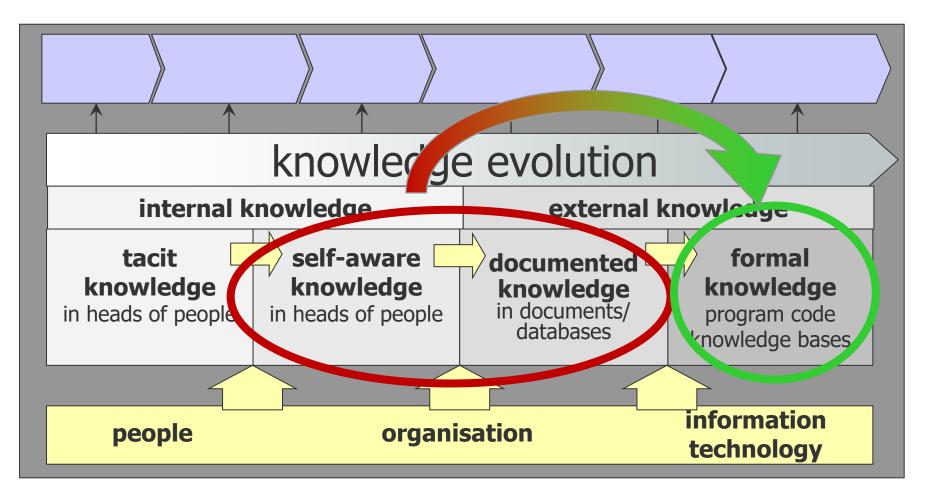


University of Applied Sciences and Arts Northwestern Switzerland School of Business

# **Machine Learning - An Introduction**

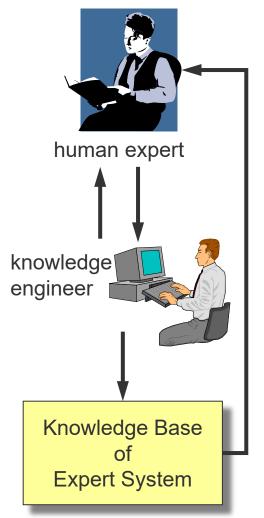
Knut Hinkelmann

# **Knowledge Engineering**





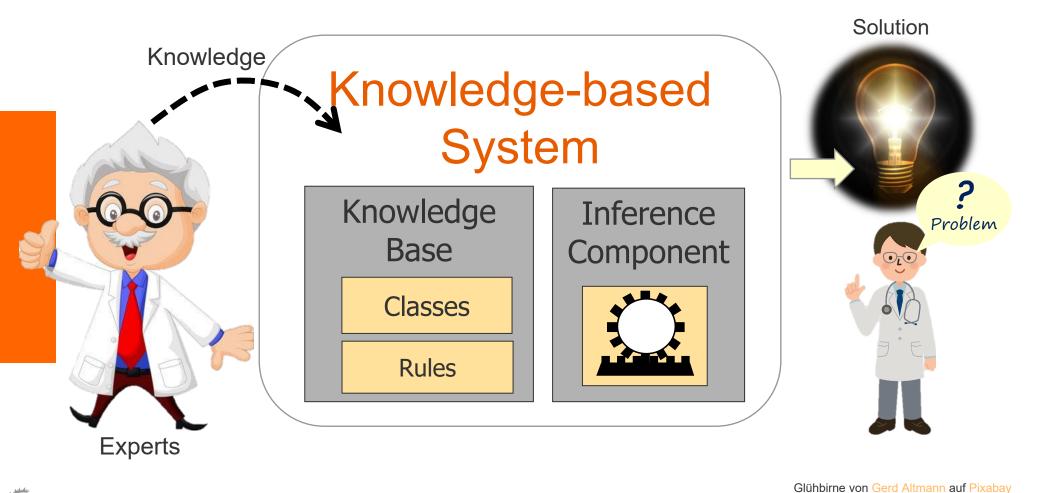
# **Knowledge Engineering**



- Knowledge Engineering is the process of
  - building and
  - maintaining
     knowledge-based systems or intelligent agents
- "Knowledge Engineering is an engineering discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring a high level of human expertise."<sup>1</sup>
- Sources of knowledge
  - Human experts
  - Documentation

1) Feigenbaum, E., and P. McCorduck. (1983). The Fifth Generation. Reading, MA: Addison-Wesley

Prof. Dr. Knut Hinkelmann

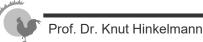


Prof. Dr. Knut Hinkelmann

# **Drawbacks of Knowledge Engineering**

#### Effort to ....

- build the knowledge base . . .
- maintain the knowledge base . . .
- Availability of knowledge
- Awareness of knowledge



### **Unawareness of Knowledge: Self-driving Cars**

Go\_gle

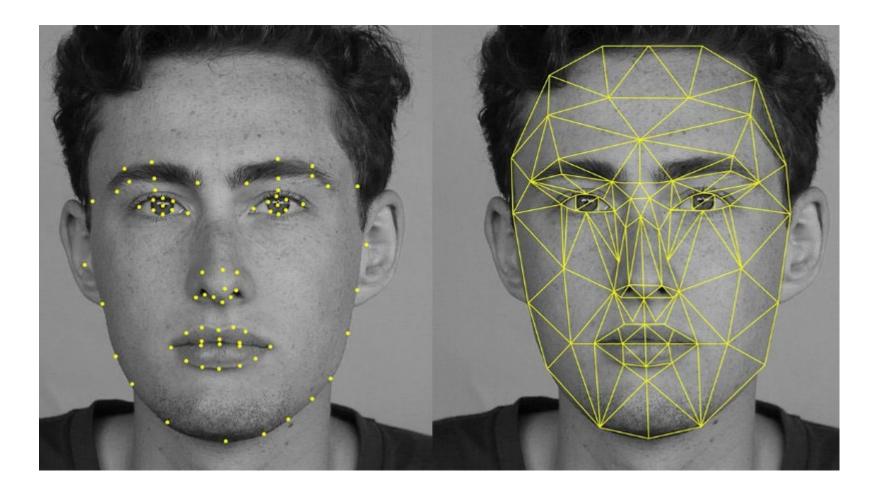


"... it is hard to imagine discovering the set of rules that can replicate the driver's behavior." (Levy & Murnane 2006)

self driving car

n

### **Unawareness of Knowledge: Face Recognition**



# **Recognizing Numbers**

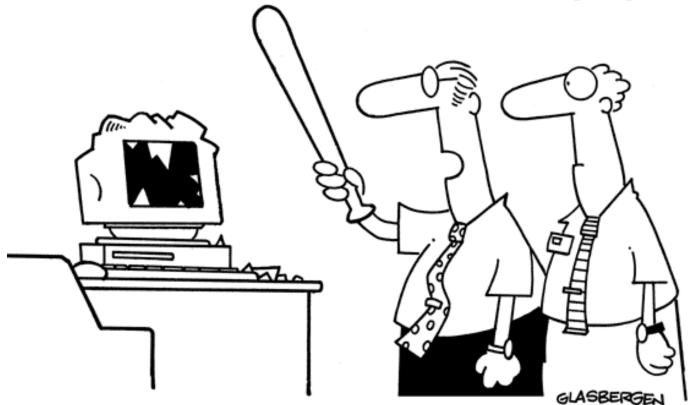
It is very hard to specify what makes a «2»

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture\_slides\_lec1.pd

# **Spam Filter**

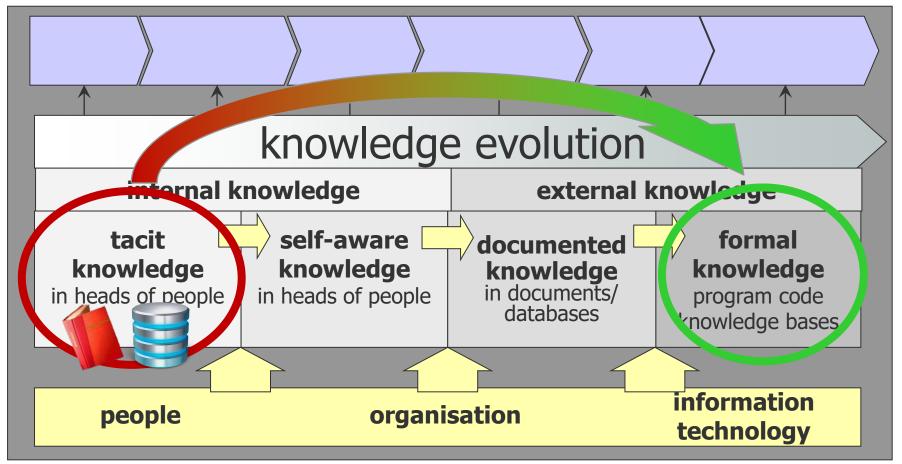
n

Copyright 2003 by Randy Glasbergen. www.glasbergen.com



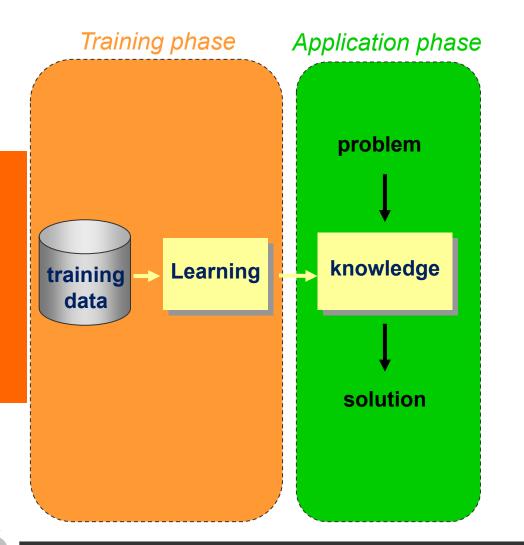
"It's not the most sophisticated Spam blocker I've tried, but it's the only one that works!"

# Machine Learning: Make Knowledge explicit with the Use of Data



From data (texts or structured data) it is possible to learn tacit knowledge and new knowledge

# **Machine Learning: General Idea**



Learning/Training

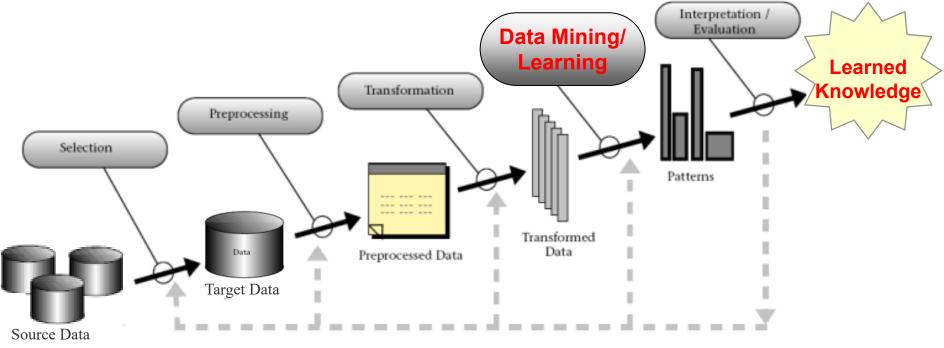
- Collect data for the problem
- Use the data to learn how to solve the type of problem
- Result: Knowledge

#### Application

 Use the learned knowledge for new problems

# **Machine Learning in Context**

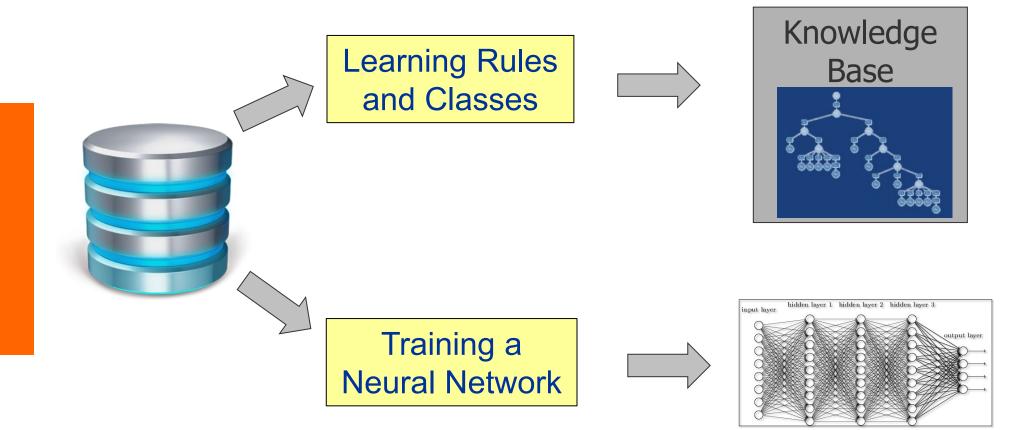
 Machine Learning (Data Mining) is a step to discover knowledge in data



(Fayyad et al., 1996)

#### Learned Knowledge can then be applied to solve problems, make decisions.

### Symbolic vs Subsymbolic Learning



# **Types of Learning**

- The learning method depends on the kind of data that we have at our disposal
  - The data contains sets of inputs and corresponding outputs: (i,o)
  - No prior knowledge: The data contains only the inputs i: output has to be determined
  - The data contains sets of inputs without corresponding «correct» output, but we can get some measure of the quality of an output o for input i. Rewards for good output quality.







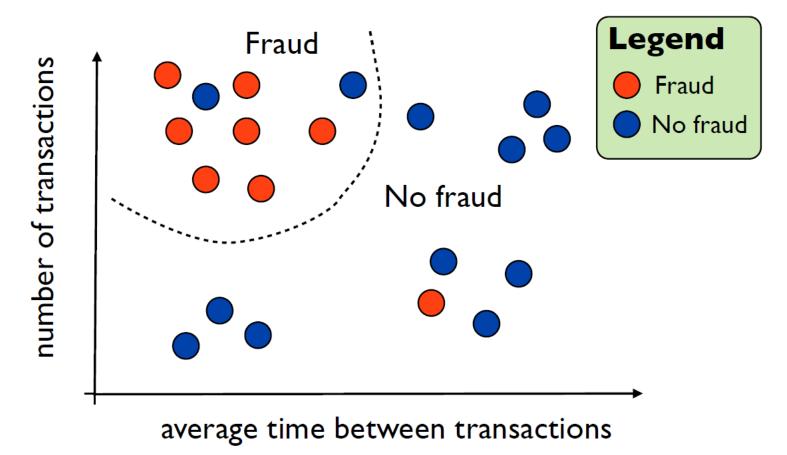
## **Supervised Learning: Application Examples**

|                     | Input <b>i</b>              | Output <b>o</b>             |  |
|---------------------|-----------------------------|-----------------------------|--|
| Spam filtering      | An email {spam, non-spam    |                             |  |
| Face recognition    | An image                    | Identified faces            |  |
| Machine translation | A sentence in<br>language A | A sentence in<br>language B |  |
| Speech recognition  | A speech signal             | A (text) sentence           |  |
| Fraud detection     | A financial transaction     | {fraud, non-fraud}          |  |
| Robot motion        | Sensory data                | Motor control               |  |

n

# **Supervised Learning**

**Example: Classification** 



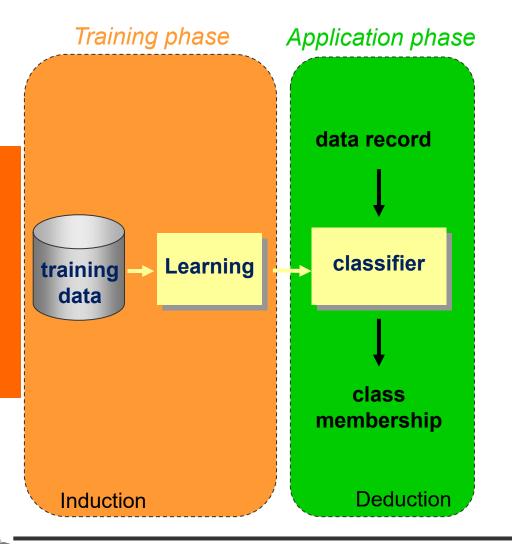
# **Classification**



- Assign objects (input) to known classes (output)
- Examples:
  - credit assessment Input: customers of a bank Classes: credit worthy not credit worthy
  - Spam filtering

     Input: email
     Classes: spam
     non-spam
  - optical character recognition (OCR) Input: scanned pixel image Classes: ASCII characters

# **Training and Application Phase**

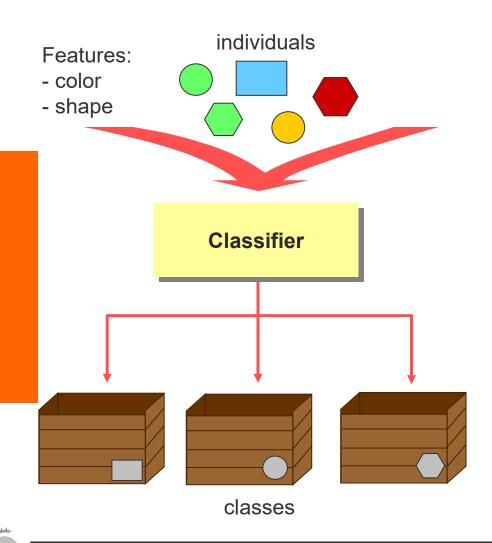


- Training: Learning the classification criteria
  - Given: sample set of training data records
  - Result: Decision logic to determine class from values of input attributes

#### Application: Classification

 Assign a class to previously unseen records of input data

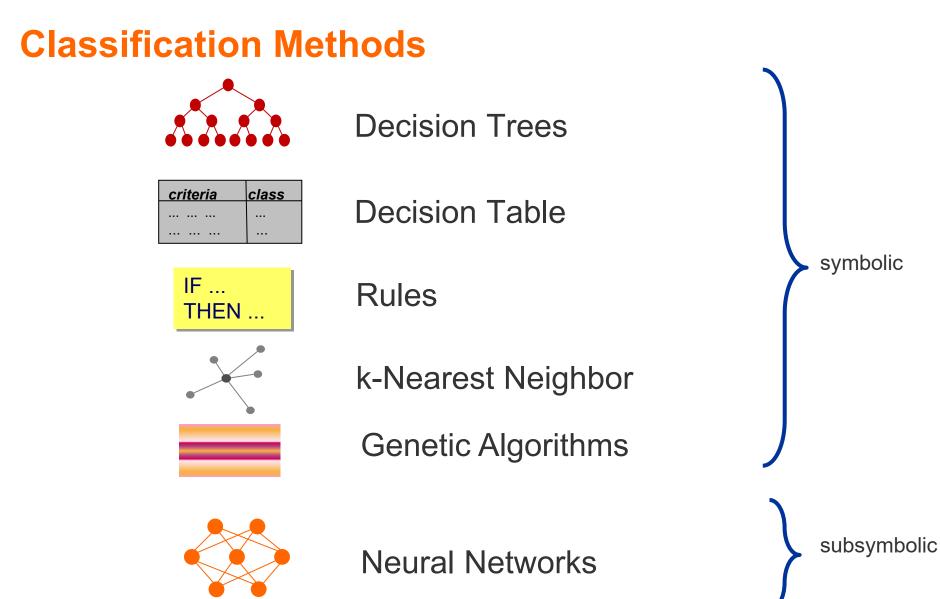
# **Supervised Learning: Classification Criteria**



The classifier decides, which individual belongs to which class

Problem:

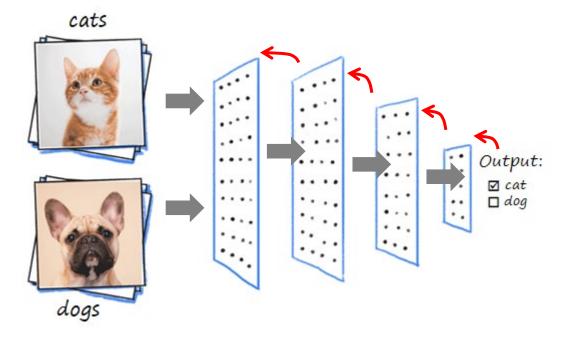
- Input has different features
- The criteria for the decision are not always obvious
- Supervised Learning:
  - Learn the classification criteria from known examples
  - Criteria = relevant features and their valures



n

# **Example for Supervised Subsymbolic Learning**

#### Training with large sets of data



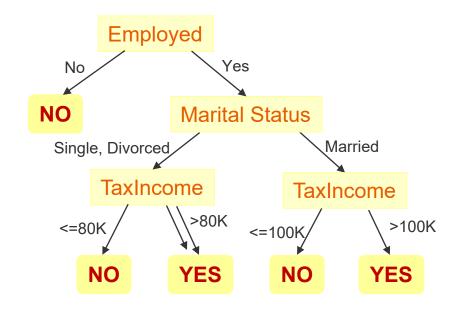
Application: cat or dog?



# **Example for Supervised Symbolic Learning**

#### Problem: When to give credit

| Tid | Employed | Marital<br>Status | Taxable<br>Income | accept |
|-----|----------|-------------------|-------------------|--------|
| 1   | No       | Single            | 125K              | No     |
| 2   | Yes      | Married           | 160K              | Yes    |
| 3   | Yes      | Single            | 70K               | Νο     |
| 4   | No       | Married           | 120K              | Νο     |
| 5   | Yes      | Divorced          | 95K               | Yes    |
| 6   | Yes      | Married           | 60K               | No     |
| 7   | No       | Divorced          | 220K              | No     |
| 8   | Yes      | Single            | 85K               | Yes    |
| 9   | Yes      | Married           | 95K               | No     |
| 10  | Yes      | Single            | 90K               | Yes    |



| Credit V | Vorthiness |                           |                |         |
|----------|------------|---------------------------|----------------|---------|
|          | Employed   | Marital Status            | Taxable Income | Accept  |
|          | Yes, No    | Single, Divorced, Married | Integer        | Yes, No |
| 1        | No         |                           |                | No      |
| 2        | Yes        | Single                    | > 80K          | Yes     |
| 3        | Yes        | Divorced                  | > 80K          | Yes     |
| 4        | Yes        | Single                    | ≤ 80K          | No      |
| 5        | Yes        | Divorced                  | ≤ 80K          | No      |
| 6        | Yes        | Married                   | > 100K         | Yes     |
| 7        | Yes        | Married                   | ≤ 100K         | No      |

Knowledge Base: Decision Tree, Decision Table



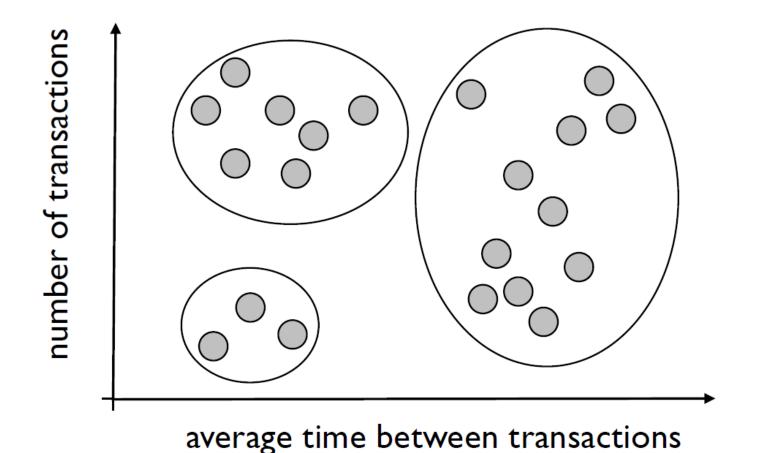
# **Unsupervised Learning**

- Sometimes, we don't have access to any output value o, we simply have a collection of input examples i
- Input: data sets without corresponding output values.
- Objective: learn the underlying patterns of our data
  - Are there any *correlations* between features?
  - Can we *cluster* our data set in groups which behave similarly?

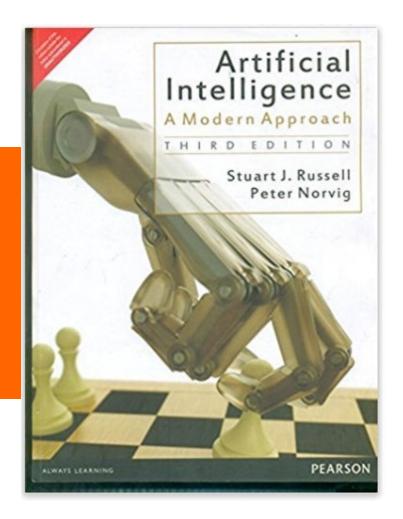


# **Unsupervised Learning**

Example: Clustering (= identify new classes)



#### **Example: Recommender Systems**



#### Customers who bought this item also bought

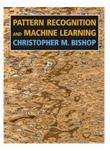


Deep Learning (Adaptive Computation and Machine Learning series) > Ian Goodfellow

DEEP LEARNING

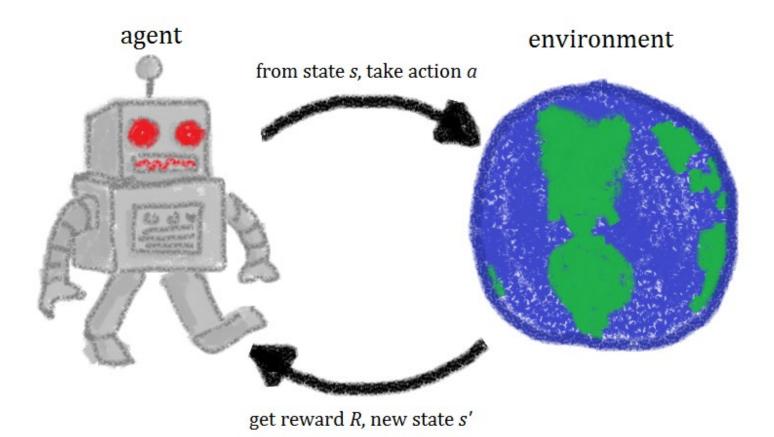


Hands-On Machine Learning with Scikit-Learn and TensorFlow:... > Aurélien Géron



Pattern Recognition and Machine Learning (Information Science... > Christopher M. Bishop

#### **Reinforcement Learning**





# **Reinforcement Learning**

- Sometimes we don't have direct access to «the» correct output o for an input i
- But we can get a measure of «how good/bad» an output is
  - Often called the *reward* (can be negative or positive)
- The goal of the agent is to learn the behaviour that maximises its expected cumulative reward over time
  - To learn how to flip pancakes, the reward could for instance be +3 if the pancake is flipped, -1 if the pancake stays in the pan, and -5 if it falls

