
(c) Emanuele Laurenzi 2024 – distribution and publication is forbidden without written consent from the author

1

Family Tree Contradiction Exercise
Contents
Exercise .. 1

Possible Solutions .. 1

Scenario 1 .. 1

Scenario 2: ... 2

Scenario 3: ... 3

More information about SPARQL and its language constructs ... 4

Exercise
Use inferencing rules in SPARQL for detecting contradictions in the family tree dataset.

Find the Turtle file with contradictions on the Wiki.

Test the rules with GraphBD or Protégé.

Possible Solutions

Scenario 1
Qualify as :Contradiction any instance having more than one mothers. Two-step approach with
INSERT and CONSTRUCT. We first infer the relation “hasMother” and then infer the contradiction.

Step 1: Every woman that has a child, is mother of that child.

Insert the relation “hasMother” from ?y to ?x, for every ?y that is child of ?x, where ?x is also a
Woman.

PREFIX : <http://laurenzi.ch#>
INSERT { ?y :hasMother ?x.}
where { ?x a :Woman;
 :hasChild ?y.}

Step 2: Raise contradiction whenever a child has two different mothers.

Infer the relation rdf:type between an instance ?a and the class :Contradiction, where ?a has mother
?b AND has mother ?c AND ?b and ?c are different.

PREFIX : <http://laurenzi.ch#>
CONSTRUCT
{?a a :Contradiction. }
where

(c) Emanuele Laurenzi 2024 – distribution and publication is forbidden without written consent from the author

2

{ ?a :hasMother ?b;
 :hasMother ?c.
 FILTER (?b != ?c) }

Drawbacks of this solution: A child can have two mothers.

However, one can assume that three mothers for one child is still improbable. Therefore, the
following solution as an alternative to Step 2:

Step 2: Raise contradiction whenever a child has three different mothers (having 2 mothers would
not infer contradiction).

Infer the relation rdf:type between an instance ?a and the class :Contradiction, where ?a has mother
?b AND has mother ?c AND has mother ?d AND ?b and ?c are different AND ?c and ?d are different
AND ?d and ?a are different.

CONSTRUCT {?a a :Contradiction. }
where
{ ?a :hasMother ?b;
 :hasMother ?c;
 :hasMother ?d.
 FILTER (?b != ?c && ?c != ?d && ?b != ?d) }

What if we want to raise contradiction without first inferring the “hasMother” relation?

Infer the relation rdf:type between an instance ?a and the class :Contradiction, where ?a is child of ?b
AND is child of ?c AND is child of ?d AND ?b and ?c are different AND ?c and ?d are different AND ?d
and ?a are different.

CONSTRUCT {?a a :Contradiction. }
where
{ ?b :hasChild ?a.
 ?c :hasChild ?a.
 ?d :hasChild ?a.
 FILTER (?b != ?c && ?c != ?d && ?b != ?d) }

Scenario 2:
Raise contradiction whenever a child has more than one incoming “hasChild” relation (without
inferring the hasMother relationship beforehand).

(c) Emanuele Laurenzi 2024 – distribution and publication is forbidden without written consent from the author

3

Infer the relation rdf:type between an instance ?a and the class :Contradiction, where ?a is child of ?b
and ?b is more than 1.

CONSTRUCT { ?a a :Contradiction }
WHERE
{
 {
 SELECT ?a
 WHERE { ?b :hasChild ?a. }
 GROUP BY ?a
 HAVING(COUNT(?b) > 1)
 }
}

Potential drawback: if we add the relation “hasChild” also for fathers, each targeting node of the
relation “hasChild” will have 2 incoming “hasChild” relations. To overcome this issue, the alternative
is the following:

Raise contradiction whenever a child has more than 2 parents (without infer the hasMother
relationship beforehand).

Infer the relation rdf:type between an instance ?a and the class :Contradiction, where ?a is child of ?b
and ?b is more than 2.

CONSTRUCT { ?a a :Contradiction }
WHERE
{
 {
 SELECT ?a
 WHERE { ?b :hasChild ?a. }
 GROUP BY ?a
 HAVING(COUNT(?b) > 2)
 }
}

Scenario 3:
Raise contradiction whenever a child has more than one mother OR more than one father.

Infer the relation rdf:type between an instance ?a and the class :Contradiction, where

(c) Emanuele Laurenzi 2024 – distribution and publication is forbidden without written consent from the author

4

- ?a is child of ?b AND ?b is a woman, AND ?b is more than 1,
- OR
- ?a is child of ?b AND ?b is a man, AND ?b is more than 1.

CONSTRUCT { ?a a :Contradiction }
WHERE
{
 {
 SELECT ?a
 WHERE { ?b a :Woman; :hasChild ?a. }
 GROUP BY ?a
 HAVING(COUNT(?b) > 1)
 }
 UNION
 {
 SELECT ?a
 WHERE { ?b a :Man; :hasChild ?a. }
 GROUP BY ?a
 HAVING(COUNT(?b) > 1)
 }
}

More information about SPARQL and its language constructs
Visit: https://euclid-project.eu/modules/chapter2.html

https://euclid-project.eu/modules/chapter2.html

	Exercise
	Possible Solutions
	Scenario 1
	Scenario 2:
	Scenario 3:
	More information about SPARQL and its language constructs

