Machine Reasoning

Knowledge Engineering SS24 MSc Computer Science Camerino, 06/05/2024 Dr. Emanuele Laurenzi

The two sides of A.I.: Machine Learning and Machine Reasoning

Two Sides of A. I.

Machine Learning = Non-symbolic AI (Neural Networks, Deep Learning, Knowledge Discovery) +

Machine Reasoning = Symbolic AI (Semantic Technology, Knowledge Representation, Knowledge Engineering)

Languages for Machine Reasoning

- There exist languages maintained by the W3C that allow machine reasoning.
- Machine reasoning means applying reasoning services on knowledge graphs or ontologies that are expressed in some ontology language.
- The focus in this lecture is on the following languages:
 - SPARQL CONSTRUCT/INSERT
 - SWRL

n

SHACL

University of Applied Sciences and Arts Northwestern Switzerland School of Business

SPARQL for Machine Reasoning

SPARQL for Machine Reasoning

- -CONSTRUCT vs. INSERT
 - "Reasoning on the fly" vs. "Reasoning with writing"
- CONSTRUCT delivers the transformed/extracted subgraph to the client, without storing it (the client app can later choose to save it or just display it);
- INSERT stores the generated graph, without returning it (the client app must perform a SELECT to retrieve what was generated).

Solution for the Ontology Development 101 exercise

A possible rule

-The following rule derive the inverse property is_taught_by

CONSTRUCT {?y :teaches ?x}

WHERE {

n

If a course ?x is taught by teacher ?y, then teacher ?y teaches course ?x.

?x :isTaughtBy ?y .

Test in Protégé

n

-The reasoner should be started before executing the CONSTRUCT.

MScBIS (http://www.semanticweb.org/admin/ontologies/2024/3/MScBIS)	
Active ontology * Entities * Individuals by class * SPARQL Query * SWRLTab * Snap SPARQL Query: PREFIX : <http: 2024="" 3="" admin="" mscbis#="" ontologies="" www.semanticweb.org=""> CONSTRUCT {?teacher :academicStaffTeachesCourse ?module} WHERE { ?module :courseIsTaughtByAcademicStaff ?teacher . }</http:>	Add axioms to selected ontology × Add axioms to selected ontology × Axioms Emanuele academicStaffTeachesCourse KP_DM ? ② × Emanuele academicStaffTeachesCourse MBDCPS ? ② × Holger academicStaffTeachesCourse KP_DM ? ② × Knut academicStaffTeachesCourse ABIT ? ② ×
Execute	
?teacher	

Use of some operators of SPARQL for machine reasoning

Conjunction (AND)

– Use SPARQL for

n

 Adding those Women to Mother which have a child

PREFIX : <http://laurenzi.ch#>
CONSTRUCT { ?s a :Mother }
WHERE {
 ?s :hasChild ?o .
 ?s a :Woman

Conjunction (AND)

– Use SPARQL for

n

have a child

Disjunction (OR)

– Use SPARQL for

Recursion

n

– Use SPARQL for

 Adding the relationships hasAncestor which is either someone which has a child or someone which has a child whose is already an ancestor

PREFIX : <http://laurenzi.ch#>
INSERT { ?d :hasAncestor ?a }
WHERE {
 { ?a :hasChild ?d } UNION
 { ?a :hasChild ?x . ?d :hasAncestor ?x }

Recursion (Another Solution)

– Use SPARQL for

Learnings from the Recursion

- Queries are NOT applied until no further triples are added.
- In order to ensure the deduction of ALL results you need to implement the loop
 - In a step ALL queries needs to be applied...
 - ... until no further triples are added
- -Infinite Loops?

Repetition: Inference Procedure for Logic Programming

Let resolvent be the query ?- Q₁, ..., Q_m

While *resolvent* is not empty do

Rule Engines already include the loop

n

1. Choose a query literal Q_i from *resolvent*.

- 2. Choose a renamed¹ clause $H := B_1, ..., B_n$ from P such that Q_i and H unify with an most general **unifier** σ , i.e. $Q_i \sigma = H \sigma$
- 3. If no such Q_i and clause exist, then backtrack
- 4. Remove Q_i from the resolvent
- 5. Add $B_1, ..., B_n$ to the resolvent
- 6. Add σ to σ_{all}
- 7. Apply substitution σ to the *resolvent* and go to 1.

If *resolvent* is empty, **return** σ_{all} , else **return** *failure*.

Negation in SPARQL: FILTER NOT EXISTS

-Negation as NOT EXISTS

- True if a specific graph does not exists
- −Opposite of Negation: EXISTS ☺

```
@prefix : <http://example/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
```

```
:alice rdf:type foaf:Person .
:alice foaf:name "Alice" .
:bob rdf:type foaf:Person .
```

```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
```

```
SELECT ?person
WHERE {
    ?person rdf:type foaf:Person .
    FILTER NOT EXISTS { ?person foaf:name ?name }
```

Negation

- Use SPARQL for
 - Finding out who is an unhappy man. An unhappy man is a man who is NOT a father

- Is Omar a Father?
- Is Omar an UnhappyMan?
- Is Emanuele a Father?
- Is Emanuele an UnhappyMan?

```
PREFIX : <http://laurenzi.ch#>
CONSTRUCT { ?s a :UnhappyMan }
WHERE {
     ?s a :Man .
     FILTER NOT EXISTS {?s a :Father}
}
```


Negation

- Use SPARQL for
 - Finding out who is an unhappy man. An unhappy man is a man who is NOT a father

- Is Omar a Father?
- Is Omar an UnhappyMan?
- Is Emanuele a Father?
- Is Emanuele an UnhappyMan?

```
PREFIX : <http://laurenzi.ch#>
CONSTRUCT { ?s a :UnhappyMan }
WHERE {
     ?s a :Man .
     FILTER NOT EXISTS {?s :hasChild ?c}
}
```


Integrity Constraint

– Use SPARQL for

n

Detecting contradictions

Class exercise

– Use SPARQL for

- Detecting contradictions
- Find the Turtle file with contradictions on Wiki.
- Create and test the rule with GraphBD
- Be ready to present.

University of Applied Sciences and Arts Northwestern Switzerland School of Business

SWRL

A semantic rule language for rule-based reasoning

Dr. Emanuele Laurenzi – Machine Reasoning

SWRL

- -SWRL = "Semantic Web Rule Language"
- -Example

hasParent(?C,?P) A hasBrother(?P,?U) -> hasUncle(?C,?U)

- -SWRL-Rule are similar to PROLOG rules:
 - Several conditions (in predicate notation), separated by "<mark>^</mark>" (AND)
 - A consequence (also in predicate notation)
 - Variables starts with "?" (like in SPARQL)
- Conditions and consequence are divided by "->" (minus and greater sign)

Examples for Rules

- -Classification
 - Man(?m) -> Person(?m)

-Inverse relationships

hasChild(?p,?c) -> hasParent(?c,?p)

Examples for Rules

Assigning values to properties

n

```
hasParent(?C,?P) ∧ hasBrother(?P,?U) -> hasUncle(?C,?U)
hasParent(?C,?P) ∧ hasSister(?P,?A) -> hasAunt(?C,?A)
```

- Rules with Literals and operators

```
Person(?p) ^ hasAge(?p,?age) ^ swrlb:greaterThan(?age,17) ->
    Adult(?p)
Person(?p) ^ hasNumber(?p,?n) ^ swrlb:startsWith(?n, "+") ->
    hasInternationalNumber(?p, true)
```


untitled-ontology-23)

Entities

✓ OWLViz

DL Query

OntoGraf

SQWRLTab SPARQL Querv

✓ SWRLTab

Classes Object properties

✓ Active ontology

Data properties

Individuals by class

Annotation properties

Minimal SHACL Editor

Rules in Protege

n

- In Protege there is the SWRLTab
- In this tab one can write rules

Active ontology × Ent	ities × Individuals by	class × SWRLTab	× SPARQL Query ×
✓ ParentRule	mft:hasChild(?p, ?c) -:	> mft:hasParent(?c, ?p)	

- to execute rules, one has to start a reasoner
 - select the reasoner (e.g. HermiT or Pellet) and
 - click on "Start reasoner"

Vindow Help Views

Create new tab.

Export current tab.

Store current layout

Capture view to clipboard.

Timestamp log / console

Refresh user interface

Reset selected tab to default state

Import tab.

Show log.

Look & Feel

Tabs

Use of some operators of SWRL for machine reasoning

Conjunction (AND)

– Use SWRL for

n

 Adding those Women to Mother which have a child

Woman(?W) ^ hasChild(?W, ?C) -> Mother(?W)

– Use SWRL for

n

 Adding those Men to Father which have a child

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Man(?X)

^ hasChild(?X, ?C) -> Father(?X)

1336

Father(?F) -> Parent(?F)
Mother(?M) -> Parent(?M)

Disjunction (OR)

– Use SWRL for

- Adding those Women and Men to Parent which have a child
- Warning: You don't have neither RDFS nor the results from former queries

hasChild(?P, ?C) -> hasAncestor(?C, ?P)

hasChild(?A, ?X) ^ hasAncestor(?D, ?X) -> hasAncestor(?D, ?A)

 Adding the relationships hasAncestor which is either someone which has a child or someone which has a child whose is already an ancestor

University of Applied Sciences and Art School of Business

Recursion

 $\mathbf{n}|_{\mathcal{U}}$

Negation in SWRL = Negation in OWL (extended Version of RDFS)

- -SWRL does NOT support negation ...
- –... but OWL (underlying language under SWRL)
 - OWL is an extension of RDFS
 - OWL allows negation
- -Two examples for OWL axioms

Father = Man and (hasChild some Person)

UnhappyMan = Man **and** (**not** Father)

No Unique Name Assumption

 $\mathbf{n}|\mathcal{U}$

- Usually a Open World
 Assumption excludes also a
 Unique Name Assumption
- Amalia and Alina might be the same "individual" represented by two different names
- You need to specify explicitly that they are different!

hasChild(?B, ?A) ^ hasChild(?C, ?A) ^ hasChild(?D, ?A) ^ differentFrom(?B, ?C) ^ differentFrom(?B, ?D) ^ differentFrom(?C, ?D) -> Contradiction(?A)

DifferentIndividuals: Amalia, Giulia, Alina

University of Applied Sciences and Arts Northwestern Switzerland School of Business

SHACL

A W3C standard to validate RDF graphs

Shape Constraint Language - SHACL

- –W3C recommendation since 20 July 2017 -<u>https://www.w3.org/TR/shacl/</u>
- -RDF language

- -Created to allow validation of RDF
- -A "schema" language for RDF
- -SHACL defines a "Shapes Graph" that is used to validate the "Data Graph".

Example

n

Shapes Graph

```
1 @prefix sh: <http://www.w3.org/ns/shacl#> .
 2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 3 @prefix schema: <http://schema.org/> .
 Δ.
 5 schema:Person
     a rdfs:Class, sh:NodeShape ;
 6
 7
     sh:property
 8
         sh:path schema:name ;
 9
         sh:minCount 1 ;
10
11
         sh:maxCount 1 ;
12
       ],
13
         sh:path schema:age ;
14
15
         sh:minCount 1 ;
         sh:minInclusive 18 ;
16
17
       ];
18 .
19
```

Data Graph

```
1 {
     "@context": {
 2
       "@base": "https://example.com/",
 3
       "@vocab": "http://schema.org/"
 4
 5
     },
     "@id": "John-Doe",
 6
     "@type": "Person",
 7
     "name": [
 8
       "John",
 9
       "Johnny"
10
11
     ],
     "age": 18
12
13 }
14
```

Validation Report

Success

No

Errors found

- https://example.com/John-Doe:
 o schema:name:
 - More than 1 values

Example

n

Shapes Graph

Data Graph

```
1 {
     "@context": {
 2
       "@base": "https://example.com/",
 3
       "@vocab": "http://schema.org/"
 4
 5
     },
     "@id": "John-Doe",
 6
     "@type": "Person",
 7
     "name": [
 8
       "John",
 9
       "Johnny"
10
11
     ],
     "age": 18
12
13 }
14
```

Validation Report

Success

No

Errors found

- https://example.com/John-Doe:
 o schema:name:
 - More than 1 values

SHACL Processor

-Two inputs:

- a data graph (validation target)
- a shapes graph (how to validate);
- -SHACL processors must not change the graphs, i.e., both data and shapes graphs at the end of the validation must be identical to the graph at the beginning of validation
- -Generates a results graph
- -There are: SHACL Core processor and SHACL SPARQL processor.
 - SHACL Core processors support validation with the SHACL Core Language
 - SHACL-SPARQL processors support validation with the SHACL-SPARQL Language

SHACL Core Language – A Semplified View

Dr. Emanuele Laurenzi – Machine Reasoning

SHAPE

n

- A shape is a collection of target and constraints
 - Targets: define which nodes in the data graph must conform to the shape.
 - **Constraint**: define how to validate a node.
- Sh:Shape
 - Sh:NodeShape
 - Specify constraints on the target nodes (classes)

sh:or : rdf:List

- Sh:PopertyShape
 - Specify constraints on target properties and their values

Example

Example

Targets

n

- -Target declarations:
 - sh:targetClass: targets all resources that are instances of a given class

Università

DICAMERINO

Core Constraints Components

Туре	Constraints
Cardinality	minCount, maxCount
Types of values	class, datatype, nodeKind
Values	node, in, hasValue
Range of values	minInclusive, maxInclusive minExclusive, maxExclusive
String based	minLength, maxLength, pattern, languageIn, uniqueLang
Logical constraints	not, and, or, xone
Closed shapes	closed, ignoredProperties
Property pair constraints	equals, disjoint, lessThan, lessThanOrEquals
Non-validating constraints	name, description, group, order, defaultValue
Qualified shapes	qualifiedValueShape, qualifiedMinCount, qualifiedMaxCount

Cardinality Constraints

Constraint	Description
minCount	Restricts the minimun amount of occurences of a given property. Default value: 0
maxCount	Restricts the maximum amount of occurences of a given property. Default value: 0
Person a sh:NodeShape, rdf sh:property [sh:path schema:knows ; sh:minCount 1; sh:maxCount 2;	<pre>fs:Class ;</pre>
].	:peter a schema:Person ; schema:givenName "Peter".

Datatype of Values Constraints

Constraint	Description
datatype	Restricts the datatype of all value nodes to a given value

```
:Person a sh:NodeShape, rdfs:Class ;
sh:property [
sh:path schema:birthDate ;
sh:datatype xsd:date;
].
:john a schema:Person ;
schema:birthDate "1990-05-01"^^xsd:date .
:mary a schema:Person ;
schema:birthDate "Unknown"^^xsd:date .
:peter a schema:Person ;
schema:birthDate 1995 .
```


Other Applications for SHACL

-Interface building,

- e.g., using with DASH, a Python framework for interactive wen applications;
- Data structure and semantics declaration (semantic data model specification)
- -Code generation
- Data integration
- -Rule-based inferencing

Useful resources for SHACL

-Online SHACL Validators

- <u>https://shacl.org/playground/</u>
- <u>https://www.ida.liu.se/~robke04/SHACLTutorial/</u>
- <u>https://archive.topquadrant.com/technology/shacl/</u>

Shapes Graph	Data Graph	Example Data in Turtle Format
<pre>@prefix dash: <http: 02="" 1999="" 22-rdf-syntax-ns#="" waw.w3.org=""> . @prefix rdf: <http: 02="" 1999="" 22-rdf-syntax-ns#="" waw.w3.org=""> . @prefix sds: <http: 02="" 199="" 22-rdf-syntax-ns#="" waw.w3.org=""> . @prefix sds: <http: ns="" shacl#="" waw.w3.org=""> . @prefix sd: <http: ns="" shacl#="" waw.w3.org=""> . @prefix sd: <http: ns="" shacl#="" waw.w3.org=""> . schema:PersonShape a sh:NodeShape ; sh:targetClass schema:Person ; sh:property [sh:pt schema:givenName ; sh:datatype xsd:string ; sh:name "given name";]; sh:pt schema:birthDate ; sh:maxCount 1;]; sh:property [sh:pt schema:gender ; sh:maxCount 1;]; sh:ptopretty [Sh:property [S</http:></http:></http:></http:></http:></http:></pre>	<pre>@prefix ex: <http @prefix rdf: <http @prefix rdf: <http @prefix rdf: <http @prefix rdf: <http @prefix rdf: <http @prefix rdf: <http: @prefix rdf: <http: @refix rdf: <http: @refix</http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http: </http </http </http </http </http </http </pre>	<pre>://example.org/ns#> . p://waw.w3.org/1999/02/22-rdf-syntax-ns#> . tp://waw.w3.org/2000/01/rdf-schema#> . http://schema.org/> . p://www.w3.org/2001/XMLSchema#></pre>

Exercise

-Given the below shape, find a solution for the below Turtle file.

-Test it at https://www.ida.liu.se/~robke04/SHACLTutorial/

Data Graph Data 1 🗸

n

```
1 @prefix laureate: <http://data.nobelprize.org/resource/laureate/> .
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
 3 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 4
 5 laureate:935
                        foaf:Person ;
 6
       а
                        "1948-10-09"^^xsd:date ;
      foaf:birthday
7
 8
      foaf:familyName
                        "Hart" ;
                        "Oliver" ;
9
      foaf:givenName
                        "Oliver Hart" ;
      foaf:name
10
      foaf:gender
                        "male" .
11
12
```

Shape Graph Shapes 1 🗙

```
1 @prefix ex: <http://example.org#> .
 2 @prefix dash: <http://datashapes.org/dash#> .
 3 @prefix sh: <http://www.w3.org/ns/shacl#> .
 4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
 5 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 6
7 ex:PersonShape a sh:NodeShape ;
       sh:targetClass foaf:Person ;
 8
 9
       sh:property [
          sh:path foaf:birthday ;
10
11
          sh:datatype xsd:string ;
12
      ].
```


SHACL in Protégé

File>Check for plugins...

- Select and install SHACL4Protege Constraint Validator
- Window>Tabs>Minimal SHACL editor
- Now the new tab "Minimal SHACL editor" is visualized in Protégé

	Automa	tic Update			>
tology × Entities × Individuals by class × SPARQL Query × S	S\ Install	Name	Current version	Available version	
y header:		jcei		0.24.0	
Ontology IRI http://www.semanticweb.org/admin/ontologies/2024/3	MM	Matrix Views		4.0.1	
av Version IRI e.a. http://www.semanticweb.org/admin/ontologies/20:	24	OBO Annotations Editor		0.4.0	
		OBO Taxon Constraints		1.0.0	
- 0		Ontology Abstraction Framework (OAF)		1.1.0	
		Ontology Debugger (OntoDebug)		0.2.2	
		Ontop VKG ProtA©gA© Plugin		4.2.2	
		OWL Difference		6.0.2	
		OWL Individual Hierarchy		0.1.0	
		OWLAX: OWL Axiomatizer		1.2.0	
		Pellet Reasoner Plug-in		2.2.0	
		PropertiesInDomainClass		1.0.1	-
		ROWL: SWRL Rule to OWL Axiom Converter		1.6.0	
(SRE Plugin		0.2.1	
(Author: I	SRE Plugin Fajar Ekaputra, Xiashuo Lin, André Welski https://raw.githubusercontent.com/fekaputr	ra/shacl-plugin/mas	0.2.1	
	Author: I License:	SRE Plugin Fajar Ekaputra, Xiashuo Lin, Andrã© Wolski https://raw.githubusercontent.com/fekaputr 4Protege v1.2.0	a/shacl-plugin/mas	0.2.1	
r imports Ontology Prefixes General class axioms	Author: I License: SHACLA	SRE Plugin Fajar Ekaputra, Xlashuo Lin, Andrã© Wolski https://raw.githubusercontent.com/fekaputr 4Protege v1.2.0 L constraint validation plugin for <u>Protégé Deskto</u>	a/shacl-plugin/mas	0.2.1	
r imports Ontology Prefixes General class axioms	Author: I License: SHACLA A SHAC	SRE Plugin Fajar Ekaputra, Xlashuo Lin, André Welski https://raw.githubusercontent.com/fekaputr 4Protege v1.2.0 L constraint validation plugin for <u>Protégé Deskto</u> in is tried and tested using Protege 5.5.0 on Ma 8.	ra/shacl-plugin/mas	4) with OpenJDK	
y imports Ontology Prefixes General class axioms d ontologies: orts +	Author: I License: SHACLA A SHACL The plug Temurin	SRE Plugin Fajar Ekaputra, Xlashuo Lin, André Wolski https://raw.githubusercontent.com/fekaputr 4Protege v1.2.0 L constraint validation plugin for <u>Protégé Deskto</u> in is tried and tested using Protege 5.5.0 on Ma 8.	ra/shacl-plugin/mas	4) with OpenJDK	
r imports Ontology Prefixes General class axioms d ontologies:	Author: I License: SHACLA A SHAC The plug Termurin Always	SRE Plugin Fajar Ekaputra, Xlashuo Lin, André Welski https://raw.githubusercontent.com/fekaputr 4Protege v1.2.0 L constraint validation plugin for Protégé Deskto in is tried and tested using Protege 5.5.0 on Ma 8. check for updates on startup.	a/shacl-plugin/mas	4) with OpenJDK	

Homework

-Create a SHACL shape for your ontology and test it over Protégé.

Takeaways

- There exist languages maintained by the W3C that allow machine reasoning.
- Machine reasoning means applying reasoning services on knowledge graphs/ontologies that are expressed in some ontology language.
- The focus of this lecture:
 - SPARQL CONSTRUCT/INSERT
 - It enables deductive reasoning but does not allow for recursion. For this, an algorithm for the loop shall be implemented. Limitations with respect to a declarative rule-based approach.
 - SWRL
 - It enables deductive reasoning as a declarative knowledge base (rule-based system). Infinite loops are possible. Negation is not supported. Properties must be declared in advance for the respective values to be inferred, which is a behavior implemented in ontology editors like Protégé.
 - SHACL
 - It enables the validation of RDF graphs. It is coupled with RDF/RDF(S) and adds expressivity to lightweight ontology languages like RDF and RDF(S).