
2. Lexical Analysis

Andrea Polini

Formal Languages and Compilers
Master in Computer Science

University of Camerino

October 21st . . . , 2014

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 1 / 18

Lexical Analysis

if (i==j)
z=0;

else
z=1;

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 2 / 18

Lexical Analysis

if (i==j)
z=0;

else
z=1;

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 2 / 18

Lexical Analysis

Token Class (or Class)
- In English: Noun, Verb, Adjective, Adverb, Article, . . .

- In a programming language: Identifier, Keywords, “(“, “)”, Numbers,
. . .

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 3 / 18

Lexical Analysis

Token classes corresponds to sets of strings

Identifier
- strings of letter or digits starting with a letter

Integer
- a non-empty string of digits

Keyword
- “else”, “if”, “while”, . . .

Whitespace
- a non-empty sequence of blanks, newlines, and tabs

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 4 / 18

Lexical analysis

Therefore the role of the lexical analyzer (Lexer) is:
Classify program substring according to role (token class)
communicate tokens to parser

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 5 / 18

Lexical Analysis

Let’s analyze these lines of code:

\tif (i==j)\n\t\tz=0;\n\telse\n\t\tz=1;

x=0;\n\twhile (x<10) {\n\tx++;\n}

Token Classes: Identifier, Integer, Keyword, Whitespace

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 6 / 18

Lexical Analysis

Therefore an implementation of a lexical analyzer must do two things:
Recognize substrings corresponding to tokens

the lexemes

Identify the token class for each lexemes

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 7 / 18

Lexical Analysis - Tricky problems

FORTRAN rule: whitespace is insignificant
i.e. VA R1 is the same as VAR1

DO 5 I = 1,25

DO 5 I = 1.25

In FORTRAN the “5” refers to a label you will find in the following of the program code

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 8 / 18

Lexical Analysis - Tricky problems

1 The goal is to partition the string. This is implemented by reading
left-to-right, recognizing one token at a time

2 “Lookahead” may be required to decide where one token ends
and the next token begins

if (i==j)
z=0;

else
z=1;

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 9 / 18

Lexical Analysis - Tricky problems

PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 10 / 18

Lexical Analysis - Tricky problems

PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 10 / 18

Lexical Analysis - Tricky problems

PL/1 keywords are not reserved

IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

DECLARE(ARG1,...,ARGN)
Is DECLARE a keyword or an array reference?

Need for an unbounded lookahead

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 10 / 18

Lexical Analysis - Tricky problems

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 11 / 18

Lexical Analysis - Tricky problems

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

Foo<Bar<Barr>>

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 11 / 18

Regular Languages

We need a way to define which is the set of strings in a token
class

- Use of regular languages is enough

Regular expressions are a suitable way to syntactically identify strings
belonging to a regular language

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 12 / 18

Regular expressions

Single character: ’c’ = {“c”}
Epsilon: ε = {“ ”}
Union: A+B = {a|a ∈ A} ∪ {b|b ∈ B}
Concatenation: AB = {ab|a ∈ A ∧ b ∈ B}
Iteration: A∗ = ∪i≥0Ai

Def. The regular expressions over Σ are the smallest set including
ε, all the character ’c’ in Σ and that is closed with respect to union,
concatenation and iteration.
Algebraic laws for RE:

+ is commutative and associative
concatenation is associative
concatenation distributes over +
ε is the identity for concatenation
ε is guaranteed in a closure
the Kleene star is idempotent

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 13 / 18

Regular expressions

Single character: ’c’ = {“c”}
Epsilon: ε = {“ ”}
Union: A+B = {a|a ∈ A} ∪ {b|b ∈ B}
Concatenation: AB = {ab|a ∈ A ∧ b ∈ B}
Iteration: A∗ = ∪i≥0Ai

Def. The regular expressions over Σ are the smallest set including
ε, all the character ’c’ in Σ and that is closed with respect to union,
concatenation and iteration.
Algebraic laws for RE:

+ is commutative and associative
concatenation is associative
concatenation distributes over +
ε is the identity for concatenation
ε is guaranteed in a closure
the Kleene star is idempotent

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 13 / 18

Regular expressions

Single character: ’c’ = {“c”}
Epsilon: ε = {“ ”}
Union: A+B = {a|a ∈ A} ∪ {b|b ∈ B}
Concatenation: AB = {ab|a ∈ A ∧ b ∈ B}
Iteration: A∗ = ∪i≥0Ai

Def. The regular expressions over Σ are the smallest set including
ε, all the character ’c’ in Σ and that is closed with respect to union,
concatenation and iteration.
Algebraic laws for RE:

+ is commutative and associative
concatenation is associative
concatenation distributes over +
ε is the identity for concatenation
ε is guaranteed in a closure
the Kleene star is idempotent

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 13 / 18

Regular expressions - example

Consider Σ = {0,1}. What are the sets defined by the following
REs?

1∗

(1 + 0)1
0∗ + 1∗

(0 + 1)∗

Given the regular language identified by (0 + 1)∗1(0 + 1)∗ which
are the regular expressions identifying the same language among
the following one:

(01 + 11)∗(0 + 1)∗

(0 + 1)∗(10 + 11 + 1)(0 + 1)∗

(1 + 0)∗1(1 + 0)∗

(0 + 1)∗(0 + 1)(0 + 1)∗

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 14 / 18

Regular expressions - example

Consider Σ = {0,1}. What are the sets defined by the following
REs?

1∗

(1 + 0)1
0∗ + 1∗

(0 + 1)∗

Given the regular language identified by (0 + 1)∗1(0 + 1)∗ which
are the regular expressions identifying the same language among
the following one:

(01 + 11)∗(0 + 1)∗

(0 + 1)∗(10 + 11 + 1)(0 + 1)∗

(1 + 0)∗1(1 + 0)∗

(0 + 1)∗(0 + 1)(0 + 1)∗

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 14 / 18

Regular expressions - example

Choose the regular languages that are correct specifications of
the following English-language description:

Twelve-hour times of the form “04:13PM”. Minutes should always be a two
digit number, but hours may be a single digit

(0 + 1)?[0− 9] : [0− 5][0− 9](AM + PM)

((0 + ε)[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

(0∗[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

(0?[0− 9] + 1(0 + 1 + 2) : [0− 5][0− 9](a + P)M

Regular expressions (syntax)
specify regular languages (semantics)

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 15 / 18

Regular expressions - example

Choose the regular languages that are correct specifications of
the following English-language description:

Twelve-hour times of the form “04:13PM”. Minutes should always be a two
digit number, but hours may be a single digit

(0 + 1)?[0− 9] : [0− 5][0− 9](AM + PM)

((0 + ε)[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

(0∗[0− 9] + 1[0− 2]) : [0− 5][0− 9](AM + PM)

(0?[0− 9] + 1(0 + 1 + 2) : [0− 5][0− 9](a + P)M

Regular expressions (syntax)
specify regular languages (semantics)

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 15 / 18

RE and Languages

Def. Let Σ be a set of characters (alphabet). A language over Σ is
a set of strings of characters drawn from Σ

Alphabet = English character =⇒ Language = English sentences
Alphabet = ASCII =⇒ Language = C programs

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 16 / 18

Meaning function L

The meaning function L maps syntax to semantics

L (e) = M where e is a RE and M is a set of strings

Therefore:
L (ε) = {“ ”}
L (′c′) = {“c”}
L (A + B) = L (A) ∪L (B)

L (AB) = {ab|a ∈ L (A) ∧ b ∈ L (B)}
L (A∗) = {∪i≥0L (Ai)}

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 17 / 18

Meaning function L

Why use a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Because expressions and meanings are not 1 to 1

consider the case of arabic number and roman numbers

Many different RE can be used to identify the same regular language

It should never happen that the same syntactical structure permits to
define more than one language

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 18 / 18

Meaning function L

Why use a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Because expressions and meanings are not 1 to 1

consider the case of arabic number and roman numbers

Many different RE can be used to identify the same regular language

It should never happen that the same syntactical structure permits to
define more than one language

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 18 / 18

Meaning function L

Why use a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Because expressions and meanings are not 1 to 1

consider the case of arabic number and roman numbers

Many different RE can be used to identify the same regular language

It should never happen that the same syntactical structure permits to
define more than one language

(Formal Languages and Compilers) 2. Lexical Analysis October 21st . . . , 2014 18 / 18

