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Knowledge Engineering

m Knowledge Engineering is the process of
¢ Dbuilding and
¢+ maintaining
knowledge-based systems or intelligent agents

m “Knowledge Engineering is an engineering
discipline that involves integrating knowledge
into computer systems in order to solve
complex problems normally requiring a high
level of human expertise.V

knowledge
engineer

B Sources of knowledge
Knowledge Base
o ¢ Human experts
Expert System ¢+ Documentation

= 1) Feigenbaum, E., and P. McCorduck. (1983). The Fifth Generation. Reading, MA: Addison-Wesley
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Drawbacks of Knowledge Engineering

m Effortto ...
... build the knowledge base
. maintain the knowledge base

m Availability of knowledge

B Awareness of knowledge

-
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Unawareness of Knowledge: Self-driving Cars

“... It is hard to imagine discovering the set of

rules that can replicate the driver’s behavior.”
(Levy & Murnane 2006)

-
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Unawareness of Knowledge: Face Recognition
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Recognizing Numbers

m ltis very hard to specify what makes a «2»
ool N (/A2
de2aQ 2 2A\5H|7
36 79494046 >3
Ll|\72N 7148279
b8 78 49497

e Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides lec1.p
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Spam Filter

Copyright 2003 by Randy Glasbergen.
wiww.glasbergen.com

“It’s not the most sophisticated Spam blocker
I've tried, but it’s the only one that works!”

e
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Machine Learning:

Make Knowledge explicit with the Use of Data

knowledge evolution

al knowledge

external kno
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information
technology

From data (texts or structured data) it is possible to learn tacit knowledge and new knowledge
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Machine Learning: General Idea

T .. h / / . = =
raining phase  Application phase Learning/Training

¢ Collect data for the problem

¢+ Use the data to learn how to
solve the type of problem

+ Result: Knowledge

knowledge m Application

+ Use the learned knowledge for
new problems

ﬂ " Learning
U C
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Machine Learning in Context

m Machine Learning (Data Mining) is a step
to discover knowledge in data

Interpretation /

Data Mining/

Selection

' -
[

Transformed
Preprocessed Data Diata

Target Data

T

Source Data
(Fayyad et al., 1996)

- Learned Knowledge can then be applied to solve problems, make decisions.
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Symbolic vs Subsymbolic Learning

Learning Rules
and Classes

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

Training a
Neural Network

-
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Types of Learning

m The learning method depends on the kind Supervised
of data that we have at our disposal / Learning

+ The data contains sets of inputs and
corresponding outputs: (i,0)

+ No prior knowledge: The data contains —_— Unsul?ervised
only the inputs i: output has to be Learning
determined

¢+ The data contains sets of inputs without
corresponding «correct» output, but we ]
can get some measure of the quality of \ Relnfc.)rcement
an output o for input i. Learning
Rewards for good output quality.

- (s 2012,
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Supervised Learning: Application Examples

Input i Output o
Spam filtering An email {spam, non-spam}
Face recognition An image |dentified faces

Machine translation

A sentence in
language A

A sentence in
language B

Speech recognition

A speech signal

A (text) sentence

Fraud detection

A financial
transaction

{fraud, non-fraud}

Robot motion

Sensory data

Motor control

e

(isgn 2012)
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Supervised Learning

Example: Classification

number of transactions

N Fraud (Legend )
. . . . . . Fraud

® ® O " O ° O k. Nofraud)

® O " No fraud

® o
O © o
o ©
>

average time between transactions

-

dison 2012)
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Classification m  Assign objects (input) to known classes

(output)

m Examples:

¢ credit assessment
Input: customers of a bank
Classes:  credit worthy
not credit worthy

¢+ Spam filtering

Input: email
Classes: spam
non-spam

¢ optical character recognition (OCR)
Input: scanned pixel image
Classes:  ASCII characters

o~
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Training and Application Phase

T I " h H H " - "
[aning prace  Application phase g o | earning the

classification criteria

+ Given: sample set of training
data records

¢+ Result: Decision logic to
determine class from values of
input attributes

classifier

E " Learning
U C

m Application: Classification

¢+ Assign a class to previously
unseen records of input data

’ Prof. Dr. Knut Hinkelmann
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Supervised Learning: Classification Criteria

o B The classifier decides, which
Features: naviduals individual belongs to which

- col
_ ehans O@ () class

v m Problem:
» \ + |nput has different features
Classitier * The criteria for the decision are

not always obvious
l | J m Supervised Learning:

¢ |Learn the classification criteria
from known examples
¢ Criteria = relevant features and

classes their valures

-
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Classification Methods

-

el

criteria class

Decision Trees
Decision Table
Rules

k-Nearest Neighbor

Genetic Algorithms

Neural Networks

> symbolic

subsymbolic
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Example for Supervised Subsymbolic Learning

Training with large sets of data

Application: cat or dog?

-
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Example for Supervised Symbolic Learning

Problem: When to give credit Employed

TN

Tid Employed Marital Taxable
Status Income  accept Marital Status

. Single, Divorced Married
1 No Single 125K No
2 |Yes Married | 160K Yes Taxlncome Taxlncome
3 |Yes Single | 70K No <-80K / \KsoK 0 O’f/ \>100K
4 No Married |120K No
5 |Yes Divorced | 95K Yes - NO YES NO YES
6 |Yes Married |60K No
: Credit Worthiness
7 No Divorced | 220K No Employed Marital Status Taxable Income Accept
_ Yes, No Single, Divorced, Married Integer Yes, No
8 Yes Single 85K Yes 1 No No
2 Yes Single > 80K Yes
9 Yes Married 95K No 3 Yes Divofced > 80K Yes
4 Yes Single < 80K No
10 |Yes Slngle 90K Yes 5 Yes Divorced < 80K No
6 Yes Married > 100K Yes
7 Yes Married < 100K No
Training Data Knowledge Base: Decision Tree , Decision Table

e
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Unsupervised Learning

B Sometimes, we don’t have access to any output value o, we
simply have a collection of input examples i

m |nput: data sets without corresponding output values.

m Objective: learn the underlying patterns of our data
+ Are there any correlations between features?
¢+ (Can we cluster our data set in groups which behave similarly?

Y (Lisan2012),
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Unsupervised Learning

Example: Clustering (= identify new classes)

number of transactions

-

average time between transactions
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Example: Recommender Systems

-

Intelligence

——

Artificial ‘

THIRDED!T10N|

.. Stuart ). Russell |

Peter Norvig

PEARSON

Customers who bought this item also bought

Deep Learning (Adaptive
Computation and Machine
Learning series)

» lan Goodfellow

OREILLY

Hands-On Machine
Learning with Scikit-Learn
and TensorFlow:...

» Aurélien Géron

Pattern Recognition and
Machine Learning
(Information Science...

» Christopher M. Bishop
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Reinforcement Learning

agent

from state s, take action a

get reward R, new state s’

-

environment
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Reinforcement Learning

B Sometimes we don’t have direct access to «the» correct
output o for an input i

m But we can get a measure of «how good/bad» an output is
¢ Often called the reward (can be negative or positive)

m The goal of the agent is to learn the behaviour that
maximises its expected cumulative reward over time

+ To learn how to flip pancakes, the reward could for instance
be +3 if the pancake is flipped, -1 if the pancake stays in the
pan, and -5 if it falls

-
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