Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
didattica:magistrale:bda:main [2017/12/17 22:27]
127.0.0.1 external edit
— (current)
Line 1: Line 1:
-====== Big Data Analytics ====== 
- 
-===== News ===== 
-<WRAP center round important 95%> 
-   * <wrap em>​**Lecture update**</​wrap>:​ Le lezioni della seconda parte del corso inizieranno l'8 gennaio e seguiranno per 4 settimane come corso intensivo di 21 ore. Siete invitati ad iscrivervi al gruppo facebook BIGDATA-2017 
-   * <wrap em>​**Lecture update**</​wrap>:​ Next lecture is scheduled for 27th november 2017 at 14:00pm - room LA2. 
-   * <wrap em>​**Lecture update**</​wrap>:​ Next lecture is scheduled for 20th november 2017 at 14:00pm - room LA2. 
-   * <wrap em>**No lesson 9th november 2017**</​wrap>:​ Lecture suspended. Next lecture is 13th november 2017 at 14:00pm. 
-  * <wrap em>​**Papers 2016-17**</​wrap>:​ available {{ https://​drive.google.com/​drive/​folders/​0B3Jl2zBf8Y-pV2hsTXRPZGJaZEE?​usp=sharing | here }}.  
-   * <wrap em>**No lesson 26th october 2017**</​wrap>:​ Lecture suspended. Next lecture is 9th november 2017. 
-  * <wrap em>​**Course start**</​wrap>:​ lessons will start on 5th October 2017. 
-  * <wrap em>​**Course 2017-16**</​wrap>:​ {{https://​goo.gl/​PDpZPw | link }} 
-</​WRAP>​ 
----- 
-===== General Info ===== 
-<WRAP box round 95% center> 
-**Teacher**: ​ 
-  * **Prof.ssa Emanuela Merelli** <​emanuela.merelli[at]unicam.it>​ 
-  * **Dr. Massimo Callisto De Donato** <​massimo.callistodedonato[at]gruppofilippetti.it>​ 
- 
-**Lessons schedule**: 
-  * 42 h - lectures (2 modules), exercise sessions 
-  * Thursday: 16:00 pm – 19:00 pm 
-  * Room LA2 - Polo "Carla Lodovici" ​ 
- 
-**Students Office hours**: 
-  * Send an e-mail to the teacher to fix an appointment. 
-</​WRAP>​ 
----- 
-===== Course Objectives ===== 
- 
-<WRAP box round 95% center> 
-  * The course gives an introduction to the Big Data models and related techniques required to perform data analysis in real world examples. 
-  * The course focuses on data with "Big Data characteristics"​ such as data that can generated by any kind of systems with an high volume, data that grows very fast, data highly semi-structured or un-structured. 
-  * The course highlights the correlations between Big Data and related fields of IoT and Smart Cities. 
-  * The course introduces all relevant state-of-the-art concepts, methods and technologies enabling Big Data Analysis in real world business cases. 
-</​WRAP>​ 
- 
----- 
-===== Course Contents ===== 
- 
-<WRAP round 95% center box> 
-  * Acquire knowledge and competence on Big Data methodologies,​ techniques and technologies. 
-  * Know most common techniques of Big Data analysis and how they apply to real world examples. 
-  * Apply Big Data Analysis techniques into practical case studies. 
- 
-</​WRAP>​ 
----- 
- 
- 
-===== Syllabus ===== 
-<WRAP round 95% center box> 
-  * **Introduction to Big Data** 
-    * Why Big Data 
-    * Big Data use cases in the real world 
-    * Needs, challenges and opportunities of Big Data  
-  * **Big Data models: Methodologies and Techniques** 
-    * The 3V model 
-    * From datawarehouse to Big Data 
-    * Enable Big Data Analysis 
-  * **Big Data Analysis: storage** 
-    * Storage models for Big Data 
-    * Hadoop framework ​ 
-    * hdfs filesystem 
-  * **Big Data Analysis: computation** 
-    * Computational framework for Big Data Analysis 
-    * Data at rest and Data in motion 
-    * MapReduce and YARN framework 
-    * Other related processing frameworks 
-  * **Big Data Analysis: NoSQL** 
-    * Databases in Big Data systems 
-    * The CAP theorem and BASE model 
-    * NoSQL data models 
-  * **Big Data Analysis: streaming** 
-    * How enabling Big Data Streaming Processing 
-    * Batch processing Vs RealTime processing 
-    * An overview of Apache Spark 
-  * **Advance topics in Big Data Analysis** 
-</​WRAP>​ 
----- 
- 
-===== Study material ===== 
-<WRAP box round center 95%> 
-**Course Slides** 
-  * slide 1st_0 lesson {{ https://​drive.google.com/​file/​d/​0B3Jl2zBf8Y-pSWJqaDQ5WWVoeWs/​view?​usp=sharing | slides_1}} 
-  * slide 1st_1 lesson {{ https://​drive.google.com/​file/​d/​0B3Jl2zBf8Y-pbG0zcm5aS0pmSUU/​view?​usp=sharing | slides_1_1}} 
-  * slide 2st lesson {{ https://​drive.google.com/​file/​d/​0B3Jl2zBf8Y-pNHZlUXFCbXV2NGs/​view?​usp=sharing | slides_2}} 
-  * slide 3st_1 lesson {{ https://​drive.google.com/​file/​d/​0B3Jl2zBf8Y-pV0p4ekJ0RnhpdXM/​view?​usp=sharing | slides_3st_1}} 
-  * slide 3st_2 lesson {{ https://​drive.google.com/​file/​d/​0B3Jl2zBf8Y-pYU5HRVBYV3lNYU0/​view?​usp=sharing | slides_3st_2}} 
-  * slide 4st lesson {{ https://​drive.google.com/​file/​d/​1ENRrfxuhoH8h4Kuir8Omx7B5jZUaGYht/​view?​usp=sharing | slides_4st}} 
-  * slide 5st lesson {{ https://​drive.google.com/​file/​d/​1ncOQ2skwVcp-UVQtjR7Zfcw3n6JXSLxB/​view?​usp=sharing | slides_5st}} 
-  * slide 6st lesson {{ https://​drive.google.com/​file/​d/​10WsuwCjFC4SiyQnKZnfFICX2DXK6X75D/​view?​usp=sharing | slides_6st}} 
-  * slide 6_1st lesson {{ https://​drive.google.com/​file/​d/​1VZIkzkO9F2_Ok7Lwhy8mA_6rPy6opklC/​view?​usp=sharing | slides_6_1st}} 
-  * slide 7st lesson {{ https://​drive.google.com/​file/​d/​1TSSCo4iaazxD5Ua02T2V_c-fV3wbTOP3/​view?​usp=sharing | slides_7st}} 
- 
-  * **Reference materials** 
-  * Slides course. 
-  * Material provided by the teacher. 
-  * Examples 
- 
-  * **Homework** 
-  * - 
- 
-</​WRAP>​ 
----- 
- 
-===== Exams ===== 
-<WRAP box round center 95%> 
-**Exam Dates A.Y. 2017/2018** 
- 
-  * 08/02/2018 - 15:00 
-  * 08/03/2018 - 15:00  
-  * 21/06/2018 - 15:00 
-  * 12/07/2018 - 15:00 
-  * 20/09/2018 - 15:00 
-  * 07/02/2019 - 15:00 
-  * 21/02/2019 - 15:00 
- 
-**Exam rules**: ​ 
-  * Writing Examination on the topics of the course 
-  * Open or multiple-choice questions + Exercise 
-  * 2 h 
-  * Homework assignment evaluation 
- 
-** Exam Results ** 
-  * - 
- 
-</​WRAP>​ 
-