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Knowledge Engineering
 Knowledge Engineering is the process of 

 building and
 maintaining

knowledge-based systems or intelligent agents

 “Knowledge Engineering is an engineering 
discipline that involves integrating knowledge 
into computer systems in order to solve 
complex problems normally requiring a high 
level of human expertise.“1)

 Sources of knowledge
 Human experts
 Documentation

1) Feigenbaum, E., and P. McCorduck. (1983). The Fifth Generation. Reading, MA: Addison-Wesley 
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Drawbacks of Knowledge  Engineering

 Effort to …
… build the knowledge base
… maintain the knowledge base

 Availability of knowledge

 Awareness of knowledge
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Unawareness of Knowledge: Self-driving Cars

“… it is hard to imagine discovering the set of 
rules that can replicate the driver’s behavior.”

(Levy & Murnane 2006)
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Unawareness of Knowledge: Face Recognition
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Recognizing Numbers
 It is very hard to specify what makes a «2»

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pd
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Spam Filter
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Machine Learning: 
Make Knowledge explicit with the Use of Data
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From data (texts or structured data) it is possible to learn tacit knowledge and new knowledge
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Machine Learning: General Idea

 Learning/Training
 Collect data for the problem
 Use the data to learn how to

solve the type of problem
 Result: Knowledge

 Application
 Use the learned knowledge for

new problems

training
data

problem

solution

Learning knowledge

Training phase Application phase
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Machine Learning in Context
 Machine Learning (Data Mining) is a step

to discover knowledge in data

Target Data

(Fayyad et al., 1996)

Learned Knowledge can then be applied to solve problems, make decisions.

Data Mining/ 
Learning
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Symbolic vs Subsymbolic Learning
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 The learning method depends on the kind 
of data that we have at our disposal
 The data contains sets of inputs and 

corresponding outputs: (i,o)
 No prior knowledge: The data contains 

only the inputs i: output has to be 
determined

 The data contains sets of inputs without 
corresponding «correct» output, but we 
can get some measure of the quality of 
an output o for input i. 
Rewards for good output quality.

Types of Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

(Lison, 2012)
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Supervised Learning: Application Examples

Fraud detection

(Lison, 2012)
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Supervised Learning

(Lison, 2012)

Example: Classification
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Classification
 Assign objects (input) to known classes

(output)

 Examples:
 credit assessment

Input: customers of a bank
Classes: credit worthy

not credit worthy

 Spam filtering
Input: email
Classes: spam

non-spam

 optical character recognition (OCR)
Input: scanned pixel image
Classes: ASCII characters
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Training and Application Phase

 Training: Learning the
classification criteria
 Given: sample set of training

data records
 Result: Decision logic to

determine class from values of 
input attributes

 Application: Classification
 Assign a class to previously 

unseen records of input data

training
data

data record

class
membership

Learning classifier

Training phase Application phase

Induction Deduction
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Supervised Learning: Classification Criteria
 The classifier decides, which

individual belongs to which
class

 Problem:
 Input has different features
 The criteria for the decision are

not always obvious

 Supervised Learning:
 Learn the classification criteria

from known examples
 Criteria = relevant features and

their valures

Classifier

individuals

classes
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Features:
- color
- shape
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Classification Methods

Decision Trees

Neural Networks

RulesIF ...
THEN ...

k-Nearest Neighbor

Genetic Algorithms
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Example for Supervised Subsymbolic Learning
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Training with large sets of data

Application: cat or dog?
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Example for Supervised Symbolic Learning
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Problem: When to give credit

NO

Employed

Marital Status

TaxIncome TaxIncome

YES YESNONO

No Yes

Single, Divorced Married

<=80K >80K
<=100K >100K

Knowledge Base: Decision TreeTraining Data , Decision Table
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 Sometimes, we don’t have access to any output value o, we 
simply have a collection of input examples i

 Input: data sets without corresponding output values. 

 Objective: learn the underlying patterns of our data
 Are there any correlations between features?
 Can we cluster our data set in groups which behave similarly?

Unsupervised Learning

(Lison, 2012)
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Unsupervised Learning

(Lison, 2012)

Example: Clustering (= identify new classes)
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Example: Recommender Systems
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Reinforcement Learning
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 Sometimes we don’t have direct access to «the» correct 
output o for an input i

 But we can get a measure of «how good/bad» an output is
 Often called the reward (can be negative or positive)

 The goal of the agent is to learn the behaviour that 
maximises its expected cumulative reward over time
 To learn how to flip pancakes, the reward could for instance 

be +3 if the pancake is flipped, -1 if the pancake stays in the 
pan, and -5 if it falls

Reinforcement Learning
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