
8. Mutation Analysis
Test-suites Assessment Using Program Mutation

Andrea Polini

Fundamentals of Software Testing
MSc in Computer Science

University of Camerino

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 1 / 13

Mutation Analysis

Mutation Analysis is an alternative techniques used to assess the
quality of a test suite
It can be generally considered a White box technique
The tecnique is based on the concept o Program Mutation, i.e. the
generation of a program from the original one with “planned
differences”

What about its effectiveness?

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 2 / 13

Syntax and semantics of mutants

Let’s consider the following function:

f(x, y) =

{
x+ y if x ≤ y

x× y otherwise

A mutant is a syntactically different function that can be generated
introducing a “small” modification in the definition
The idea of small has to do with the number of values for which the
function changes its evaluation (semantics)

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 3 / 13

Strong and weak mutations

In order to distinguish a mutant from its parent we can compare their
evaluation of specific values:

strong mutations: the comparisons is performed only on the
produced output
weak mutations: the comparisons is performed on intermediate
states while the evaluation is under execution

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 4 / 13

Why mutating a program?

The competent programmer hypothesis
The coupling effect

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 5 / 13

Testing assessment using mutation

Mutation analysis is structured over the following steps:
1 program execution over the test suite T
2 mutant generation
3 mutant execution and classification

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 6 / 13

Mutant generation

from the original program (parent) a set of similar programs are
generated (mutants)
each mutant differs from the parent for a single “slight” detail (first
order mutants) obtained applying a substitution rule described in a
mutation operator
Mutation operators are generally language and context dependent
Mutants are stored for being successively retrieved one by one

It is possible to generate high order mutants but some issues do not make this option
generally practical

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 7 / 13

Mutant execution and assessment

Each mutant previously generated is submitted to the test suite T
till a test observes a divergence with respect to the parent program
otherwise in case no test is able to spot a divergence the next
mutant is considered
According to the result of the previous assessment the mutant is
marked as:

killed a test was able to observe a difference
alive no test was able to observe a difference

Disclaimer: some of the generated mutants could be directly rejected
by the compilers

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 8 / 13

Equivalent mutants

It is possible the applying a modification the generated mutant is semantically
equivalent to the parent program

Unfortunately the “equivalence problem” cannot be computationally solved in the
general case.

Some heuristics can help the identification of equivalent mutants

Trivial Compiler Equivalence (TCE)

In the general case the tester will have to understand if alive mutants are indeed
equivalent mutants Let’s consider the following function:

f(x) =

{
x if x ≥ 0
x2 otherwise

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 9 / 13

Mutation score

Let’s consider M as the set of generated mutants, E the set of
equivalent mutants, and D the set of detected mutatnts, the mutation
score is given by the following formula:

MS(T) =
|D|

|M| − |E|

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 10 / 13

Mutation operators

The definition of the mutation operators are really the central point of
the approach! Generally they are the result of many empirical research
activitiescarried on by different groups that given a language, and in
some cases an application context, can define the most useful
mutation operators

Finding the right balance is not easy....the more mutants the more time
you need to perform the assessment

In any case having th epossibility to select a subset of mutation
operators is generally possible

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 11 / 13

The case of Java

Traditional operators
Aritmetic expressions
Bynary aritmetic expressions
Logical Connectors
Relational operators
Arithmetic of logical expressions (unary operators)

Inheritance
Variables – removal of redefinitions in subclasses
Subclasses – add the definition of a variable in the superclass

Polymorphisms and dynamic binding
Method overloading
. . .

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 12 / 13

The case of Solidity

(Fundamentals of Software Testing) 8. Mutation Analysis CS@UNICAM 13 / 13

