5. Test Generation – Finite State Models

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science
University of Camerino
Models in the Design Phase

- Between the requirements phase and the implementation phase “The last you start the first you finish”
- Produce models in order to clarify requirements and to better formalize them
- Models can be the source of test set derivation strategies

Various modeling notations for behavioral specification of a software system have been proposed. Which to use depends on the system you are developing, and the aspects you would like to highlight:

- Finite State Machines
- Petri Nets
- Statecharts
- Message sequence charts
Finite State Machines

FSM

A finite state machine is a six-tuple $< \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_0, \delta, \mathcal{O}>$ where:

- \mathcal{X}: finite set of input symbols
- \mathcal{Y}: finite set of output symbols
- \mathcal{Q}: finite set of states
- $q_0 \in \mathcal{Q}$: initial state
- δ: transition function ($\mathcal{Q} \times \mathcal{X} \rightarrow \mathcal{Q}$)
- \mathcal{O}: output function ($\mathcal{Q} \times \mathcal{X} \rightarrow \mathcal{Y}$)

Many possible extensions:

- Transition and output functions can consider strings
- Definition of the set of accepting states $\mathcal{F} \subseteq \mathcal{Q}$
- Non determinism
Useful properties/concepts for test generation

- **Completely specified (input enabled)**
 \[\forall (q_i \in Q, a \in X). \exists q_j \in Q. \delta(q_i, a) = q_j \]

- **Strongly connected**
 \[\forall (q_i, q_j) \in Q \times Q. \exists s \in X^*. \delta^*(q_i, s) = q_j \]

- **V-equivalence (distinguishable)**
 Let \(M_1 \) and \(M_2 \) two FSMs. Let \(\mathcal{V} \) denote a set of non-empty string on the input alphabet \(X \), and \(q_i \in Q_1 \) and \(q_j \in Q_2 \). \(q_i \) and \(q_j \) are considered \(\mathcal{V} \)–equivalent if \(\mathcal{O}_1(q_i, s) = \mathcal{O}_2(q_j, s) \). If \(q_i \) and \(q_j \) are \(\mathcal{V} \)–equivalent given any set \(\mathcal{V} \subseteq X^+ \) than they are said to be equivalent \(q_i \equiv q_j \). If states are not equivalent they are said to be distinguishable.
Properties of FSM....cntd

Useful properties/concepts for test generation...cntd

- **Machine equivalence**
 - M_1 and M_2 are said to be *equivalent* if $\forall q_i \in Q_1. \exists q_j \in Q_2. q_i \equiv q_j$ and vice versa.

- **k-equivalence**
 - Let M_1 and M_2 two FSMs and $q_i \in Q_1$ and $q_j \in Q_1$ and $k \in \mathbb{N}$. q_i and q_j are said to be k-equivalent if they are V-equivalent for $V = \{ s \in X^+ | |s| \leq k \}$

- **Minimal machine**
 - an FSM is considered *minimal* if the number of its states is less than or equal to any other equivalent FSM.
Conformance Testing

Relates to testing of communication protocols. It aims at assessing that an implementation of a protocol conform to its specification. Protocols generally specify:

- Control rules (FSM)
- Data rules

Developed techniques are equally applicable when the specification is refined into an FSM.
The Testing Problem

FSM and Testing

- Reset inputs \((X = X \cup \{ Re \}, \text{ and } Y = Y \cup \{ \text{null} \}) \)
- Testing based on requirements checks if the implementation conforms to the machine on a given requirement.
- The testing problem is reconduted to an equivalence (nevertheless finite experiments). Is the SUT (IUT) equivalent to the machine defined during design?
- Fault model for FSM – given a fault model the challenge is to generate a test set \(T \) from a design \(M_d \) where any fault in \(M_i \) of the type in the fault model is guaranteed to be revealed when tested against \(T \)
 - Operation error (refers to issues with \(\theta \))
 - Transfer error (refers to issues with \(\delta \))
 - Extra-state error (refers to issues with \(Q \) and \(\delta \))
 - Missing-state error (refers to issues with \(Q \) and \(\delta \))
A mutant of an FMS M_d is an FSM obtained by introducing one or more errors one or more times.

- **Equivalent mutants**: mutants that could not be distinguishable from the originating machine.
The Testing Problem

Fault coverage

Techniques to measure the goodness of a test set in relation to the number of errors that it reveals in a given implementation M_i.

- N_t: total number of first order mutants of the machine M used for generating tests.
- N_e: Number of mutants that are equivalent to M
- N_f: Number of mutants that are distinguished by test set T generated using some test generation method.
- N_i: Number of mutants that are not distinguished by T

The fault coverage of a test suite T with respect to a design M is denoted by $FC(T, M)$ and computed as follows:

$$ FC(T, M) = \frac{\text{Number of mutants not distinguished by } T}{\text{Number of mutants that are not equivalent to } M} = \frac{(N_t - N_e - N_f)}{(N_t - N_e)} $$
Let $M = \langle X, \mathcal{Y}, \mathcal{Z}, q_1, \delta, \mathcal{O} \rangle$ an FSM that is minimal and complete. A characterization set for M, denoted as \mathcal{W}, is a finite set of input sequences that distinguish the behaviour of any pair of states in M.

(Software Engineering II – Software Testing)
K-equivalence partitions

The notion of \mathcal{K} – equivalence leads to the notion of \mathcal{K} – equivalence partitions.

Given an FSM a \mathcal{K} – equivalence partition of \mathcal{D}, denoted by \mathcal{P}_k, is a collection of n finite sets of states denoted as $\Sigma_{k_1}, \Sigma_{k_2}, \ldots, \Sigma_{k_n}$ such that:

- $\bigcup_{i=1}^n \Sigma_{k_i} = \mathcal{D}$
- States in Σ_{k_j}, for $1 \leq j \leq n$ are \mathcal{K} – equivalent
- If $q_l \in \Sigma_{k_i}$ and $q_m \in \Sigma_{k_j}$, for $i \neq j$, then q_l and q_m must be \mathcal{K} – distinguishable

\mathcal{K} – equivalence partitions can be derived using an iterative approach for increasing number of \mathcal{K}.
K-equivalence partitions

The notion of \mathcal{K} – equivalence leads to the notion of \mathcal{K} – equivalence partitions.

Given an FSM a \mathcal{K} – equivalence partition of \mathcal{D}, denoted by \mathcal{P}_k, is a collection of n finite sets of states denoted as $\Sigma_k_1, \Sigma_k_2, \ldots, \Sigma_k_n$ such that:

- $\bigcup_{i=1}^{n} \Sigma_k_i = \mathcal{D}$
- States in Σ_k_j, for $1 \leq j \leq n$ are \mathcal{K} – equivalent
- if $q_l \in \Sigma_k_i$ and $q_m \in \Sigma_k_j$, for $i \neq j$, then q_l and q_m must be \mathcal{K} – distinguishable

\mathcal{K} – equivalence partitions can be derived using an iterative approach for increasing number of \mathcal{K}.
How to derive W from K-equivalence partitions

Let M an FSM for which $P = \{P_1, P_2, \ldots, P_n\}$ is the set of k-equivalence partition. $W = \emptyset$

Repeat the steps (a) through (d) given below for each pair of states (q_i, q_j), $i \neq j$, in M

(a) Find r $(1 \leq r < n)$ such that the states in pair (q_i, q_j) belong to the same group in P_r but not in P_{r+1}. If such an r is found then move to step (b) otherwise we find an $\eta \in \mathcal{X}$ such that $O(q_i, \eta) \neq O(q_j, \eta)$, set $W = W \cup \{\eta\}$ and continue with the next available pair of states. The length of the minimal distinguishing sequence for (q_i, q_j) is $r + 1$.

(b) Initialize $z = \epsilon$. Let $p_1 = q_i$ and $p_2 = q_j$ be the current pair of states. Execute steps (i) through (iii) given below for $m = r, r - 1, \ldots, 1$

(i) Find an input symbol η in P_m such that $G(p_1, \eta) \neq G(p_2, \eta)$. In case there is more than one symbol that satisfy the condition in this step, then select one arbitrarily.

(ii) set $z = z \eta$

(iii) set $p_1 = \delta(p_1, \eta)$ and $p_2 = \delta(p_2, \eta)$

(c) Find an $\eta \in \mathcal{X}$ such that $O(p_1, \eta) \neq O(p_2, \eta)$. Set $z = z \eta$

(d) The distinguishing sequence for the pair (q_i, q_j) is the sequence z. Set $W = W \cup \{z\}$
Example

- Termination of the \mathcal{W} – *procedure* guarantees the generation of distinguishing sequence for each pair.

<table>
<thead>
<tr>
<th>S_i</th>
<th>S_j</th>
<th>x</th>
<th>$\mathcal{O}(S_i, x)$</th>
<th>$\mathcal{O}(S_j, x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>baaa</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>aa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>aa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>aaa</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Termination of the W – procedure guarantees the generation of distinguishing sequence for each pair.

<table>
<thead>
<tr>
<th>S_i</th>
<th>S_j</th>
<th>x</th>
<th>$\delta(S_i, x)$</th>
<th>$\delta(S_j, x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>baaa</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>aa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>aa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>aaa</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The W-Method

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model.

Assumptions

- M is completely specified, minimal, connected, and deterministic.
- M starts in a fixed initial state.
- M can be reset to the initial state. A null output is generated by the reset.
- M and IUT have the same input alphabet.
The W-Method

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model.

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial state
- M can be reset to the initial state. A null output is generated by the reset
- M and IUT have the same input alphabet
W-Method steps

Given an FSM $M = < X, Y, Q, q_0, \delta, O >$ the W-method consists of the following steps:

1. Estimate the maximum number of states in the correct design
2. Construct the characterization set W for the given machine M
3. Construct the testing tree for M and determine the transition cover set P
4. Construct set Z
5. $P \cdot Z$ is the desired test set
Computation of the transition cover set

\(\mathcal{P} \) - transition cover set

Let \(q_i \) and \(q_j \), \(i \neq j \) be two states of \(\mathcal{M} \). \(\mathcal{P} \) consists of sequences \(s \cdot x \) s.t. \(\delta(q_0, s) = q_i \land \delta(q_i, x) = q_j \) for \(s \in \mathcal{X}^* \land x \in \mathcal{X} \). The set can be constructed using the testing tree for \(\mathcal{M} \).

Testing tree

The testing tree for an FSM \(\mathcal{M} \) can be constructed as follows:

1. State \(q_0 \) is the root of the tree
2. Suppose that the testing tree has been constructed till level \(k \). The \((k + 1)^{th} \) level is built as follows:
 - Select a node \(n \) at level \(k \). If \(n \) appears at any level from 1 to \(k - 1 \) then \(n \) is a leaf node. Otherwise expand it by adding branch from node \(n \) to a new node \(m \) if \(\delta(n, x) = m \) for \(x \in \mathcal{X} \). This branch is labeled as \(x \).
Computation of the transition cover set

\(\mathcal{P} \) - transition cover set

Let \(q_i \) and \(q_j \), \(i \neq j \) be two states of \(M \). \(\mathcal{P} \) consists of sequences \(s \cdot x \) s.t. \(\delta(q_0, s) = q_i \land \delta(q_i, x) = q_j \) for \(s \in \mathcal{X}^* \land x \in \mathcal{X} \). The set can be constructed using the testing tree for \(M \).

Testing tree

The testing tree for an FSM \(M \) can be constructed as follows:

1. State \(q_0 \) is the root of the tree
2. Suppose that the testing tree has been constructed till level \(k \). The \((k + 1)^{th}\) level is built as follows:
 - Select a node \(n \) at level \(k \). If \(n \) appears at any level from 1 to \(k - 1 \) then \(n \) is a leaf node. Otherwise expand it by adding branch from node \(n \) to a new node \(m \) if \(\delta(n, x) = m \) for \(x \in \mathcal{X} \). This branch is labeled as \(x \).
Constructing \(\mathcal{L} \)

The set \(\mathcal{L} \)

Suppose number of states estimates to be \(m \) for the IUT, and \(n \) in the specification \(m > n \). We compute \(\mathcal{L} \) as:

\[
\mathcal{L} = (X^0 \cdot W) \cup (X \cdot W) \cup (X^1 \cdot W) \cdots \cup (X^{m-1-n} \cdot W) \cup (X^{m-n} \cdot W)
\]
Deriving a test set – $\mathcal{P} \cdot \mathcal{L}$

Try sequences:

- $baaaaaaa$
- $baaba$
Deriving a test set – $P \cdot \mathcal{L}$

Try sequences:
- $baaaaaaa$
- $baaba$
W-method fault detection rationale

- A test case generated by the **W** – *method* is of the form \(r \cdot s \) where \(r \in \mathcal{P} \) and \(s \in \mathcal{W} \)
 - Why can we detect operation errors?
 - Why can we detect transfer errors?

\[
\mathcal{P} = \{ \epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa \} \\
\mathcal{W} = \{ a, aa, aaa, baaa \}
\]
A test case generated by the W – method is of the form $r \cdot s$ where $r \in \mathcal{P}$ and $s \in \mathcal{W}$

- Why can we detect operation errors?
- Why can we detect transfer errors?

\[\mathcal{P} = \{ \epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa \} \]
\[\mathcal{W} = \{ a, aa, aaa, baaa \} \]
A test case generated by the \(\mathcal{W} \) method is of the form \(r \cdot s \) where \(r \in \mathcal{P} \) and \(s \in \mathcal{W} \)

- Why can we detect operation errors?
- Why can we detect transfer errors?

\[
\mathcal{P} = \{ \epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa \}
\]
\[
\mathcal{W} = \{ a, aa, aaa, baaa \}
\]
The partial \(W \) – method (aka \(Wp \) – method)

Main characteristics:

► It considers minimal, complete and connected FSM
► is inspired by the \(W \) – method it generates smaller test sets
► uses a derivation phase split in two phases that make use of state identification sets \(W_i \) instead of characterization set \(W \)
► uses the state cover set \(S \) to derive the test set.
Identification Set and State Cover Set

Identification Set

The Identification Set is associated to each state $q \in Q$ of an FSM.

An Identification set for state $q_i \in Q$, where $|Q| = n$, is denoted by W_i and has the following properties:

1. $W_i \subseteq W$ per $1 < i \leq n$
2. $\exists j, s. 1 \leq j \leq n \land s \in W_i \land O(q_i, s) \neq O(q_j, s)$
3. No subset of W_i satisfies property 2.

State Cover Set

The state cover set is a nonempty set of sequences $(S \subseteq X^* \text{ s.t.:})$

$\forall q_i \in Q \exists r \in S \text{ s.t.} \delta(q_0, r) = q_i$

From the definition it is evident that $S \subseteq P$
Identification Set

The Identification Set is associated to each state \(q \in Q \) of an FSM.

An Identification set for state \(q_i \in Q \), where \(|Q| = n \), is denoted by \(W_i \) and has the following properties:

1. \(W_i \subseteq W \) per \(1 < i \leq n \)
2. \(\exists j, s.1 \leq j \leq n \wedge s \in W_i \wedge \delta(q_i, s) \neq \delta(q_j, s) \)
3. No subset of \(W_i \) satisfies property 2.

State Cover Set

The state cover set is a nonempty set of sequences \(S \subseteq X^* \) s.t.:

- \(\forall q_i \in Q \exists r \in S \) s.t. \(\delta(q_0, r) = q_i \)

From the definition it is evident that \(S \subseteq P \)
The Wp procedure (assuming $m = n$)

The test set derived using the Wp method is given by the union to two test sets T_1, T_2 calculated according to the following procedure:

1. Compute sets P, I, W, and W_i
2. $T_1 = I \cdot W$
3. Let $W = \{W_1, W_2, \ldots, W_n\}$
4. Let $R = \{r_1, r_2, \ldots, r_k\}$ where $R = P - I$ and $r_j \in R$ is s.t. $\delta(q_0, r_j) = q_i$
5. $T_2 = R \otimes W = \bigcup_{j=1}^{K} (\{r_j\} \cdot W_i)$ where $W_i \in W$ is the state identification set for state q_i
Phase 1: test are of the form uv where $u \in S$ and $v \in W$. Reach each state than check if it is distinguishable from another one.

Phase 2: test covers all the missing transitions and then check if the reached state is different from the one specified in the model.
\(\mathcal{W} \) = \{a, aa, aaa, baaa\}

\(\mathcal{P} \) = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}

\(\mathcal{S} \) = \{\epsilon, b, ba, baa, baaa\}

\(\mathcal{W}_1 \) = \{baaa, aa, a\}, \(\mathcal{W}_2 \) = \{baaa, aa, a\}, \(\mathcal{W}_3 \) = \{aa, a\}

\(\mathcal{W}_4 \) = \{aaa, a\}, \(\mathcal{W}_5 \) = \{aaa, a\}
\(\mathcal{W} \) \text{ – method in practice}

\[
\mathcal{W} = \{ a, aa, aaa, baaa \}
\]

\[
\mathcal{P} = \{ \epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa \}
\]

\[
\mathcal{S} = \{ \epsilon, b, ba, baa, baaa \}
\]

\[
\mathcal{W}_1 = \{ baaa, aa, a \}, \quad \mathcal{W}_2 = \{ baaa, aa, a \}, \quad \mathcal{W}_3 = \{ aa, a \}
\]

\[
\mathcal{W}_4 = \{ aaa, a \}, \quad \mathcal{W}_5 = \{ aaa, a \}
\]
$\mathcal{W} = \{a, aa, aaa, baaa\}$

$\mathcal{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$

$\mathcal{S} = \{\epsilon, b, ba, baa, baaa\}$

$\mathcal{W}_1 = \{baaa, aa, a\}, \mathcal{W}_2 = \{baaa, aa, a\}, \mathcal{W}_3 = \{aa, a\}$

$\mathcal{W}_4 = \{aaa, a\}, \mathcal{W}_5 = \{aaa, a\}$
Is it phase 2 needed?

Let’s consider the following FSM:

Now introduce an operation error or a transfer error on a “c” transition.
The \(Wp \) procedure (assuming \(m > n \))

Modify the derivation of the two sets as follows:

\[T_1 = S \cdot \mathcal{X} \text{ where } \mathcal{X} = \mathcal{X}[m-n] \cdot W \]

\[T_2 = (R \cdot \mathcal{X}[m-n]) \otimes W \]

Let \(S = R \cdot \mathcal{X}[m-n] = \{ s | s = r \cdot u \text{ s.t. } r \in R \land u \in \mathcal{X}[m-n] \} \)

then \(T_2 = S \otimes W = \bigcup_{s \in \mathcal{S}} (s \cdot W) \) where \(\delta(q_0, s) = \delta(\delta(q_0, r), u) = q_l \)
UIO-Sequence Method

UIO-Sequence

A UIO sequence is a sequence of input and output pairs that distinguish a state of an FSM from the remaining states.

\[UIO(s) = i_1/o_1, i_2/o_2, \ldots, i_n/o_n \text{ s.t.} \]
\[\forall t \in Q \land s \neq t \exists j \in [1 \ldots n]. O(\delta(s, i_1 i_2 \ldots i_{j-1}), i_j) \neq O(\delta(t, i_1 i_2 \ldots i_{j-1}), i_j) \]

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset
- M and IUT have the same input alphabet
- M and IUT have the same number of states
Distinguishing Signatures

Distinguishing Signature or Sequence (DS)
Sequence of input/output labels that is unique to a state s

Minimal transfer sequence
A minimal transfer sequence is a sequence of input/output that brings the machine from state j to state i along the shortest path $P_i(j)$

Given a state i a DS can be built using the identification set and minimal transfer sequences for each state j with $j \neq i$. In particular for an FSM M with k states a DS is given by the following concatenation:

$$DS(q_i) = W(q_i, q_1) \cdot P_i(t_1) \cdot W(q_i, q_2) \cdots P_i(t_{k-1})W(q_i, q_k)$$
Distinguishing Signatures

Distinguishing Signature or Sequence (DS)
Sequence of input/output labels that is unique to a state \(s \)

Minimal transfer sequence
A minimal transfer sequence is a sequence of input/output that brings the machine from state \(j \) to state \(i \) along the shortest path \(P_i(j) \)

Given a state \(i \) a DS can be built using the identification set and minimal transfer sequences for each state \(j \) with \(j \neq i \). In particular for an FSM \(M \) with \(k \) states a DS is given by the following concatenation:

\[
DS(q_i) = W(q_i, q_1) \cdot P_i(t_1) \cdot W(q_i, q_2) \cdots P_i(t_{k-1})W(q_i, q_k)
\]
Let $M = \langle Q, X, Y, q_1, \delta, O \rangle$ an FSM and $E = \{ \langle q_i, x, y, q_j \rangle | q_i, q_j \in Q \land x \in X \land y \in Y \land \delta(q_i, x) = q_j \land O(q_i, x) = y \}$ the set of edges of M

1. Find the UIO for each state in M
2. Find the shortest path from the initial state to each of the remaining states.
3. For each edge $e = \langle q_i, x, y, q_j \rangle \in E$, build $T \in (e) = P_{head(e)}(1) \cdot label(e) \cdot UIO(tail(e))$
 where $head(e) = q_i$, $tail(e) = q_j$, $label(e) = x/y$
4. Optionally a unique sequence can be derived using reset actions.
Assessment of automata theoretic strategies

Control Flow based techniques are typically assessed according to different criteria:

State coverage
A test set T is considered adequate with respect to the state cover criterion for an FSM M if the execution of M against each element of T causes each state in M to be visited at least once.

Transition coverage
A test set T is considered adequate with respect to the branch, or transition, cover criterion for an FSM M if the execution of M against each element of T causes each transition in M to be taken at least once.
Assessment of automata theoretic strategies

Switch coverage (n-switch coverage)
A test set T is considered adequate with respect to the 1-switch cover criterion for an FSM M if the execution of M against each element of T causes each pair of transition (tr_1, tr_2) in M to be taken at least once, where for some input substring $ab \in X^*$, $tr_1 : q_i = \delta(q_j, a)$ \land $tr_2 : q_k = \delta(q_i, b)$ and q_i, q_j, q_k are states of M.

Boundary-interior coverage
A test set T is considered adequate with respect to the boundary-interior cover criterion for an FSM M if the execution of M against each element of T causes each loop body to be traversed zero times and at least once. Exiting the loop upon arrival covers the “boundary” condition and entering it and traversing the body at least once covers the “interior” condition.