

University of Applied Sciences and Arts Northwestern Switzerland School of Business

# **Decision Tables**

W





**OBJECT MANAGEMENT GROUP** 

#### **Decision Model and Notation**

Beta1

# DECISION MODEL AND NOTATION (DMN)

#### **Decision Logic and Decision Task**



(Ross 2011, p. 152f)

### **Decision Model and Notation (DMN)**



- The Decision Model and Notation is a new standard from the OMG
- It is currently published in its version
   1.2
- Purpose of DMN: provide the constructs that are needed to model decision, so that organizational decision-making can be
  - readily depicted in diagrams
  - accurately defined by business analysts
  - (optionaly) automated



# Main concepts – Decision Requirements Level

- Business decisions
- Business knowledge
- Sources of business knowledge
- Input Data







(Coenen 2013)

#### **Decision Aware Representation of Booking Process with Price Calculation**



### **Constructs of a Decision Requirements Model**

| Construct                   | DMN Notation          | Description                                                                                                                                                                                                                                                               |  |  |  |  |
|-----------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ELEMENTS                    | ELEMENTS              |                                                                                                                                                                                                                                                                           |  |  |  |  |
| Decision                    | Decision              | The act of determining an output from a number of inputs, using decision logic which may reference one or more business knowledge models.                                                                                                                                 |  |  |  |  |
| Business<br>Knowledge Model | Business<br>knowledge | A function encapsulating business knowledge, in the form of business rules, decision table or analytic model. Some of the tool may not support this element. In such case the decision logic is directly linked to the Decision rather than the business knowledge model. |  |  |  |  |
| Knowledge<br>Source         | Knowledge<br>source   | The authority for a business knowledge model or decision.                                                                                                                                                                                                                 |  |  |  |  |
| Input Data                  | Input data            | Information used as an input by one or more decisions. It also denotes the parameters of a Busines () Knowledge Model.                                                                                                                                                    |  |  |  |  |
| REQUIREMENTS                | REQUIREMENTS          |                                                                                                                                                                                                                                                                           |  |  |  |  |
| Information<br>Requirement  |                       | Information - input data or decision output - required for a decision.                                                                                                                                                                                                    |  |  |  |  |
| Knowledge<br>Requirement    | >                     | The invocation of a business knowledge model.                                                                                                                                                                                                                             |  |  |  |  |
| Authority<br>Requirement    |                       | Showing the knowledge source of an element or the dependency of a knowledge source on input data.                                                                                                                                                                         |  |  |  |  |

#### **Decision Aware Representation of Booking Process with Price Calculation**



# **Decision**

Decision

- A decision determines an output from a number of inputs by applying some decision logic.
- Two properties should be captured for every decision:
  - Question: A specific and detailed natural language statement that represents the decision in the form of a question.
  - Allowed Answers: A natural language description of the potential outcomes.
- Decisions can have reference to Decision Logic
- Decisions can be decomposed into sub-decisions.
  - Top level decisions can be thought of as selecting an answer from a range of possible answers.
  - Lower level decisions provide input to higher-level decisions.



# **Business Knowledge Models**

Business Knowledge

- Business knowledge models represent reusable decision logic.
  - The decision logic might be
    - a decision table,
    - a decision tree,
    - a set of business rules,
    - an analytic model.



# **Input Data**



- Decisions require are input data.
- Input data elements typically represent business entities that are being used in the decision making, such as Application Form or Customer Data.





# **Knowledge Source**



- Knowledge sources represent the source of know-how for making a decision. This could be regulations or policies, best practices or expertise on how a decision should be made.
- Knowledge sources are the authorities for a decision and typically refer to some external document or source that contains detailed guidance



### **DRD Requirements**



## Main concepts – Decision Logic

Detailed criteria for decision making

- Business rules
- Calculations
- Decision Tables
- Scripts





(Coenen 2013)

# **Linking Requirements Diagram with Decision Logic**

- The notation for decision logic in DMN is a
  - Decision Table
  - Invocation
  - Literal expression (business rule)
- Decision logic can be assigned to Decision or Business Knowledge elements





"I'm here because my boss said we should use more decisions tables for our project. What types of decision tables do you sell?"

#### **Structure of a Decision Table in DMN**





# **Decision Tables – Reducing Combinations**

- If effects for several combinations are the same, the combinations can be combined, reducing the number of rules
- Example:
  - If Cause 1 is "yes", the effect does not depend on the value of Cause 2
  - In this case, the value of Cause 2 does not need to be taken into account

| effect |         |         |            |
|--------|---------|---------|------------|
|        | Cause1  | Cause 2 | Effect     |
|        | yes, no | yes, no | E1, E2, E3 |
| 1      | yes     | yes     | E1         |
| 2      | yes     | no      | E1         |
| 3      | no      | yes     | E2         |
| 4      | no      | no      | E3         |

| effect |         |         |             |
|--------|---------|---------|-------------|
|        | Cause1  | Cause 2 | Effect      |
|        | yes, no | yes, no | true, false |
| 1      | yes     | -       | E1          |
| 2      | no      | yes     | E2          |
| 3      | no      | no      | E3          |

# **Exercise: Reduce decision table**

- The following decision table represents rules for reimbursing expenses by health insurance
- Reimbursement depends on three conditions:
  - whether decuctible is already met,
  - whether the patient visited the doctor's office (D), a hospital (H) or a lab (L) and
  - whether in case of a visit at the doctor's office the physician is present
- The decision table is complete showing all combinations of decisions. Reduce the table to only the really needed number of rules

| Reimburseme | ent            |               |                   |               |
|-------------|----------------|---------------|-------------------|---------------|
|             | Deductable met | Type of visit | Physician present | Reimbursement |
|             | yes, no        | D, H, L       | yes, no           | integer       |
| 1           | yes            | D             | yes               | 90            |
| 2           | yes            | D             | no                | 50            |
| 3           | yes            | Н             | yes               | 80            |
| 4           | yes            | Н             | no                | 80            |
| 5           | yes            | L             | yes               | 70            |
| 6           | yes            | L             | no                | 70            |
| 7           | no             | D             | yes               | 0             |
| 8           | no             | D             | no                | 0             |
| 9           | no             | Н             | yes               | 0             |
| 10          | no             | Н             | no                | 0             |
| 11          | no             | L             | yes               | 0             |
| 12          | no             | L             | no                | 0             |

# **Reduced Decision Table for Health Insurance**

Reimbursement depends on whether decuctible is already met, whether the patient visited the doctor 's office (D), a hospital (H) or a lab (L) and whether the Doctor in the doctor 's office is a Participating Physician

| Reimbursement |                |               |                   |               |
|---------------|----------------|---------------|-------------------|---------------|
|               | Deductable met | Type of visit | Physician present | Reimbursement |
|               | yes, no        | D, H, L       | yes, no           | integer       |
| 1             | yes            | D             | yes               | 90            |
| 2             | yes            | D             | no                | 50            |
| 3             | yes            | Н             | -                 | 80            |
| 4             | yes            | L             | -                 | 70            |
| 5             | no             | -             | -                 | 0             |

 A Hospital visit and a Lab visit have the same reimbursement, independent of a participating physician.  If the deductible is not met, no reimbursement is given, independent of the other conditions

http://web.sxu.edu/rogers/sys/decision\_tables.html

## **Scenario**

- In a conference center one can book different kinds of rooms. The prices for the rooms are shown in the price list. Customers use a form for their enquiry.
  - These are the criteria for calculating the price:
    - The rent for a meeting room is  $\in$  500.
    - The rent for a conference room depends on the number of people. For more than 30 people it is € 1200, otherwise € 800

#### Task:

- Create a decision requirements diagram
- Create the decision table for the price calculation

| Type of Room O Meeting Room Conference Room Number of People Your answer | Meeting Request                             |  |
|--------------------------------------------------------------------------|---------------------------------------------|--|
| Number of People<br>Your answer                                          | Type of Room O Meeting Room Conference Room |  |
|                                                                          | Number of People<br>Your answer             |  |

#### **Decision Aware Representation of Booking Process with Price Calculation**



## **Decision Requirements Diagram - Variants**

 Decision Table assigned to Decision Element





\*) In Trisotech werden bei der Ausführung für jeden Input Data ein Wert abgefragt. Daher ist Variatnte 1 in Tristech nicht ausführbar

 Decision Tabele assigned to Business Knowledge Element





#### **Input Data and Decision Table**

- The data types of the decision must match the input data
- This decision table fits for the input data: appropriate data types
  - Enumeration
  - Number

|                                           |                                                                                                       | FILE                                                                                                             |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Text<br>"Meeting Room", "Conference Room" | Number                                                                                                | Number                                                                                                           |
| "Meeting Room"                            | -                                                                                                     | 500                                                                                                              |
| "Conference Room"                         | <=30                                                                                                  | 800                                                                                                              |
| "Conference Room"                         | >30                                                                                                   | 1200                                                                                                             |
|                                           | Text<br>"Meeting Room", "Conference Room"<br>"Meeting Room"<br>"Conference Room"<br>"Conference Room" | Text<br>"Meeting Room", "Conference Room"     Number       "Meeting Room"     -       "Conference Room"     <=30 |

#### **Datentypen in Entscheidungstabellen**

| Name          | Description                                                                                                            | Example                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Boolean       | two possible values true or false.                                                                                     | true<br>false                                                                |
| String        | plain text written in "quotes" or italics.                                                                             | "Trisotech"<br>Trisotech                                                     |
| Number        | numerical value.                                                                                                       | 1000<br>5.1                                                                  |
| Date          | YYYY-MM-DD format written in bold italic or as a function parameter string.                                            | 2017-11-27                                                                   |
| Time          | HH:MM:SS format written in bold italic or as a function parameter string.                                              | 09:12:00                                                                     |
| Date and Time | YYYY-MM-DDTHH:MM:SS format written in bold italic or as a function paramater string .                                  | 2017-11-27T09:12:00                                                          |
| Duration      | P[n]Y[n]M[n]DT[n]H[n]M[n]S format where [n] is a number written in bold italic or as a func-<br>tion parameter string. | PT25M is 25 minutes<br>duration("PT15M") is 15 minutes                       |
| Null          | no other valid value.                                                                                                  | null                                                                         |
| [n1, n2, n3]  | a list of values.                                                                                                      | [1,3,7,1] is a list of 4 numbers<br>["Triso", "tech"] is a list of 2 strings |

### **Arithmetische und logische Operatoren**

| Input Test                                   | Description                                      |
|----------------------------------------------|--------------------------------------------------|
| val                                          | Equal to val                                     |
| >val                                         | Greater than val                                 |
| >=val                                        | Greater or equals to val                         |
| <val< td=""><td>Smaller than val</td></val<> | Smaller than val                                 |
| <=val                                        | Smaller or equals to val                         |
| [Val1Val2]                                   | Closed interval, between Val1 and Val2 inclusive |
| (Val1Val2)                                   | Open interval, between Val1 and Val2 exclusive.  |
| [Val1Val2)                                   | Interval, >=Val1 and < Val2                      |
| (Val1Val2]                                   | Interval, >Val1 and <=Val2                       |
| not(val)                                     | ls not val                                       |
| Val1,Val2,Val3                               | Works as an "or".                                |

| Operation | Description     |  |
|-----------|-----------------|--|
| +         | Addition        |  |
| -         | Substraction    |  |
| /         | Division        |  |
| *         | Multiplication  |  |
| **        | To the power of |  |

# **Input Data and Decision Table**

- These decision tables do **not** fits for the input data
  - Input for Number of People is a number
  - In decision tables the types for Number of People are different



# Hit Policies (1)

- The hit policy specifies what the result of the decision table is, if there are multiple matches for a given set of inputs.
- The hit policy indication is mandatory and is summarized using a single character in a particular decision table cell.

#### Single Hit Policies:

| Hit Policy | Description                                                                                                                                                                                                                                                                                                                                                      |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unique     | This is the default policy. All rules are exclusive and only a single rule is matched.                                                                                                                                                                                                                                                                           |
| Any        | Multiple matching rules, all matching rules with the same output. Any of these outputs can be used.                                                                                                                                                                                                                                                              |
| Priority   | Multiple matching rules with different outputs. Returns the matching rule with the highest output priority which is specified in an ordered list of values, e.g. the list of expected output values.                                                                                                                                                             |
| First      | Multiple matching rules with different outputs. First hit by rule order is returned. Once there is a hit, the evaluation stops (and ignore the rest of the rules). The matching has a dependency on the order of the rules. The last rule is often the <i>catch-remainder</i> rule. This type of policy is hard to validate manually and must be used with care. |

# **Hit Policy Any**

- Hit Policy Any is used, for example, to represent a logical AND
  - A certain result is given if all criteria are met
  - As soon as one criterion is not fulfilled, there is another result
- It is irrelevant which criterion is not fulfilled

| $\bigcirc$ | Availability                    | Capacity                       | Reservation         |
|------------|---------------------------------|--------------------------------|---------------------|
| Â          | Text<br>"available", "occupied" | Text<br>"too small", "fitting" | Text<br>"yes", "no" |
| 1          | "available"                     | "fitting"                      | "yes"               |
| 2          | -                               | "too small"                    | "no"                |
| 3          | "occupied"                      | -                              | "no"                |

Example: A reservation is made, if a fitting room is available

# **Hit Policy Any**

n

#### For Hit Policy Any the order of rules does not matter

|   | Availability                    | Capacity                       | Reservation         |
|---|---------------------------------|--------------------------------|---------------------|
| A | Text<br>"available", "occupied" | Text<br>"too small", "fitting" | Text<br>"yes", "no" |
| 1 | "available"                     | "fitting"                      | "yes"               |
| 2 | -                               | "too small"                    | "no"                |
| 3 | "occupied"                      | -                              | "no"                |

|   | Availability                    | Capacity                       | Reservation         |  |
|---|---------------------------------|--------------------------------|---------------------|--|
| A | Text<br>"available", "occupied" | Text<br>"too small", "fitting" | Text<br>"yes", "no" |  |
| 1 | -                               | "too small"                    | "no"                |  |
| 2 | "available"                     | "fitting"                      | "yes"               |  |
| 3 | "occupied"                      | -                              | "no"                |  |

# **Hit Policy First**

- With Hit Policy First, the rules are tested in the order in which they occur.
  - As soon as a rule is applicable, the result is delivered; further rules are ignored.
    - The Hit Policy First corresponds to a sequence of IF ... THEN ... ELSE ...
- The last rules is often interpreted as ELSE

|   | Availability                    | Capacity                       | Reservation         |
|---|---------------------------------|--------------------------------|---------------------|
| F | Text<br>"available", "occupied" | Text<br>"too small", "fitting" | Text<br>"yes", "no" |
| 1 | "available"                     | "fitting"                      | "yes"               |
| 2 | -                               | -                              | "no"                |

# **Another Example for Hit Policy First**

#### Hit Policy First can simplify tables

#### Hit Policy Any

|   | Credit risk category                           | Affordability category                                             | Loan approval                           |
|---|------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|
| A | tCreditRiskCategory<br>"High", "Medium", "Low" | tAffordabilityCategory<br>"Affordable", "Marginal", "Unaffordable" | tLoanApproval<br>"Approved", "Declined" |
|   | "High"                                         | -                                                                  | "Declined"                              |
| 2 | -                                              | "Unaffordable"                                                     | "Declined"                              |
| 3 | "Medium", "Low"                                | "Affordable", "Marginal"                                           | "Approved"                              |

#### **Hit Policy First**

|   | Credit risk<br>category                           | Affordability<br>category                                             | Loan<br>approval                           |
|---|---------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|
| F | tCreditRiskCategory<br>"High", "Medium",<br>"Low" | tAffordabilityCategory<br>"Affordable", "Marginal",<br>"Unaffordable" | tLoanApproval<br>"Declined",<br>"Approved" |
| 1 | "High"                                            | -                                                                     | "Declined"                                 |
| 2 | -                                                 | "Unaffordable"                                                        | "Declined"                                 |
| 3 | -                                                 | -                                                                     | "Approved"                                 |

As the logic of decision tables should be declarative, the hit poicly F is often dispraised (Silver 2016)

#### https://www.trisotech.com/dmn-hit-policy-explained/

# **Hit Policy Priority**

- The Hit policy Priority prefers rules, whose result has higher priority
  - In enumeration types the order of the values determines the priority

|   | Credit risk<br>category                           | Affordability<br>category                                             | Loan<br>approval                           |
|---|---------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|
|   | tCreditRiskCategory<br>"High", "Medium",<br>"Low" | tAffordabilityCategory<br>"Affordable", "Marginal",<br>"Unaffordable" | tLoanApproval<br>"Declinea",<br>"Approved" |
| 1 | "High"                                            | -                                                                     | "Declined"                                 |
| 2 | -                                                 | "Unaffordable"                                                        | "Declined"                                 |
| 3 | -                                                 | -                                                                     | "Approved"                                 |

# **Hit Policies First und Priority**

In this example, Hit Policy First and Hit Policy Priority have the same results because the order of the rules is such that the values with high priority come first.

|   | Credit risk<br>category                           | Affordability<br>category                                             | Loan<br>approval                           |   | Credit risk<br>category                           | Affordability<br>category                                             | Loan<br>approval                           |
|---|---------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|---|---------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|
| Р | tCreditRiskCategory<br>"High", "Medium",<br>"Low" | tAffordabilityCategory<br>"Affordable", "Marginal",<br>"Unaffordable" | tLoanApproval<br>"Declined",<br>"Approved" | F | tCreditRiskCategory<br>"High", "Medium",<br>"Low" | tAffordabilityCategory<br>"Affordable", "Marginal",<br>"Unaffordable" | tLoanApproval<br>"Declined",<br>"Approved" |
| 1 | "High"                                            | -                                                                     | "Declined"                                 | 1 | "High"                                            | -                                                                     | "Declined"                                 |
| 2 | -                                                 | "Unaffordable"                                                        | "Declined"                                 | 2 | -                                                 | "Unaffordable"                                                        | "Declined"                                 |
| 3 | -                                                 | -                                                                     | "Approved"                                 | 3 | -                                                 | -                                                                     | "Approved"                                 |

https://www.trisotech.com/dmn-hit-policy-explained/



# **Hit Policy Priority**

 Hit Policy Priority can make interpretation of taUntebles difficult

|   | isAffordable | RiskCategory                             | Approval Status                                       |
|---|--------------|------------------------------------------|-------------------------------------------------------|
| Р | Boolean      | tRiskCategory<br>"High", "Low", "Medium" | tApprovalStatus<br>"Approved", "Declined", "Referred" |
| 1 |              | "Low"                                    | "Approved"                                            |
| 2 | true         | "High"                                   | "Declined"                                            |
| 3 |              | "Medium"                                 | "Referred"                                            |
| 4 | false        | -                                        | "Declined"                                            |

Under which conditions the result "Reffered"?

if RiskCategory is "Medium"

and if IsAffordable not "false"

# **Scenario Extended**

- Customers have the option of booking extras in addition to the room.
  - The costs are as follows
    - Projector: € 60
    - Flipchart: € 30
    - Whiteboard: € 40
- How can this be presented as a decision table?

| 1      | Meeting Request                                    |
|--------|----------------------------------------------------|
| т<br>( | ype of Room<br>) Meeting Room<br>) Conference Room |
| N<br>Y | Number of People<br>'our answer                    |
|        | Extras<br>Beamer<br>Flipchart<br>Whiteboard        |
| S      | ubmit                                              |

### **Example for Multiple Hit Policy**

#### **Collect – Sum** Apply all possible rules and sum up the values. This gives the overall price of room and extras

|                                  |    | Type of Room                              | Number of People | Extras                                      | Price  |
|----------------------------------|----|-------------------------------------------|------------------|---------------------------------------------|--------|
| Meeting Request                  | C+ | Text<br>"Conference Room", "Meeting Room" | Number           | Text<br>"Beamer", "Flipchart", "Whiteboard" | Number |
| Meeting Room     Conference Room | 1  | "Conference Room"                         | <=30             | -                                           | 800    |
| Number of People                 | 2  | "Conference Room"                         | >30              | -                                           | 1200   |
| Your answer                      | 3  | "Meeting Room"                            | -                | -                                           | 500    |
| Extras                           | 4  | -                                         | -                | "Beamer"                                    | 60     |
| Flipchart Whiteboard             | 5  | -                                         | -                | "Flipchart"                                 | 30     |
| Submit                           | 6  | -                                         | -                | "Whiteboard"                                | 40     |

# Hit Policies (2)

#### Multiple Hits Policies for Single Output

| Hit Policy   | Description                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------|
| No order     | Returns all hits in a unique list in arbitrary order.                                                        |
| Output order | Returns all hits in decreasing priority order. Output priorities are specified in an ordered list of values. |
| Rule order   | Returns all hits in rule order, i.e. dependency on the order of the rules.                                   |

#### Aggregation for Multiple Hits Policy

| Aggregation | Description                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------|
| Collect     | The result of the decision table is the list of all the outputs, ordered or unordered per the hit policy.          |
| Sum         | The result of the decision table is the sum of all the outputs.                                                    |
| Min         | The result of the decision table is the smallest value of all the outputs.                                         |
| Max         | The result of the decision table is the largest value of all the outputs.                                          |
| Count       | The result of the decision table is the number of outputs.                                                         |
| Average     | The result of the decision table is the average value of all the outputs, defined as the sum divided by the count. |

# Wrong table

n

What is wrong with this table?

| U | Credit score | DTI    | Loan Approval                           |
|---|--------------|--------|-----------------------------------------|
|   | Number       | Number | tLoanApproval<br>"Approved", "Declined" |
| 1 | >660         | <=0.35 | "Approved"                              |
| 2 | >=660        | >=0.38 | "Declined"                              |
| 3 | [600660]     | <=0.35 | "Approved"                              |
| 4 | [600660]     | >0.35  | "Declined"                              |
| 5 | <600         | -      | "Declined"                              |

| Severity 🔅 | Message ¢                                                                                                                                  | Element 🕴        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 4          | Gap detected: [ >660, ( 0.35 0.38 ) ]                                                                                                      | Loan<br>Approval |
| 26         | Overlap detected: Overlap values: [ 660, >=0.38 ] for rules: [4, 2]. UNIQUE hit policy decision tables can only<br>have one matching rule. | Loan<br>Approval |
| 4          | Table is not fully contracted. Combine rules [1, 3] by joining input 1.                                                                    | Loan<br>Approval |

# Subdecisions: Result of one decision is input to another decision

- Schools and sports clubs receive a 10% discount if the costs are higher than € 1000
- Companies and private individuals do not receive a discount



# Subdecisions: Result of one decision is input to another decision



# FEEL = Friendly Enough Expression Language

#### FEEL is a script language for decision tables



#### Literatur

- BPM Professional, 2014, Introduction to Decision Model & Notation (DMN), http://blog.maxconsilium.com/2014/09/introduction-to-decision-model-notation.html
- Ross, R. G., & Lam, G. S. W. (2011). Building Business Solutions: Business Analysis with Business Rules. Business Rule Solutions Inc.
- Alcedo Coenen (2013). Decision Model & Notation (DMN) 1.0 a new OMG Standard. http://de.slideshare.net/alcedocoenen/intro-dmn-10
- OMG (2016). Decision Model and Notation 1.1, http://www.omg.org/spec/DMN/

#### Literatur

- Ross, R. G., & Lam, G. S. W. (2011). Building Business Solutions: Business Analysis with Business Rules. Business Rule Solutions Inc.
- Alcedo Coenen (2013). Decision Model & Notation (DMN) 1.0
   a new OMG Standard.
   http://do.alidoobara.net/alcedooaaaa/intro.dmn.10
  - http://de.slideshare.net/alcedocoenen/intro-dmn-10
- OMG (2014). Decision Model and Notation, Beta 1, http://www.omg.org/spec/DMN/
- Von Halle, B., & Goldberg, L. (2010). The Decision Model: A Business Logic Framework Linking Business and Technology. CRC Press Auerbach Publications.