Model Checking I alias Reactive Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics

- Parallelism
- Interleaving operator for Transition Systems
- Examples

Material

Reading:

Chapter 2 of the book, pages 35–39.

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Overview

overview2.2

Introduction

Modelling parallel systems

Transition systems

Modeling hard- and software systems

Parallelism and communication

 \leftarrow

Linear Time Properties

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

goal: define semantic parallel operators on transition systems or program graphs that model "real" parallel operators

- interleaving of concurrent, independent actions of parallel processes (modelled by TS)
- representation by nondeterministic choice:
 "which subprocess performs the next step?"

- interleaving of concurrent, independent actions of parallel processes (modelled by TS)
- representation by nondeterministic choice:
 "which subprocess performs the next step?"

$$effect(\alpha||\beta) = effect(\alpha;\beta+\beta;\alpha)$$

$$\alpha \qquad \beta \qquad \beta$$

$$\beta \qquad \beta \qquad \beta$$

- interleaving of concurrent, independent actions of parallel processes (modelled by TS)
- representation by nondeterministic choice:
 "which subprocess performs the next step?"

$$effect(\alpha||\beta) = effect(\alpha;\beta+\beta;\alpha)$$

parallel execution of α and β on two processors

- interleaving of concurrent, independent actions of parallel processes (modelled by TS)
- representation by nondeterministic choice: "which subprocess performs the next step?"

$$effect(\alpha||\beta) = effect(\alpha;\beta+\beta;\alpha)$$

parallel execution of α and β on two processors

serial execution on in arbitrary order

Interleaving operator ||| for TS

$$T_1 = (S_1, Act_1, \longrightarrow_1, S_{0,1}, AP_1, L_1)$$

$$T_2 = (S_2, Act_2, \longrightarrow_2, S_{0,2}, AP_2, L_2)$$

$$T_1 = (S_1, Act_1, \longrightarrow_1, S_{0,1}, AP_1, L_1)$$

$$T_2 = (S_2, Act_2, \longrightarrow_2, S_{0,2}, AP_2, L_2)$$

The transition system $T_1 \parallel T_2$ is defined by:

$$T_1 \mid \mid \mid T_2 = (S_1 \times S_2, Act_1 \cup Act_2, \longrightarrow, S_{0,1} \times S_{0,2}, AP, L)$$

where the transition relation \longrightarrow is given by:

$$T_1 = (S_1, Act_1, \longrightarrow_1, S_{0,1}, AP_1, L_1)$$

$$\mathcal{T}_2 = (S_2, Act_2, \longrightarrow_2, S_{0,2}, AP_2, L_2)$$

The transition system $T_1 \parallel T_2$ is defined by:

$$T_1 \mid \mid \mid T_2 = (S_1 \times S_2, Act_1 \cup Act_2, \longrightarrow, S_{0,1} \times S_{0,2}, AP, L)$$

where the transition relation \longrightarrow is given by:

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle} \qquad \frac{s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle}$$

$$T_1 = (S_1, Act_1, \longrightarrow_1, S_{0,1}, AP_1, L_1)$$

$$T_2 = (S_2, Act_2, \longrightarrow_2, S_{0,2}, AP_2, L_2)$$

The transition system $T_1 \parallel T_2$ is defined by:

$$T_1 \mid\mid\mid T_2 = (S_1 \times S_2, Act_1 \cup Act_2, \longrightarrow, S_{0,1} \times S_{0,2}, AP, L)$$

where the transition relation \longrightarrow is given by:

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle} \qquad \frac{s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle}$$

atomic propositions: $AP = AP_1 \uplus AP_2$

labeling function: $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$

just a simple notation for operational semantics

premise conclusion just a simple notation for operational semantics

premise conclusion

E.g., "the relation \longrightarrow is given by ..."

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2 \rangle} \qquad \frac{s_2 \xrightarrow{\alpha}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s_2' \rangle}$$

means that \longrightarrow is the smallest relation such that:

(1) If
$$s_1 \xrightarrow{\alpha}_1 s'_1$$
, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle$

(2) If
$$s_2 \xrightarrow{\alpha}_2 s_2'$$
, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s_2' \rangle$

Useless lights for non-crossing streets

PC2.2-4

Useless lights for non-crossing streets

dependent actions $\alpha = x = 2x$ and $\beta = x = x + 1$

representations in transition systems

dependent actions $\alpha = x = 2x$ and $\beta = x = x + 1$

representations in transition systems

interleaving operator |||

dependent actions
$$\alpha = x = 2x$$
 and $\beta = x = x + 1$

representations in transition systems

interleaving operator ||| for transition systems "fails"

