Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
didattica:magistrale:dcc:ay_2021:main [2020/09/28 14:25]
emanuela [General Info]
didattica:magistrale:dcc:ay_2021:main [2020/09/29 10:18] (current)
emanuela [Course Objectives]
Line 13: Line 13:
  
 **ESSE3 Link** **ESSE3 Link**
-  * [[https://​didattica.unicam.it/​Guide/​PaginaADErogata.do?​ad_er_id=2018*N0*N0*S1*14565*7555&​ANNO_ACCADEMICO=2018&​mostra_percorsi=S|Distributed Calculus and Coordination - AY 2018/2019]]+  * [[https://​didattica.unicam.it/​Guide/​PaginaADErogata.do?​ad_er_id=2020*N0*N0*S1*15660*7555&​ANNO_ACCADEMICO=2020&​mostra_percorsi=S|Distributed Calculus and Coordination - AY 2020/2021]]
  
 **Lessons schedule**: **Lessons schedule**:
   * Tuesday, 9am - 11pm  (Room, LB1)   * Tuesday, 9am - 11pm  (Room, LB1)
-  * Thursday, 9am - 11pm (Room, ​Lb1)+  * Thursday, 9am - 11pm (Room, ​LB1)
  
 **Students Office hours**: **Students Office hours**:
-  * Thursday 11pm - 13pm,  ​Palazzo Battibocca ​2nd Piano - Room n.CS-05+  * Thursday 11pm - 13pm,  ​Polo Informatico ​new building
 </​WRAP>​ </​WRAP>​
 ---- ----
Line 26: Line 26:
  
 <WRAP box round 95% center> <WRAP box round 95% center>
-  ​Be able to characterize ​the modelling of complex ​systems. +D1 KNOWLEDGE AND UNDERSTANDING 
-  - Be able to apply methods, languages and techniques of the distributed calculus ​and coordination ​in modelling ​complex systems. + At the end of the course, the student should know and understand:​ 
-  Be able to design ​multiagent ​system ​using prototyping environment. +      - issues relevant ​to the modelling of complex ​system 
-  Be able to characterize ​the evolution of model with the analysis of real phenomenological data. +        - the concept of entanglement between structure and behaviour ​  
 +      ​issues related ​to the dynamics of a complex system  
 +        - the role of entropy for detecting the state of a complex system  
 +        - the concept of emerging behaviour 
 +      - the differences among models and languages  
 +        - the three formal aspects of a complex system: computationcoordination and adaptation 
 +        - the automata-based modelling and forma languages ​(FSMs) 
 +        - the process-based modelling ​and algebraic languages (CCS)  
 +        - the agent-based modelling ​and coordination ​languages (Klaim, Linda) 
 + 
 +D2 - APPLYING KNOWLEDGE AND UNDERSTANDING 
 + At the end of the course, the student should be able to: 
 +    - characterise the structure and dynamics of complex systems 
 +    distinguish interactions from relations, so as communication from coordination 
 +    - correlate the behavioural and structural components of a complex system 
 +    - analyse whether to apply an agent-base model to a real context 
 + 
 +D3 - MAKING JUDGEMENTS 
 + At the end of the course, the student must be able to select: 
 +    - the best calculus to characterize the structure of complex ​system 
 +    the more suitable approach to model the behaviour of a complex system; 
 + 
 +D4 - COMMUNICATION SKILLS 
 +    - write a short review in LaTex 
 +    - write an essay about the assigned research topic 
 +    - make a short presentation of the assigned topic 
 + 
 +D5 - LEARNING SKILLS  
 + At the end of the course, the student should be able to
 +        - autonomously understand if the evolution of the model of a given system can be described and coordinated through ​the analysis of its phenomenological data.
 </​WRAP>​ </​WRAP>​
  
Line 38: Line 67:
   - Models and languages for distributed Calculus: process algebraic calculi, rule-based (CHAM), membrane-based (P-Systems).   - Models and languages for distributed Calculus: process algebraic calculi, rule-based (CHAM), membrane-based (P-Systems).
   - Coordination models and languages: Linda, Klaim   - Coordination models and languages: Linda, Klaim
-  - Concurrent Programming paradigms: Agent-oriented, Actor-based.+  - Concurrent Programming paradigms: Agent-oriented
   - Multiagent modelling and simulation environments:​ REPAST   - Multiagent modelling and simulation environments:​ REPAST
-  - Topological data analysis for driven modelling: S[B]+  - Topology ​driven modelling: S[B]
 </​WRAP>​ </​WRAP>​
 ---- ----
Line 58: Line 87:
 ===== Exams ===== ===== Exams =====
 <WRAP box round center 95%> <WRAP box round center 95%>
-**Exam Dates A.Y. 2015/2016** +**Exam Dates A.Y. 2020/2021** 
-  * Winter session dates here  +  * Winter session dates here in [[https://​didattica.unicam.it/​auth/​docente/​CalendarioEsami/​ElencoAppelliCalEsa.do|ESSE 3]] 
-  * Summer session dates here +  * Summer session dates  
-  * Autumn session dates here +  * Autumn session dates  
-  * Winter session dates here (2016)+  * Winter session dates (2021)
 **Exam rules**: ​ **Exam rules**: ​
   * Homeworks   * Homeworks