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Mutation Analysis

@ Mutation Analysis is an alternative techniques used to assess the
quality of a test suite

@ It can be generally considered a White box technique

@ The tecnique is based on the concept o Program Mutation, i.e. the
generation of a program from the original one with “planned
differences”

What about its effectiveness?
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Syntax and semantics of mutants

Let’s consider the following function:

x+y ifz <y
f(z,y) = :
T Xy otherwise

A mutant is a syntactically different function that can be generated
introducing a “small” modification in the definition

The idea of small has to do with the number of values for which the
function changes its evaluation (semantics)
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Strong and weak mutations

In order to distinguish a mutant from its parent we can compare their
evaluation of specific values:

@ strong mutations: the comparisons is performed only on the
produced output

@ weak mutations: the comparisons is performed on intermediate
states while the evaluation is under execution
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Why mutating a program?

@ The competent programmer hypothesis
@ The coupling effect
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Testing assessment using mutation

Mutation analysis is structured over the following steps:
@ program execution over the test suite 7
© mutant generation
© mutant execution and classification
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Mutant generation

@ from the original program (parent) a set of similar programs are
generated (mutants)

@ each mutant differs from the parent for a single “slight” detail (first
order mutants) obtained applying a substitution rule described in a
mutation operator

@ Mutation operators are generally language and context dependent
@ Mutants are stored for being successively retrieved one by one

It is possible to generate high order mutants but some issues do not make this option
generally practical
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Mutant execution and assessment

@ Each mutant previously generated is submitted to the test suite 7
till a test observes a divergence with respect to the parent program

@ otherwise in case no test is able to spot a divergence the next
mutant is considered

@ According to the result of the previous assessment the mutant is
marked as:

o killed a test was able to observe a difference
@ alive no test was able to observe a difference

Disclaimer: some of the generated mutants could be directly rejected
by the compilers
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Equivalent mutants

It is possible the applying a modification the generated mutant is semantically
equivalent to the parent program

Unfortunately the “equivalence problem” cannot be computationally solved in the
general case.

Some heuristics can help the identification of equivalent mutants
@ Trivial Compiler Equivalence (TCE)

In the general case the tester will have to understand if alive mutants are indeed
equivalent mutants Let’s consider the following function:

f(m){xz ifz>0

T otherwise
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Mutation score

Let’s consider M as the set of generated mutants, £ the set of

equivalent mutants, and D the set of detected mutatnts, the mutation
score is given by the following formula:

I

MS(T) = e
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Mutation operators

The definition of the mutation operators are really the central point of
the approach! Generally they are the result of many empirical research
activitiescarried on by different groups that given a language, and in
some cases an application context, can define the most useful
mutation operators

Finding the right balance is not easy....the more mutants the more time
you need to perform the assessment

In any case having th epossibility to select a subset of mutation
operators is generally possible
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The case of Java

@ Traditional operators

o Aritmetic expressions

e Bynary aritmetic expressions

@ Logical Connectors

o Relational operators

o Arithmetic of logical expressions (unary operators)

@ Inheritance

e Variables — removal of redefinitions in subclasses
@ Subclasses — add the definition of a variable in the superclass
o

@ Polymorphisms and dynamic binding
@ Method overloading
° ...
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The case of Solidity
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