
2. Lexical Analysis II

Andrea Polini

Formal Languages and Compilers
Master in Computer Science

University of Camerino

October 28st , 2014

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 1 / 11

Meaning function L

The meaning function L maps syntax to semantics

L (e) = M where e is a RE and M is a set of strings

Therefore:
L (ε) = {“ ”}
L (′c′) = {“c”}
L (A + B) = L (A) ∪L (B)

L (AB) = {ab|a ∈ L (A) ∧ b ∈ L (B)}
L (A∗) = {∪i≥0L (Ai)}

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 2 / 11

Meaning function L

Why use a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Because expressions and meanings are not 1 to 1

consider the case of arabic number and roman numbers

Many different RE can be used to identify the same regular language

It should never happen that the same syntactical structure permits to
define more than one meaning

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 3 / 11

Meaning function L

Why use a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Because expressions and meanings are not 1 to 1

consider the case of arabic number and roman numbers

Many different RE can be used to identify the same regular language

It should never happen that the same syntactical structure permits to
define more than one meaning

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 3 / 11

Meaning function L

Why use a meaning function?
Makes clear what is syntax, what is semantics
Allows us to consider notation as a separate issue
Because expressions and meanings are not 1 to 1

consider the case of arabic number and roman numbers

Many different RE can be used to identify the same regular language

It should never happen that the same syntactical structure permits to
define more than one meaning

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 3 / 11

Regular definitions

For notational convention we give names to certain regular
expressions. A regular definition, on the alphabet Σ is sequence of
definition of the form:

d1 → r1

d2 → r2

. . .
dn → rn

So token of a language can be defined as:

letter → a|b|...|z|A|B|...|Z
compact syntax: [a − zA − B]

digit → 0|1|...|9
compact syntax: [0 − 9]

Identifier → letter(letter |digit)∗
Integer → ...

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 4 / 11

Lexical Specification

At least one: A+ ≡ AA∗

Union: A|B ≡ A + B
Option: A? ≡ A + ε

Range: ′a′ +′ b′ + ...+′ z ′ ≡ [a− z]

Excluded range: complement of [a− z] ≡ [∧a− z]

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 5 / 11

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RE for all different kind ot tokens

How can we define it?
1 write a rexp for the lexemes of each token class (number,

keyword, identifier,. . .)
2 Constructs R matching all lexemes for all tokens
3 Let input be X1...Xn

For 1 ≤ i ≤ n check if X1...Xi ∈ L (Rj) for some j
4 if success then we know that X1...Xi ∈ L (Rj) for some j
5 remove X1...Xi from input and go to (3)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 6 / 11

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RE for all different kind ot tokens

How can we define it?
1 write a rexp for the lexemes of each token class (number,

keyword, identifier,. . .)
2 Constructs R matching all lexemes for all tokens
3 Let input be X1...Xn

For 1 ≤ i ≤ n check if X1...Xi ∈ L (Rj) for some j
4 if success then we know that X1...Xi ∈ L (Rj) for some j
5 remove X1...Xi from input and go to (3)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 6 / 11

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RE for all different kind ot tokens

How can we define it?
1 write a rexp for the lexemes of each token class (number,

keyword, identifier,. . .)
2 Constructs R matching all lexemes for all tokens
3 Let input be X1...Xn

For 1 ≤ i ≤ n check if X1...Xi ∈ L (Rj) for some j
4 if success then we know that X1...Xi ∈ L (Rj) for some j
5 remove X1...Xi from input and go to (3)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 6 / 11

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RE for all different kind ot tokens

How can we define it?
1 write a rexp for the lexemes of each token class (number,

keyword, identifier,. . .)
2 Constructs R matching all lexemes for all tokens
3 Let input be X1...Xn

For 1 ≤ i ≤ n check if X1...Xi ∈ L (Rj) for some j
4 if success then we know that X1...Xi ∈ L (Rj) for some j
5 remove X1...Xi from input and go to (3)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 6 / 11

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RE for all different kind ot tokens

How can we define it?
1 write a rexp for the lexemes of each token class (number,

keyword, identifier,. . .)
2 Constructs R matching all lexemes for all tokens
3 Let input be X1...Xn

For 1 ≤ i ≤ n check if X1...Xi ∈ L (Rj) for some j
4 if success then we know that X1...Xi ∈ L (Rj) for some j
5 remove X1...Xi from input and go to (3)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 6 / 11

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RE for all different kind ot tokens

How can we define it?
1 write a rexp for the lexemes of each token class (number,

keyword, identifier,. . .)
2 Constructs R matching all lexemes for all tokens
3 Let input be X1...Xn

For 1 ≤ i ≤ n check if X1...Xi ∈ L (Rj) for some j
4 if success then we know that X1...Xi ∈ L (Rj) for some j
5 remove X1...Xi from input and go to (3)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 6 / 11

Lexical Specification

We want to derive a regular expression for all tokens of a language:

s ∈ L (R) – where R is the RE for all different kind ot tokens

How can we define it?
1 write a rexp for the lexemes of each token class (number,

keyword, identifier,. . .)
2 Constructs R matching all lexemes for all tokens
3 Let input be X1...Xn

For 1 ≤ i ≤ n check if X1...Xi ∈ L (Rj) for some j
4 if success then we know that X1...Xi ∈ L (Rj) for some j
5 remove X1...Xi from input and go to (3)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 6 / 11

LA matching rules

Suppose that at the same time for i 6= j :
X1...Xi ∈ L (R)

X1...Xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
X1...Xk ∈ L (Ri)

X1...Xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 7 / 11

LA matching rules

Suppose that at the same time for i 6= j :
X1...Xi ∈ L (R)

X1...Xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
X1...Xk ∈ L (Ri)

X1...Xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 7 / 11

LA matching rules

Suppose that at the same time for i 6= j :
X1...Xi ∈ L (R)

X1...Xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
X1...Xk ∈ L (Ri)

X1...Xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 7 / 11

LA matching rules

Suppose that at the same time for i 6= j :
X1...Xi ∈ L (R)

X1...Xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
X1...Xk ∈ L (Ri)

X1...Xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 7 / 11

LA matching rules

Suppose that at the same time for i 6= j :
X1...Xi ∈ L (R)

X1...Xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
X1...Xk ∈ L (Ri)

X1...Xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 7 / 11

LA matching rules

Suppose that at the same time for i 6= j :
X1...Xi ∈ L (R)

X1...Xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
X1...Xk ∈ L (Ri)

X1...Xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 7 / 11

LA matching rules

Suppose that at the same time for i 6= j :
X1...Xi ∈ L (R)

X1...Xj ∈ L (R)

Which is the match to consider?

longest match rule

Suppose that at the same time for i 6= j ∈ [1..n] and R = R1|R2|...|Rn:
X1...Xk ∈ L (Ri)

X1...Xk ∈ L (Rj)

Which is the match to consider?

first one listed rule

Errors: to manage errors put as last match in the list a rexp for all
lexemes not in the language

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 7 / 11

Finite Automata

Regular Expressions = specification
Finite Automata = implementation

A Finite Automata is a tuple: < S ,Σ, δ, s0,F >

DFA vs. NFA
Depending on the definition of δ we distinguish between:

Deterministic Finite Automata (DFA)
Nondeterministic Finite Automata (NFA)

The transition relation δ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 8 / 11

Finite Automata

Regular Expressions = specification
Finite Automata = implementation

A Finite Automata is a tuple: < S ,Σ, δ, s0,F >

DFA vs. NFA
Depending on the definition of δ we distinguish between:

Deterministic Finite Automata (DFA)
Nondeterministic Finite Automata (NFA)

The transition relation δ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 8 / 11

Finite Automata

Regular Expressions = specification
Finite Automata = implementation

A Finite Automata is a tuple: < S ,Σ, δ, s0,F >

DFA vs. NFA
Depending on the definition of δ we distinguish between:

Deterministic Finite Automata (DFA)
Nondeterministic Finite Automata (NFA)

The transition relation δ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 8 / 11

Finite Automata

Regular Expressions = specification
Finite Automata = implementation

A Finite Automata is a tuple: < S ,Σ, δ, s0,F >

DFA vs. NFA
Depending on the definition of δ we distinguish between:

Deterministic Finite Automata (DFA)
Nondeterministic Finite Automata (NFA)

The transition relation δ can be represented in a table (transition table)

Overview of the graphical notation circle and edges (arrows)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 8 / 11

examples

DFA for a single 1
DFA for accepting any number of 1’s followed by a single 0
DFA for any sequence of a or b (possibly empty) followed by ’abb’

Which rexp correctly defines the automata:
1 (0|1)*
2 (1*|0)(1|0)
3 1*|(01)*|(001)*|(000*1)*
4 (0|1)*00

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 9 / 11

ε-moves

DFA, NFA and ε-moves
DFA

one transition per input per state
no ε-moves
faster

NFA
can have multiple transitions for one input in a given state
can have ε-moves
smaller (exponentially)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 10 / 11

ε-moves

DFA, NFA and ε-moves
DFA

one transition per input per state
no ε-moves
faster

NFA
can have multiple transitions for one input in a given state
can have ε-moves
smaller (exponentially)

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 10 / 11

From rexp to NFA

Equivalent NFA for a rexp
1 for ε
2 for ’a’
3 for AB
4 for A|B
5 for A*

Now consider the rexp for (1|0)*1

(Formal Languages and Compilers) 2. Lexical Analysis II October 28st , 2014 11 / 11

