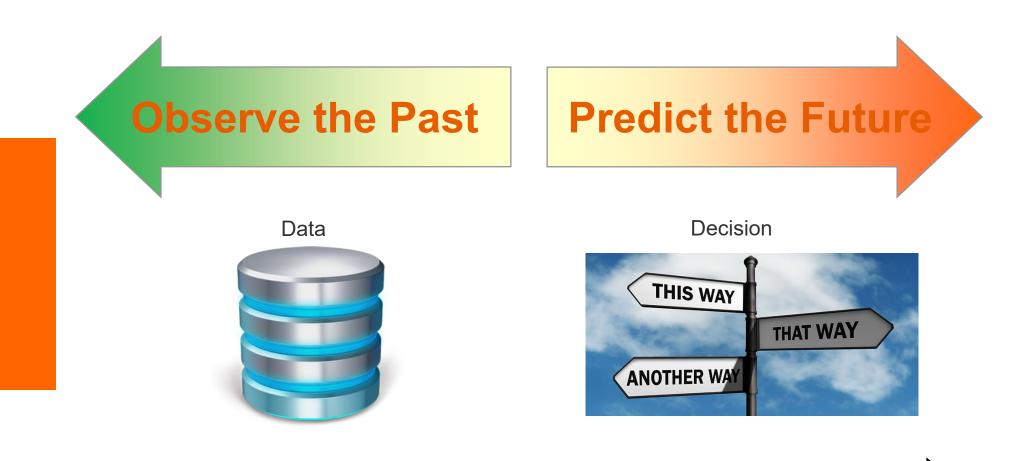


Combining Machine Learning and Knowledge Engineering


Knut Hinkelmann

Challenges for Data Driven Solutions

- Consistency of Past and Future
- Cold Start/ New Products
- Explanations
- Compliance

n

A Temporal View

Time

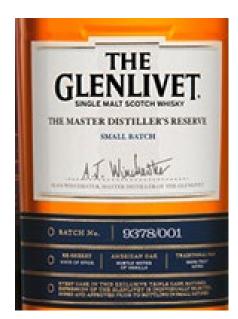
n

Consistency of Past and Future

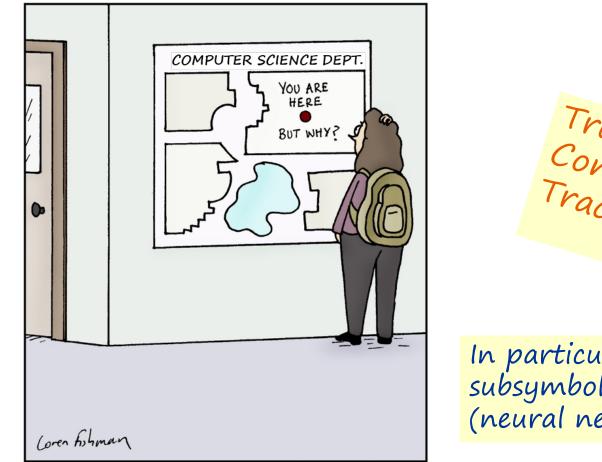
Example: Changes in Customer Behaviour because of climate change and Pandemic

Cold Start: New or Limited Products

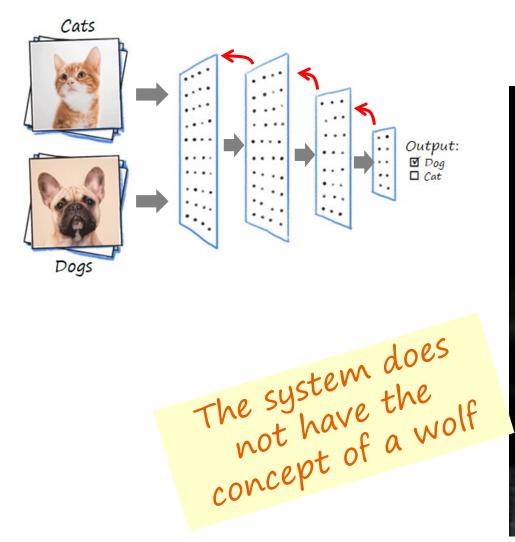
Limited Editions



New Distilleries/Brands


Small Batch

Explanations


Can decisions without explanation be intelligent?

Trust Compliance Traceability

In particular for subsymbolic learning (neural networks)

Al Systems are Highly Specialized for one Problem

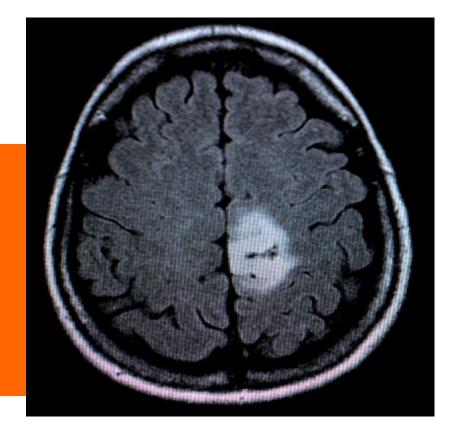
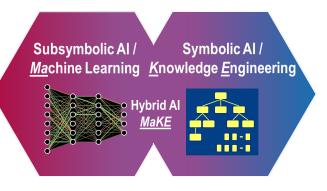

Dog or Cat? > Wolf

Photo by Marc-Olivier Jodoin on Unsplash

n

Diagnosis

AI Systems are Highly Specialized for one Problem


Bild von Anh Nguyễn Duy auf Pixabay

https://www.netz.de/trends/news/artikel-gewebeanalvse-googles-ai-erkennt-krebs-zuverlaessiger-als-der-arzt

Combining Machine Learning with KnowledgeDiagnosisTherapy

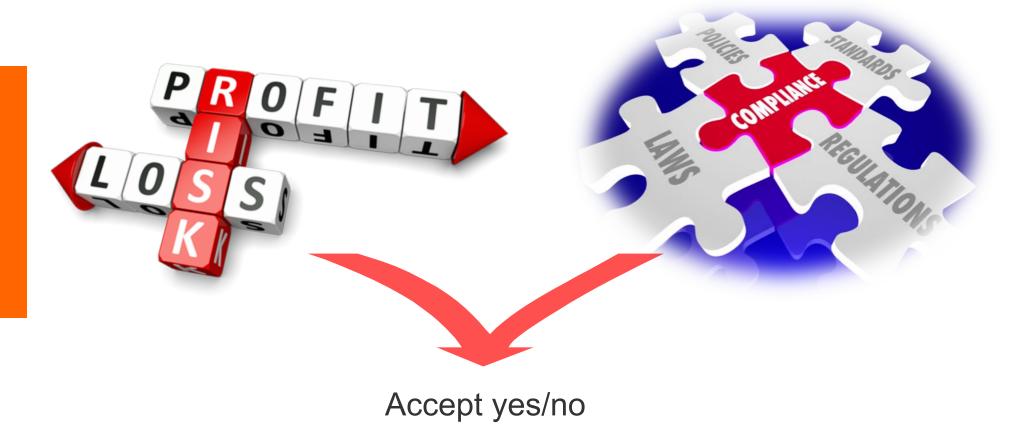
Data Processing

Domain Knowledge (human or knowledge base)

Combining Machine Learning with Knowledge Engineering

Example: Autonomous Driving

 Machine Learning: Driving Behaviour

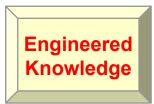


 Knowledge Engineering: Traffic Rules

Combining Machine Learning with Knowledge Engineering

Example: Eligibility Decision for Insurance

Combining Machine Learning and Knowledge Engineering for Eligibility Decisions (1/2)


Example: Application of health insurance

Machine Learning: data records about risks of clients

Age	surgery	docvisit	allergy	med	disieases	bmi	class
20	0	2	no	no	cholesterol	28	low
21	0	4	no	no	no	23	low
49	2	12	yes	yes	heart	34	high
22	0	3	no	no	no	23	low
51	2	2	yes	yes	diabetes	26	high
52	2	8	no	no	heart	31	high
52	0	3	yes	no	no	22	low
52	2	12	yes	yes	diabetes	27	high
52	0	11	yes	no	cholesterol	29	high
23	0	3	no	no	no	23	low

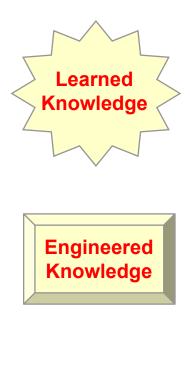
Engineered knowledge: eligibility and compliance

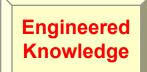
Applicants from Switzerland are eligible. A person younger than 21 year is not able to apply

...

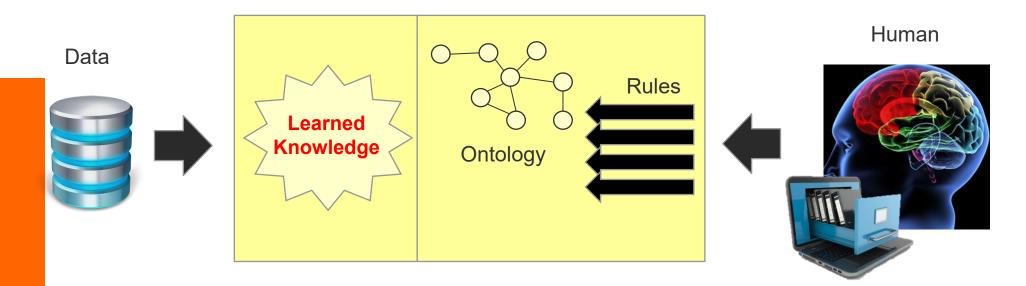
Combining Machine Learning and Knowledge Engineering for Eligibility Decisions (2/2)

Examples of learned rules:


risk (Person, high) :-	age(Person,A), A > 50,			
	bmi(Person, Bmi), Bmi =<25,			
	disease(Person, diabetes).			
risk (Person, low) :-	age(Person,A), A =< 29.			


Examples of engineered rules:

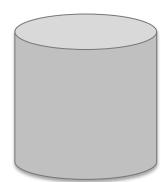
eligible(Person, no) :- age(Person,A), A =< 21. eligible(Person,no) :- country(Person,C), C =/= switzerland.


Combining engineered and learned rules:

accept(Person, yes) :- eligible(Person, yes), risk(Person, low).
accept(Person, yes) :- eligible(Person, yes), risk(Person, medium).
accept(Person, no) :- eligible(Person, no).
accept(Person, no) :- risk(Person, high)

Combining Machine Learning and KnowledgeBaseMachine LearningKnowledge Base

- Tacit or unknown knowledge
- Stable knowledge


- Knowledge we are aware of
- Knowledge that must be correct
- Explanations

Summary: Creating Knowledge Bases

- **Knowledge Engineering:** Human experts build knowledge base
 - For knowledge we are aware of
 - For knowledge that must be correct (e.g. compliance rules)
 - Inferences are explainable (trust)

Machine Learning: automatic creation of knowledge from example data

- Can solve complex tasks for which
 - knowledge is not known
 - knowledge is tacit
- For stable world, where future can be predicted from past
- Reliance on real-world data instead of pure intuition
- Requires large sets of data

