6. Test-Adequacy
Assessment Using Control Flow and Data Flow

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science
University of Camerino
What is test adequacy?

It is necessary to know if the system has been tested thoroughly. Correspondingly this requires to define an adequacy criterion to make the assessment.

Two different classes of criteria

- **Black-box**: based on models and requirements
- **White-box**: based on code

Example

Consider a program P developed to satisfy a set of requirements (P,R)

- **R1**: Input two integers, x, y, from the standard input device
- **R2**: Find and print to the standard output the sum if $x < y$
- **R3**: Find and print to the standard output the product of the two numbers if $x \geq y$
Adequacy criteria push the improvements of test sets

begin
 int x, y;
 int product, count;
 input (x, y);
 if (y >= 0) {
 product = 1; count = y;
 while (count > 0) {
 product = product * x;
 count = count - 1;
 }
 output (product);
 }
 else
 output ("Input does not match its specification");
}

Criteria

C1: A test set is considered adequate if it tests the program for at least one zero and one nonzero value of each of the two inputs x and y.

C2: A test set is considered adequate if it tests all paths. In case the program contains a loop, then it is adequate to traverse the loop body zero times and once.

It is clearly possible that some criteria could be infeasible given P structure.
Criteria based on control flow

Statement coverage

The statement coverage of T with respect to (P, R) is computed as \[\frac{|S_c|}{|S_e| - |S_i|} \] where S_c is the set of statements covered, S_i the set of unreachable statements, and S_e the set of statements in the program, that is the coverage domain. T is considered adequate with respect to the statement coverage criterion if the statement coverage of T with respect to (P, R) is 1.

Block coverage

The block coverage of T with respect to (P, R) is computed as \[\frac{|B_c|}{|B_e| - |B_i|} \] where B_c is the set of blocks covered, B_i the set of unreachable blocks, and B_e the blocks in the program, that is the block coverage domain. T is considered adequate with respect to the block coverage criterion if the block coverage of T with respect to (P, R) is 1.
Conditions and decisions

- Conditions can be classified as **simple** or **compound**
- Conditions are generally used to define **decision points**

Decision Coverage

The decision coverage of T with respect to (P,R) is computed as $|D_c|/(|D_e| − |D_i|)$ where D_c is the set of decisions covered, D_i the set of unfeasible decision, and D_e the set of decision in the program, that is the decision coverage domain. T is considered adequate with respect to the decision coverage criterion if the decision coverage of T with respect to (P,R) is 1.

Condition Coverage

The condition coverage of T with respect to (P,R) is computed as $|C_c|/(|C_e| − |C_i|)$ where C_c is the set of simple conditions covered, D_i the set of unfeasible simple conditions, and C_e is the set of simple conditions in the program, that is the condition coverage domain. T is considered adequate with respect to the decision coverage criterion if the decision coverage of T with respect to (P,R) is 1.
Condition vs. decision coverage

Condition coverage does not guarantee decision coverage

Condition/decision coverage

The condition/decision coverage of T with respect to (P,R) is computed as $(|C_c| + |D_c|)/((|C_e| - |C_i|) + (|D_e| - |D_i|))$ where variable as defined as before. T is considered adequate with respect to the condition/decision coverage criterion if the condition/decision coverage of T with respect to (P,R) is 1.
Multiple Condition Coverage

This criterion aims at assessing the software with all possible combinations of simple conditions constituting a compound condition.

Multiple condition coverage

The multiple condition coverage of T with respect to (P,R) is computed as
\[\frac{|C_c|}{(|C_e| - |C_i|)} \] where
\[|C_c| \] denotes the set of combinations covered,
\[|C_i| \] denotes the set of infeasible simple combinations, and
\[|C_e| \] is the total number of combinations in the program. T is considered adequate with respect to the multiple-condition coverage criterion if the multiple-condition coverage of T with respect to (P,R) is 1.

Let’s consider a code composed of \(n \) compound conditions each one including \(K_i \) with \(i \in [1 \cdots n] \) simple conditions. In case all of them are feasible which is the total number of tests to get a coverage of 1?
Combinations necessary to satisfy the **Multiple Condition Coverage** is generally too big.

MC/DC allows a coverage of all decisions and all conditions avoiding the exponential explosion.

To derive the test set the idea is to identify those tuple which can cover the two criteria without requiring a complete combinations of values.

Let’s consider the compound condition \((C_1 \land C_2) \lor C_3\)
MC/DC

- Combinations necessary to satisfy the **Multiple Condition Coverage** is generally too big.
- MC/DC allows a coverage of all decisions and all conditions avoiding the exponential explosion.
- To derive the test set the idea is to identify those tuple which can cover the two criteria without requiring a complete combinations of values.

Let’s consider the compound condition \((C_1 \land C_2) \lor C_3\)
Combinations necessary to satisfy the Multiple Condition Coverage is generally too big.

MC/DC allows a coverage of all decisions and all conditions avoiding the exponential explosion.

To derive the test set the idea is to identify those tuple which can cover the two criteria without requiring a complete combinations of values.

Let’s consider the compound condition \((C_1 \land C_2) \lor C_3\)
Definition of MC/DC coverage

The MC/DC criterion requires that:

- Each block in P has been covered
- Each simple condition in P has taken both true and false value
- Each decision in P has taken all possible outcomes
- Each simple condition within a compound condition C in P has been shown to independently effect the outcome of C (limited to the simple condition when it occurs more than once).

Measure

Measure the 4 different factors separately and for MC:

\[MC_c = \frac{\sum_{i=1}^{N} e_i}{\sum_{i=1}^{N} (n_i - f_i)} \]

where n_i number of simple conditions, e_i single conditions for which independent effects have been shown, f_i number of infeasible conditions.
Example

Consider a program conceived to satisfy the following requirements:

R₁: Given coordinate position \(x, y,\) and \(z,\) and a direction value \(d,\) the program must invoke one of the three functions \(\text{fire}-1, \text{fire}-2,\) and \(\text{fire}-3\) as per conditions below:

\(R₁,₁:\) Invoke \(\text{fire}-1\) when \((x < y \text{ and } (z \times z > y)) \text{ and } (\text{prev=”East”})\) where \(\text{prev}\) and \(\text{current}\) denote, respectively, the previous and current values of \(d.\)

\(R₁,₂:\) Invoke \(\text{fire}-2\) when \((x < y) \text{ and } (z \times z \leq y)\) or \((\text{current=”South”})\)

\(R₁,₃:\) Invoke \(\text{fire}-3\) when none of the two conditions above is true

R₂: The invocation described above must continue until an input Boolean variable become true

- let’s generate test satisfying the conditions and let’s analyze the covered decision
begin
float x,y,z; direction d; string prev,current; bool done;
input(done); current = 'North';
while(!done) {
 input(d); prev=current; current=f(d); input(x,y,z);
 if ((x<y) and (z*z>y) and (prev=='East'))
 fire-1(x,y);
 else if ((x<y) and (z*z <= y) or (current == 'South'))
 fire-2(x,y);
 else
 fire-3(x,y); input(done);
}
output('Firing completed');
end
generate tests to meet the requirements (4 tests generated)

<table>
<thead>
<tr>
<th>Test</th>
<th>Req.</th>
<th>done</th>
<th>d</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>$R_{1,2}$</td>
<td>false</td>
<td>East</td>
<td>10</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>t_2</td>
<td>$R_{1,1}$</td>
<td>false</td>
<td>South</td>
<td>10</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>t_3</td>
<td>$R_{1,3}$</td>
<td>false</td>
<td>North</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>t_4</td>
<td>R_2</td>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cover $x < y$

...
Tracing test cases to requirements

Enhancing a test set we should understand *what portions of the requirements are tested when the program under test is executed against the newly added test case?*

- Trace back test to requirements
Data Flow concepts

- Criteria considered so far are based on the control flow.
- It is possible to conceive adequacy criteria based on data flow characteristics.

Consider the following program:

```
begin
    int x, y; float z;
    input(x, y);
    z=0;
    if (x!=0) z=z+y;
    else z=z-y;
    if (y!=0) z=z/x // Should be (y!=0 and x!=0)
    else z=z*x;
    output(z);
end
```

An MC/DC test set could not reveal the error while a test set based on definition and usage of variables would have been able to reveal it.
Data Flow concepts

- Criteria considered so far are based on the control flow.
- It is possible to conceive adequacy criteria based on data flow characteristics.

Consider the following program:

```
begin
  int x, y; float z;
  input(x, y);
  z = 0;
  if (x != 0) z = z + y;
  else z = z - y;
  if (y != 0) z = z / x // Should be (y != 0 and x != 0)
  else z = z * x;
  output(z);
end
```

An MC/DC test set could not reveal the error while a test set based on definition and usage of variables would have been able.
Data flow criteria

- Data flow criteria based on two main concepts:
 - Definition
 - Use (computational usage - c-use - and predicate usage - p-use)

Definition of Data flow graphs:
1. Compute \(\text{def}_i, c-use_i \) and \(p-use_i \) for each block in \(P \)
2. Associate each node \(i \) in \(N \) with \(\text{def}_i, c-use_i \) and \(p-use_i \)
3. For each node \(i \) that has a non-empty p-use set and ends in condition \(C \), associate edges \((i,j)\) and \((i,k)\) with \(C \) and \(!C \)

```c
begin
    int x,y,z;
    input(x,y); z=0;
    if (x<0 and y<0) {
        z=x*x;
        if (y>=0) z=z+1;
    } else z=x*x*x;
    output(z);
end
```

(Software Engineering II – Software Testing)
Data coverage

- c-use coverage
- p-use coverage
- all-uses coverage
Definition and use

Variables are defined by assigning values to them and are used in expressions and conditions within a program.

Let’s consider the following examples:

- \(z = \&x; \)
- \(y = z + 1; \)
- \(*z = 25; \)
- \(y = *z + 1; \)
C-use and p-use

Computational use (c-use)
▶ \(z = x+1; \)
▶ \(A[x-1] = B[2]; \)
▶ \(\text{foo}(x*x); \)
▶ \(\text{output}(x); \)

Predicate use (p-use)
▶ if (\(z>0 \)) \{ \text{output}(x) \};
▶ while (\(z>x \)) \{ ... \};
▶ if (\(A[x+1]>0 \)) \{ \text{output}(x) \};

Global and Local
▶ \(p = y+z; \ x = p+1; \ p = z*z; \)
A *data-flow* graph of a program (aka def-use graph) captures the flow of definitions across the basic blocks constituting the program. The graph can be constructed in the following way:

1. Construct def_i, $c \rightarrow use_i$, $p \rightarrow use_i$ for each basic block i in P
2. Associate each node i in N with def_i, $c \rightarrow use_i$, $p \rightarrow use_i$
3. For each node i that has a non empty $p \rightarrow use$ set and ends in condition C, associate edges (i,j) and (i,k) with C and $!C$, respectively.
Example

Let's build a def-use graph for the following program:

begin
 float x, y, z=0.0; int count; input (x, y, count);
 do {
 if (x<=0) {
 if (y>= 0 {
 z=y*z+1;
 }
 } else { z= 1/x; }
 y=x*y+z; count = count -1;
 } while (count > 0)
 output(z);
end

def-clear paths

A def-clear path for a variable x is a path from a definition of the variable to a usage without further definitions in the intermediate node of the path
Def-use pairs

A def-use pair is constituted by a couple of nodes in which a variable is defined in the first node and used in the second one. Two different possibilities:

- **dcu** – this is a set of nodes that given a variable x and its definition in a node i ($d_i(x)$) includes all node j such that it exists $u_j(x)$ and there is a def-clear path from i to j for x (also indicated as $\text{dcu}(x, i)$)

- **dpu**: similarly but considering uses that occur within predicates (also indicated as $\text{dpu}(x, i)$)

Let’s compute the sets for the program shown before.
def-use chains

The def-use pair can be extended to a sequence of alternating definitions and uses of variables. This is known as def-use chain where the nodes in the sequence are distinct (aka k-dr interaction where k denotes the length of the chain.)
Adequacy criteria for data-flow

Given the total number of c-uses (CU) and p-uses (PU) for all variable definitions we can define different coverage criteria for data-flow.

\[
CU = \sum_{i=1}^{n} \sum_{j=1}^{d_i} |d_{cu}(v_i, n_j)|
\]

\[
PU = \sum_{i=1}^{n} \sum_{j=1}^{d_i} |d_{pu}(v_i, n_j)|
\]

where \(v = \{v_1, v_2, \ldots, v_n\} \) is the set of variables in a program and \(n = \{n_1, n_2, \ldots, n_k\} \) is the set of blocks in the same program.
C-use coverage

The c-use coverage of T with respect to (P, R) is computed as:

$$\frac{CU_c}{CU - CU_f}$$

where CU_c is the number of c-uses covered and CU_f the number of infeasible c-uses. T is considered adequate with respect to the c-use coverage criterion if its c-use coverage is 1.

P-use coverage

The p-use coverage of T with respect to (P, R) is computed as:

$$\frac{PU_c}{PU - PU_f}$$

where PU_c is the number of p-uses covered and PU_f the number of infeasible p-uses. T is considered adequate with respect to the p-use coverage criterion if its p-use coverage is 1.
Coverage

C-use coverage

The c-use coverage of T with respect to (P,R) is computed as:

\[
\frac{CU_c}{CU - CU_f}
\]

where \(CU_c \) is the number of c-uses covered and \(CU_f \) the number of infeasible c-uses. T is considered adequate with respect to the c-use coverage criterion if its c-use coverage is 1.

P-use coverage

The p-use coverage of T with respect to (P,R) is computed as:

\[
\frac{PU_c}{PU - PU_f}
\]

where \(PU_c \) is the number of p-uses covered and \(PU_f \) the number of infeasible p-uses. T is considered adequate with respect to the p-use coverage criterion if its p-use coverage is 1.
Coverage’s

All-uses coverage

The all-uses coverage of \(T \) with respect to \((P,R)\) is computed as:

\[
\frac{CU_c + PU_c}{(CU+PU)-(CU_f+PU_f)}
\]

where \(CU_c \) and \(PU_c \) are the number of c-uses and p-uses covered respectively. \(CU_f \) and \(PU_f \) are the number of infeasible c-uses and p-uses respectively. \(T \) is considered adequate with respect to the all-uses coverage criterion if its all-uses coverage is 1.

k-dr chain coverage

For a given \(K \geq 2 \) the kdr\((k)\) coverage of \(T \) with respect to \((P,R)\) is computed as:

\[
\frac{C^k_c}{C^k - C^k_f}
\]

where \(C^k_c \) is the number of k-dr interactions covered, \(C^k \) is the number of elements in K-dr\((k)\), and \(C^k_f \) the number of infeasible interactions in k.dr\((k)\). \(T \) is considered adequate with respect to the kdr\((k)\)coverage criterion if its k-dr\((k)\) coverage is 1.
Coverage’s

All-uses coverage

The all-uses coverage of T with respect to (P,R) is computed as:

$$\frac{CU_c + PU_c}{(CU+PU)-(CU_f+PU_f)}$$

where CU_c and PU_c are the number of c-uses and p-uses covered respectively. CU_f and PU_f are the number of infeasible c-uses and p-uses respectively. T is considered adequate with respect to the all-uses coverage criterion if its all-uses coverage is 1.

k-dr chain coverage

For a given $K \geq 2$ the $kdr(k)$ coverage of T with respect to (P,R) is computed as:

$$\frac{C_c^k}{C^k - C_f^k}$$

where C_c^k is the number of k-dr interactions covered, C^k is the number of elements in K-dr(k), and C_f^k the number of infeasible interactions in k.dr(k). T is considered adequate with respect to the kdr(k) coverage criterion if its k-dr(k) coverage is 1.
The subsumes relation

A coverage criterion C1 subsumes a coverage criterion C2 iff whenever the satisfaction of C1 implies the satisfaction of C2.

Figure: The subsumes relationship among the studied coverage criterion.
Mutation is a powerful strategy to assess the quality of test suites. The approach is based on the generation of program mutants and on the score got by a test suite in “killing” them.
Regression testing - Ch. 9

Sketch of the idea

Definition of strategies to select subset of test cases in a test suite in order to test a system that has undergone a modification in order to reduce the costs of testing obviously getting enough confidence on the quality of the software.