Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
didattica:magistrale:ml:main [2020/10/08 15:25]
marcop [Study material]
— (current)
Line 1: Line 1:
-====== Machine Learning ====== 
----- 
-===== News ===== 
-<WRAP center round important 95%> 
-  * <wrap em>​**29/​09/​2020**</​wrap>:​ Starting date 
-  ​ 
-  ​ 
  
-</​WRAP>​ 
- 
----- 
-===== General Info ===== 
-<WRAP box round 95% center> 
-**Teacher**: ​ 
-  * [[https://​docenti.unicam.it/​pdett.aspx?​ids=N&​tv=d&​UteId=1039&​ru=PROFCONTR|Marco Piangerelli]] ​ 
- 
-**ESSE3 Link** 
-  * [[https://​didattica.unicam.it/​Guide/​PaginaADErogata.do?​ad_er_id=2018*N0*N0*S1*14634*9989&​ANNO_ACCADEMICO=2018&​mostra_percorsi=S|Machine Learning - AY 2018/2019]] 
- 
-**Class schedule**: 
-  * Monday 09:00 - 11:00 - AB1 
-  * Tuesday 16:00 - 18:00 - AB1 
- 
-**Students Office hours**: 
-  * Tuesday from 09:00 to 11:00 
-</​WRAP>​ 
----- 
-===== Course Objectives ===== 
- 
-<WRAP box round 95% center> 
-KNOWLEDGE AND UNDERSTANDING 
- 
-The aim of the course is to provide the student with knowledge and skills in the area of machine learning.\\ 
-At the end of the course the student should be able to: 
- 
-  * distinguish the various machine learning paradigms; 
-  * know the learning theory 
-  * know classification algorithms, regression, clustering and dimension reduction; 
- 
- 
-APPLYING KNOWLEDGE AND UNDERSTANDING\\ 
-After completing the course, the student must demonstrate that he is able to: 
- 
-  * apply the different machine learning paradigms 
-  * implement the classification,​ regression, clustering and dimensionality reduction algorithms; 
-  * design and implement systems able to learn automatically from real data and situations; 
- 
- 
-COMMUNICATION SKILLS\\ 
-At the end of this training activity, the student will be able to express himself clearly and with appropriate terms, using the English language, in the learning discussions as well as expose the results of a research concerning technical aspects of machine learning. 
- 
-LEARNING SKILLS 
-At the end of this training activity the student will be able to: 
- 
-  *  Finding and learning the innumerable algorithms and techniques that are presented in the field of machine learning 
-  *  Implementing and using the new algorithms 
-  
-</​WRAP>​ 
- 
----- 
-===== Course Contents ===== 
- 
-<WRAP round 95% center box> 
- 
-  * Notions of Probability and Linear Algebra 
- 
-  * Supervised Learning 
- 
-  * Linear Models and Regression for Classification 
- 
-  * Decision Tree, Random Forest, Ensemble 
- 
-  * Unsupervised Learning 
-  ​ 
-  * Dimensionality Reduction 
- 
-  * Clustering ​ 
- 
-  * Neural networks (an introduction) : FFNN, RNN, SOM 
- 
-  * Balanced and unbalanced data 
-  
-  * Evaluation Metrics (AUC, ROC, Confusion Matrix...) 
- 
-  * Markov Chains and Hidden Markov Models 
- 
-  * Examples of coding in Python and R 
- 
-  * Probabilistic learning theory and the "​learning problem"​ 
- 
-  * The VC-dimension (Proof of the maximum margin) 
- 
- 
-</​WRAP>​ 
----- 
-===== Study material ===== 
-<WRAP box round center 95%> 
-**Course Slides and video** 
-  * 29/09/2020 {{didattica:​magistrale:​ml:​ay_2021:​lezione0_protetta.pdf|Lezione0}} 
-  * 05/10/2020 {{didattica:​magistrale:​ml:​ay_2021:​lezione1_protetta|Lezione1}}[[https://​unicam.webex.com/​recordingservice/​sites/​unicam/​recording/​playback/​1c22f3d66d4145ffb8bb80bf3ed7356d|Video_ML_05_2020]] 
-  * 06/​10/​2020 ​  ​[[https://​unicam.webex.com/​recordingservice/​sites/​unicam/​recording/​playback/​1e28cb473c354860ae884dd42dfbe365|Video_ML_06_2020]] 
-  * 11/​10/​2019 ​  No Class 
-  * 14/10/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione1_19_20_protetta.pdf|Lezione2}} 
-  * 17/10/2019 Canceled 
-  * 21/10/2019 See Lesson 1 
-  * 24/10/2019 See Lesson 1 
-  * 28/10/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione2_2019_2020_protetta.pdf|Lezione3}} 
-  * 4/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione3_19_20_protetta.pdf|Lezione 4}} 
-  * 7/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione5a_19_20_protetta.pdf|Lezione 5b}} 
-  * 11/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione5b_19_20_protetta.pdf|Lezione 5b}} 
-  * 14/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione6_19_20_protetto.pdf|Lezione 6}} 
-  * 18/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione7_19_20_protetto.pdf|Lezione 7}} 
-  * 21/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione8_19_20_protetto.pdf|Lezione 8}} 
-  * 25/01/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione9_19_20_protetto.pdf|Lezione 9}} 
-  * 28/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​lezione10_19_20_protetto.pdf|Lezione 10}} 
-  * 2/12/2019 {{didattica:​magistrale:​ml:​ay_2021:​cnn_protetto.pdf|Lezione 11}} 
-  
-  ​ 
-**Reference books** 
- 
-  * C.M. Bishop, Pattern Recognition and Machine Learning, Springer - 2006 
-  * D. Barber, ​ Bayesian Reasoning and Machine Learning, Cambridge University Press. - 2012 [[http://​web4.cs.ucl.ac.uk/​staff/​D.Barber/​pmwiki/​pmwiki.php?​n=Brml.Online|Online version]] 
-  * T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer - 2008 [[https://​web.stanford.edu/​~hastie/​ElemStatLearn//​printings/​ESLII_print10.pdf|Online version]] 
- 
-  ​ 
-**Other sources** 
-Some of the material is taken from the ML Course of Caltech given by Prof. Yaser Abu Mostafa and his collaborators 
- 
-** Additional Material ** 
- 
-  * 28/09/2019 {{didattica:​magistrale:​ml:​ay_2021:​hoeffding_protetto.pdf|Hoeffding'​s}} 
-  * 28/09/2019 {{didattica:​magistrale:​ml:​ay_2021:​optimization_protetto.pdf|Optimization_notes}} 
-  * 28/09/2019 {{didattica:​magistrale:​ml:​ay_2021:​svm_notes1.pdf|SVM1}} 
-  * 28/09/2019 {{didattica:​magistrale:​ml:​ay_2021:​svm_notes2.pdf|SVM2}} 
-  * 28/09/2019 {{didattica:​magistrale:​ml:​ay_2021:​svm_notes4.pdf|SVM3}} 
-  * 28/09/2019 {{didattica:​magistrale:​ml:​ay_2021:​math4ml.pdf|Math for Machine Learning - no Bayesian Probability}} 
-  * 12/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​explaining_adaboost_schapire.pdf|Explaining AdaBoost- Schapire}} 
-  * 12/11/2019 {{didattica:​magistrale:​ml:​ay_2021:​ensemble_methods_zhou.pdf|Ensemble Methods - Zhou}} 
-  * 12/12/2019 {{didattica:​magistrale:​ml:​ay_2021:​bias_variance_restriceted.pdf|Bias-Variance I}} 
-  * 12/12/2019 {{didattica:​magistrale:​ml:​ay_2021:​bias_varianceii_restricted.pdf|Bias-Variance II}} 
-  * 16/12/2019 {{didattica:​magistrale:​ml:​ay_2021:​vapnik_recap_protetto.pdf|Vapnik'​s Inequality}} 
-</​WRAP>​ 
----- 
-===== Exams ===== 
-<WRAP box round center 95%> 
-**Exam Dates A.Y. 2020/2021** 
-  *  
-  *  
-  *  
-  *  
-  *  
- 
-**Please, once inside your ESSE3 private account, select the dates with the labels in the following form "​(Roman Number) Prova Parziale scritta"​** 
- 
-**Exam rules**: ​ 
-The exam consists in two sessions: a written session and an oral one. 
-The oral session is reserved for people who pass the written part with a mark greater or equal to 18. 
- 
- 
- 
- 
- 
-** Exam Results ** 
-  * N/A 
-</​WRAP>​ 
- 
----- 
-===== Introduction to Machine Learning (for Ph.D.) ===== 
-<WRAP round 95% center box> 
- ** Syllabus ** 
- 
-  * Learning Probabilistic Theory 
-  * Learning paradigms 
-  * Classification ​ 
-  * Clustering 
-  * Neural Networks 
-  * Support Vector Machines 
-  * Practical issues for ML 
- 
- ** Material ** 
-  * Lesson0 13/​06/​2019 ​ {{didattica:​magistrale:​ml:​ay_2021:​lezione0_phd_protetto.pdf|Lezione0}} 
-  * Lesson1 09/​06/​2019 ​ {{didattica:​magistrale:​ml:​ay_2021:​lezione1_phd_protetto.pdf|Lezione1}} 
-  * Lesson2 20/​06/​2019 ​ {{didattica:​magistrale:​ml:​ay_2021:​lezione2_phd_protetto.pdf|Lezione2}} 
-  * Lesson3 24/​06/​2019 ​ {{didattica:​magistrale:​ml:​ay_2021:​lezione3_phd_protetto.pdf|Lezione3}} 
-  * Lesson4 27/​06/​2019 ​ {{didattica:​magistrale:​ml:​ay_2021:​lezione4_phd_protetto.pdf|Lezione4}} 
-  * Lesson5 04/​07/​2019 ​ {{didattica:​magistrale:​ml:​ay_2021:​lezione5_phd_protetto.pdf|Lezione5}} 
-  * Lesson6 13/​07/​2019 ​ {{didattica:​magistrale:​ml:​ay_2021:​lezione6_phd_protetto.pdf|Lezione6}} 
-</​WRAP>​