Unlversita di Camerino

1336

8. Mutation Analysis
Test-suites Assessment Using Program Mutation

Andrea Polini

Fundamentals of Software Testing
MSc in Computer Science
University of Camerino

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM

1/13

Mutation Analysis

@ Mutation Analysis is an alternative techniques used to assess the
quality of a test suite

@ It can be generally considered a White box technique

@ The tecnique is based on the concept o Program Mutation, i.e. the
generation of a program from the original one with “planned
differences”

What about its effectiveness?

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 2/13

Syntax and semantics of mutants

Let’s consider the following function:

x+y ifz <y
f(z,y) = :
T Xy otherwise

A mutant is a syntactically different function that can be generated
introducing a “small” modification in the definition

The idea of small has to do with the number of values for which the
function changes its evaluation (semantics)

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 3/13

Strong and weak mutations

In order to distinguish a mutant from its parent we can compare their
evaluation of specific values:

@ strong mutations: the comparisons is performed only on the
produced output

@ weak mutations: the comparisons is performed on intermediate
states while the evaluation is under execution

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 4/13

Why mutating a program?

@ The competent programmer hypothesis
@ The coupling effect

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 5/13

Testing assessment using mutation

Mutation analysis is structured over the following steps:
@ program execution over the test suite 7
© mutant generation
© mutant execution and classification

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 6/13

|
Mutant generation

@ from the original program (parent) a set of similar programs are
generated (mutants)

@ each mutant differs from the parent for a single “slight” detail (first
order mutants) obtained applying a substitution rule described in a
mutation operator

@ Mutation operators are generally language and context dependent
@ Mutants are stored for being successively retrieved one by one

It is possible to generate high order mutants but some issues do not make this option
generally practical

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 7/13

Mutant execution and assessment

@ Each mutant previously generated is submitted to the test suite 7
till a test observes a divergence with respect to the parent program

@ otherwise in case no test is able to spot a divergence the next
mutant is considered

@ According to the result of the previous assessment the mutant is
marked as:

o killed a test was able to observe a difference
@ alive no test was able to observe a difference

Disclaimer: some of the generated mutants could be directly rejected
by the compilers

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 8/13

I
Equivalent mutants

It is possible the applying a modification the generated mutant is semantically
equivalent to the parent program

Unfortunately the “equivalence problem” cannot be computationally solved in the
general case.

Some heuristics can help the identification of equivalent mutants
@ Trivial Compiler Equivalence (TCE)

In the general case the tester will have to understand if alive mutants are indeed
equivalent mutants Let’s consider the following function:

f(m){xz ifz>0

T otherwise

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 9/13

]
Mutation score

Let’s consider M as the set of generated mutants, £ the set of

equivalent mutants, and D the set of detected mutatnts, the mutation
score is given by the following formula:

I

MS(T) = e

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 10/13

|
Mutation operators

The definition of the mutation operators are really the central point of
the approach! Generally they are the result of many empirical research
activitiescarried on by different groups that given a language, and in
some cases an application context, can define the most useful
mutation operators

Finding the right balance is not easy....the more mutants the more time
you need to perform the assessment

In any case having th epossibility to select a subset of mutation
operators is generally possible

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 11/13

The case of Java

@ Traditional operators

o Aritmetic expressions

e Bynary aritmetic expressions

@ Logical Connectors

o Relational operators

o Arithmetic of logical expressions (unary operators)

@ Inheritance

e Variables — removal of redefinitions in subclasses
@ Subclasses — add the definition of a variable in the superclass
o

@ Polymorphisms and dynamic binding
@ Method overloading
° ...

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 12/13

The case of Solidity

Contentslsts avalable at ScienceDirect

SOFTWARE

The Journal of Systems & Software

ournal Homepage: v lsevier comilocatafss

SuMo: A mutation testing approach and tool for the Ethereum
blockchain
Morena Barboni *", Andrea Morichetta

Sty o Conehe,Comerin,tay

+Andrea Polini *

ARTICLE INFO ABSTRACT

e s Sl eclgies e fud 3 v erpive U o0 ey i of e coempry
Receed 13 Ao 2 ery. Nonetheless
feaind e [a o 22

et 14ty
i

Inthelastyeas,

technologis.
e equite InnovaLive sting Sratcgies. This paper presents a mutation tesng approsch for aessing
Tek mamtion the qualiy of fest sukes ccompanying Smart Conracts wrien in Soldy, the language used by

i ting. the Ethereum Blockchain. Specifically, we propose a novel st of mutation operators capable of

Soldiy projects. The experiments ..me»m S ecurent low Mitaion Score for e fet ules

selected projct
e us o eni ok ¢ s ad Shar Conrac ode These s gtk Sulo can
concrecly improve the ful-dececion capabliies of 3 test sue. and help t ddliver more relsble
Soldity o

©2022 lsviene. Al ights eserved.

1. Introduction 2017), and in particula in the iteggation of inter-organ
nd coliboaivesoftwaesstens (Cocine 2, 3020, o
Startng from theit frst appearance the adoption of blockchain Compared to traditional software systems, the development of
technologies has drsticaly nressed, and nove policaton sce. st Contracs presens tique caracensts and challenges

s are constantly investigated. This has greatly to do With 35 consequence of the underlying deployment and execution
environment (Zheng et al. 2017; Destelanis et al, 2015). There

esting)

ado ese technologies. Moreover, in recent years many e L e s sppropste s 00 i o

blockchain technologies have been augmented with support for < for novel and spprepriate tesing tols tht alov

smart contracts. These can be considered s software programs developer community to write and deploy safer code
Dt s posibe o ety sert eors why smast

that can be deployed and executed over a blockchain and that,

it execution, will
be stored within the blackehain itelf Such smart contracts per-
i the sakeodes that take part I he smat contract e
tlon, 0 hae crough uarntes o35 s ht the atites

listof relevant characterisics (Barbon et al, 2021)

Specified in the ontrat el Suh mechanisns have been e
fully adopted in the engineering of software systems (Porru et

« Smart Contracts manage valuable assets: Smart contracts
can control lrge. and other valu-
able assets. Deploying faulty code can result in the acci-
dentl loss of the assets held by the contract. The potential
fnancil g, 3 the snonymous e of he icctain

 as an incentive for attackers. Even a small loop-

ack (Mehar et a1, 2019), in which a reentrancy vulnerability

8. Mutation Analysis

CS@UNICAM

13/13

