Machine Learning

Master Degree in Computer Science - IAS Curriculum Bias-Variance Trade-off

Marco Piangerelli
marco.piangerelli@unicam.it

10 January 2023

Bias-Variance Trade-off

- Small $E_{\text {err }}$: good approximation of f out sample
- More complex $\mathcal{H} \Rightarrow$ better chance of approximating f
- Less complex $\mathcal{H} \Rightarrow$ better chance of generalizing of out sample - Ideal $\mathcal{H}=\{f\}$ OUR DESIRE....

Bias Variance Trade-off

- First approach

VC analysis $\rightarrow \operatorname{Err}_{\text {out }}(g) \leq \operatorname{Err}_{\text {in }}(g)+\Omega(N, \mathcal{H}, \delta)$

Bias Variance Trade-off

- First approach

VC analysis $\rightarrow \operatorname{Err}_{\text {out }}(g) \leq \operatorname{Err}_{\text {in }}(g)+\Omega(N, \mathcal{H}, \delta)$

- Second approach Bias-variance analysis is another \rightarrow ????

Bias Variance Trade-off

- First approach

VC analysis $\rightarrow \operatorname{Err}_{\text {out }}(g) \leq \operatorname{Err}_{\text {in }}(g)+\Omega(N, \mathcal{H}, \delta)$

- Second approach

Bias-variance analysis is another \rightarrow ????

- How well \mathcal{H} can approximate f ?
- Enabling the data to zoom in on (or to pin down) the right $h \in \mathcal{H}$ (or How close can you get to that approximation with a finite data set)?

Bias Variance Trade-off

- First approach

VC analysis $\rightarrow \operatorname{Err}_{\text {out }}(g) \leq \operatorname{Err}_{\text {in }}(g)+\Omega(N, \mathcal{H}, \delta)$

- Second approach

Bias-variance analysis is another \rightarrow ????

- How well \mathcal{H} can approximate f ?
- Enabling the data to zoom in on (or to pin down) the right $h \in \mathcal{H}$ (or How close can you get to that approximation with a finite data set)?

Applies to real-valued target and uses squared error

Bias Variance Trade-off

$$
\operatorname{Err}_{\text {out }}(g)^{(\mathcal{D})}=\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]
$$

Bias Variance Trade-off

$$
\operatorname{Err}_{\text {out }}(g)^{(\mathcal{D})}=\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]
$$

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[\operatorname{Err}_{\text {out }}(g)^{(\mathcal{D})}\right] & =\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\times}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]\right] \\
& =\mathbb{E}_{\times}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]\right] \\
& =\mathbb{E}_{\times}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]}_{\text {We focus on this term }}]
\end{aligned}
$$

Bias Variance Trade-off

$$
\begin{gathered}
\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right] \\
\bar{g}(x)=\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)\right]\right.
\end{gathered}
$$

Image many data sets $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{K}$

$$
\bar{g}(x) \approx \frac{1}{K} \sum_{k=1}^{K}\left(g^{(\mathcal{D})_{k}}\right)
$$

$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]=\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-\bar{g}(x)+\bar{g}(x)-f(x)\right)^{2}\right]$

$$
=\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-\bar{g}(x)\right)^{2}+(\bar{g}(x)-f(x))^{2}\right.
$$

$$
\left.+2\left(g^{(\mathcal{D})}(x)-\bar{g}(x)\right)(\bar{g}(x)-f(x))\right]
$$

$$
=\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-\bar{g}(x)\right)^{2}\right]+(\bar{g}(x)-f(x))^{2}
$$

$$
\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]=\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-\bar{g}(x)\right)^{2}\right]}_{\operatorname{var}(\mathrm{X})}+\underbrace{(\bar{g}(x)-f(x))^{2}}_{\text {bias }(x)}
$$

Putting all together,

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[\operatorname{Err}_{\text {out }}(g)^{(\mathcal{D})}\right] & =\mathbb{E}_{\times}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-f(x)\right)^{2}\right]\right] \\
& =\mathbb{E}_{x}[\operatorname{bias}(x)+\operatorname{var}(x)]
\end{aligned}
$$

$$
\text { bias }=\mathbb{E}_{x}\left[(\bar{g}(x)-f(x))^{2}\right] \text { var }=\mathbb{E}_{x}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x)-\bar{g}(x)\right)^{2}\right]\right]
$$

$$
f:[-1,+1] \rightarrow \mathbb{R} \quad f(x)=\sin (x)
$$

Only two training samples $N=2$

Two hypothesis:
$\mathcal{H}_{0}: h(x)=b$
$\mathcal{H}_{1}: h(x)=a x+b$

Remember : $E_{\text {out }}=$ bias + var

