix)=x+a=-1 a h(x)=x-a=+1

X1 X2 X3 . XN-1 XN

mu(N) = N+ 1
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The Growth Function

Example 2: Intervals

h(x) = +1
a
h(x) = -1 ' 1 hix) = -1
—6—6—6—6—F—xK—K—X—6—0b6—
X1 Xz X3 XN-1 XN
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The Growth Function

Example 2: Intervals

h(x) = +1
a
h(x) = -1 ' 1 hix) = -1
—6—6—6—6—F—xK—K—X—6—0b6—
X1 Xz X3 XN-1 XN

my(N) = ( ;1)+1=%+1:%N2+%N+1
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The Growth Function

Example 3: Convex sets

A convex set is a region where for any two points picked within a region,
the entirety of the line segment connecting them lies within the region.
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The Growth Function

Example 3: Convex sets

A convex set is a region where for any two points picked within a region,
the entirety of the line segment connecting them lies within the region.
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The Growth Function

Example 3: Convex sets

A convex set is a region where for any two points picked within a region,
the entirety of the line segment connecting them lies within the region.
mH(N) = 2N
FML 13-19-20/12/2022  70/1



The Growth Function

Dichotomies sets

@ Positive Rays my = N +1
@ Positive Intervals my = %N2 + %N +1

e Convex sets my = 2N
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The Growth Function

Dichotomies sets

@ Positive Rays my = N +1
@ Positive Intervals my = %N2 + %N +1

e Convex sets my = 2N

The number of dichotomies increase if the complexity of the model increse
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The Growth Function

Dichotomies sets

@ Positive Rays my = N +1
@ Positive Intervals my = %N2 + %N +1

e Convex sets my = 2N

The number of dichotomies increase if the complexity of the model increse
The fact that the more complex h is, the bigger is the number of
dichotomies is good
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Can my(N) help us?

Iff my (N)is polynomial
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The break point

Definition
If no data set of size k can be shattered by H, then k is said to be a break
point for H

mu(N) = max_ [H(x1, ... xn)]

By extension, this means that a bigger data set cannot be shattered either.
In other words, given a hypothesis set, a break point is the point at which
we fail to achieve all possible dichotomies.

The break point is important for computing a bound of the growth
function. The most important fact about the growth function is that if the
condition my (N) = 2V breaks for any point, we can bound my(N) for all
values of N by a simple polynomial based on the break point. For the
bound, being Polynomial is crucial.

Marco Piangerelli (Unicam) FML 13-19-20/12/2022 73/1



The break point

Definition
If no data set of size k can be shattered by H, then k is said to be a break
point for H

mu(N) = max_ [H(x1, ... xn)]

By extension, this means that a bigger data set cannot be shattered either.
In other words, given a hypothesis set, a break point is the point at which
we fail to achieve all possible dichotomies.

The break point is important for computing a bound of the growth
function. The most important fact about the growth function is that if the
condition my (N) = 2V breaks for any point, we can bound my(N) for all
values of N by a simple polynomial based on the break point. For the
bound, being Polynomial is crucial.
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The break point- Example

@ Positive Rays my = N+ 1, k=2
@ Positive Intervals my = %Nz + %N +1, k=2

@ Convex sets my = 2N, k = oo
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The Growth Function

Review

@ Hoeffding's Inequality P[|Ein(g) — Eou(g)| > €] < 2Me=2N

@ The Growth Function for a hypothesis set H is the maximum number
of dichotomies (patterns) we can get on N data points.

o muy(N)=N+1 positive rays
o my(N)=3N?+iIN+1 positive interval
o my(N)=2N convex sets

@ The break point for a hypothesis set H is the value of N for which we
fail to get all possible dichotomies
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-
Bounding my(N)

@ Define a combinatorial quantity B(N, k)

B(N, k)

Is the maximum number of dichotomies on N points such that no subset
of size k of the N points can be shattered by these dichotomies

@ Assuming that k is a break point for 1, my(N) < B(N, k)
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-
Bounding my(N)

Sauer’s Lemma

B(N, k) <

1

>~
Il |
o =
N
-~ 2
N———

Proof ....

@ The growth function my(N) is either 2V or polynomial, nothing
different

@ For a given hyphotesis set H, the break point k is fixed, and does not
grow with N
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Theorem

Theorem

If my (k) < 2%, then

() < kg_; (")

for all N. The right hand side is polynomial in N of degree k — 1
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The VC dimension

The Vapnik - Chervonenkis Dimension

The Vapnik - Chervonenkis Dimension

The Vapnik-Chervonenkis dimension of a hypothesis set H, denoted by

dyc(H) or simply dyc, is the largest value of N for which my(N) = 2N If
my(N) = 2V for all N, then dyc = oo

In simple words dyc¢ is the most points H can shatter.
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The Vapnik - Chervonenkis Dimension

The Vapnik - Chervonenkis Dimension

The Vapnik-Chervonenkis dimension of a hypothesis set H, denoted by
dyc(H) or simply dyc, is the largest value of N for which ms(N) = 2N, If
my(N) = 2N for all N, then dyc = oo

In simple words dyc¢ is the most points H can shatter.

If dyc is the VC dimension of H, then kK = dyc + 1 is a break point for
my(N) since my;(N) can not be equal to 2V for any N > d\ by
definition. It is easy to see that no smaller break point exists since H can
shatter dyc points, hence it can also shatter any subset of these points.
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dvc + bounding the growth function

Since k = dyc¢ + 1 we can write

Theorem
k—1 dvc
Z N Z N
i=0 i=0

for all N. The right hand side is polynomial in N of degree dy¢ By
induction it is possible to prove that :

mu(N) < Néve 1
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From |H| to my(N)

Errout(g) < Errin(g) + ﬁ/n%

0

Errout(g) < Errin(g) + ﬁ/nmﬂf(/\/)
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VC generalization bound

Theorem
For any tolerance 6 > 0
Errout(g) < Errin(g) A\ Gin——
N 1)
with probability > 1 —§

The VC generalization bound holds for any binary target function f, any
hypothesis set #, any learning algorithm A and any input probability
distribution P.

The VC generalization bound is the most important mathematical result in
the theory of learning. It establishes the feasibility of learning with infinite
hypothesis sets.
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Putting it together

@ For a hypothesis set H, the existence of a finite dyc means that the
learning is feasible (i.e. generalization is possible)
Finite dyc means the existence of a polynomial bound for the growth
function

@ The value of dy tells us the resources needed to achieve e desired
performance

@ The larger dyc, the more complex the hypothesis set ‘H

@ Infinite dyc means no break point for H because it shatters every set
op points — good for fitting, bad for generalization

Marco Piangerelli (Unicam) FML 13-19-20/12/2022 84/1



Interpreting the VC dimension

Interpreting the VC dimension

@ What does the dy¢ mean ?

@ How to use dyc¢ in practice ?
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Interpreting the VC dimension

@ What does the dy¢c mean 7 — degrees of freedom

@ How to use dyc¢ in practice ?
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Interpreting the VC dimension

Interpreting the VC dimension

@ What does the dy¢c mean 7 — degrees of freedom

@ How to use dyc¢ in practice 7— number of data points needed

ML 13.10.20/12/2022

85/1



Interpreting the VC dimension

Interpreting the VC dimension

@ The VC dimension is a measure of the “effective” number of
parameters, or “ degrees of freedom” that enable the model to
express a diverse set of hypothesis
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Interpreting the VC dimension - Sample Complexity

How many training examples N are needed?
@ the error tolerance € indicates the allowed generalization error
@ the confidence parameter § indicates how often ¢ is violated

@ how. much N grows w.r.t. the decreasing of € and § tells us how
many data are needed for a good generalization

Fixed § > 0, we want the generalization error to be at most ¢
8 4mH(2N)
N/nf S €
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Interpreting the VC dimension - Sample Complexity

How many training examples N are needed?
@ the error tolerance € indicates the allowed generalization error
@ the confidence parameter § indicates how often ¢ is violated

@ how. much N grows w.r.t. the decreasing of € and § tells us how
many data are needed for a good generalization

Fixed § > 0, we want the generalization error to be at most ¢
8 4I71'H(2N)
N/nf S €

N > 8 jp(dmz2N))
. . . - 62 6 -
for having a generalization error at most of € with P at least of 1 —§

v
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Interpreting the VC dimension - Sample Complexity

If we replace my(2N) with its polynomial upper bound, based on the dy¢

Fixed 6 > 0, .
N > 6%/,7(4((2N)5vc-|-1))

for having a generalization error at most of € with IP at least of 1 — §
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Interpreting the VC dimension - Sample Complexity

If we replace my(2N) with its polynomial upper bound, based on the dy¢

Fixed 6 > 0, .
N > 6%/,7(4((2N)5vc-|-1))

for having a generalization error at most of € with IP at least of 1 — §

Example
e=0.190=0.1
How many data do we need 7
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Interpreting the VC dimension - Sample Complexity

If we replace my(2N) with its polynomial upper bound, based on the dy¢
Fixed § > 0,

N > 6%/,7(4((2N);vc-|-1))

for having a generalization error at most of € with IP at least of 1 — §

Example

€e=014=0.1

How many data do we need 7
Rule of thumb — N > 10 * dyc¢
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Interpreting the VC dimension

Interpreting the VC dimension - Model Complexity

In most practical situation, however the number N is fixed (D is fixed)
In these cases the most important question “What performance can we

expect with N"7?
With probability P at least of 1 — § we can say that :
Errour(g) < Errin(g) + \/%In%dvcﬂ)

Errout(g) S Err,',,(g) —+ %/n%m
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Interpreting the VC dimension - Model Complexity

In most practical situation, however the number N is fixed (D is fixed)
In these cases the most important question “What performance can we
expect with N"7?

With probability P at least of 1 — ¢ we can say that :
d
Errout(g) S Err,',,(g) —+ \/%Inw
Errout(g) S Err,',,(g) —+ %/n%m

Example
N=100,6=0.1dyc =1
What is the error ?
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Interpreting the VC dimension - Model Complexity

In most practical situation, however the number N is fixed (D is fixed)
In these cases the most important question “What performance can we
expect with N"7?

With probability P at least of 1 — ¢ we can say that :
d
Errout(g) S Err,',,(g) —+ \/%Inw
Errout(g) S Err,',,(g) —+ %/n%m

Example
N=100,6=0.1dyc =1
What is the error ?

Errout(g) < Errin(g) + Q(N, H, ) J
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Interpreting the VC dimension - Model Complexity

Errout(g) < Errin(g) + Q(N,H, 5)

J

o Q(N,H,0) is a "penalty” for the model complexity, more complex the

model (larger d\c),

the worse the bound

o if ) decreases to much, the complexity increases
o if V increases, the complexity gets better

Error

out-of-sample error

model complexity

ill*S'(llll] sle error

Marco Piangerelli (Unicam)

VC dimension
vc
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